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Abstract: Although soil moisture (SM) is an important constraint factor of evapotranspiration (ET),
the majority of the satellite-driven ET models do not include SM observations, especially the SM at
different depths, since its spatial and temporal distribution is difficult to obtain. Based on monthly
three-layer SM data at a 0.25◦ spatial resolution determined from multi-sources, we updated the
original Priestley Taylor–Jet Propulsion Laboratory (PT-JPL) algorithm to the Priestley Taylor–Soil
Moisture Evapotranspiration (PT-SM ET) algorithm by incorporating SM control into soil evaporation
(Es) and canopy transpiration (T). Both algorithms were evaluated using 17 eddy covariance towers
across different biomes of China. The PT-SM ET model shows increased R2, NSE and reduced RMSE,
Bias, with more improvements occurring in water-limited regions. SM incorporation into T enhanced
ET estimates by increasing R2 and NSE by 4% and 18%, respectively, and RMSE and Bias were
respectively reduced by 34% and 7 mm. Moreover, we applied the two ET algorithms to the whole
of China and found larger increases in T and Es in the central, northeastern, and southern regions
of China when using the PT-SM algorithm compared with the original algorithm. Additionally,
the estimated mean annual ET increased from the northwest to the southeast. The SM constraint
resulted in higher transpiration estimate and lower evaporation estimate. Es was greatest in the
northwest arid region, interception was a large fraction in some rainforests, and T was dominant in
most other regions. Further improvements in the estimation of ET components at high spatial and
temporal resolution are likely to lead to a better understanding of the water movement through the
soil–plant–atmosphere continuum.

Keywords: evapotranspiration; Priestley–Taylor algorithm; soil moisture; evaporation; transpira-
tion; China

1. Introduction

Understanding water and heat exchange information of the soil–plant–atmosphere
continuum (SPAC) is imperative to better manage more restricted water resources in the
future. As one of the most important connecting terms in SPAC [1], evapotranspiration (ET),
which consists of evaporation from wet surfaces (E) and transpiration through plants (T),
is critical for both the energy budget and water balance in the earth–atmospheric system.
Normally, vegetation T is a physiological process that is closely associated with CO2
assimilation and has a great influence on the gross productivity of terrestrial ecosystems,
while evaporation from wet canopy surfaces (Ei) or soil (Es) is often regarded as a wasteful
loss of water and does not directly contribute to the ecosystem productivity [2,3]. Therefore,
ET partitioning is of prime importance for the water resources and forests management
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and the agriculture practice. Over the past five decades, much effort has been devoted
to the development of techniques and algorithms for ET or its components estimation, as
documented by a substantial body of literatures [4–7]. However, estimates of ET or its
components are still a major challenge for the complex climatic and underlying conditions.

In general, ET partitioning methods can be grouped into two categories: (1) Field
measurements (i.e., micro-lysimeter, Bowen ratio, isotopes, sap flow, and the eddy covari-
ance (EC) technique, etc.) [8–13] and (2) models such as remote sensing-based physical
models, land surface models (i.e., the Shuttleworth–Wallace model, the energy and water
balance model, the soil–water–energy and transpiration model, and the two-source energy
balance model, etc.) [14–18]. Due to the difficulty of using relatively few scattered point
measurements to infer regional variability [19], remote sensing-based ET models have
become a dominant means for providing spatially distributed regional ET information
on land surface, as they have greatly improved the large-scale observation of soil and
vegetation dynamics [20]. Among the remote sensing-based ET models, the physical mod-
els, such as the Penman–Monteith (PM) ET algorithm and Priestley Taylor–Jet Propulsion
Laboratory (PT-JPL) ET algorithm, focusing on the dynamics of the ET process, have been
widely used [20–24]. Particularly, the PT-JPL algorithm, a simplified version of the more
theoretical PM ET algorithm that avoids the computational complexities of aerodynamic
resistance, has outperformed many ET models [17,25]. Although the PT-JPL ET algorithm
utilizes eco-physiological and atmospheric constraints to regulate the potential ET flux to
an actual ET flux, such as the other ET remote sensing algorithms, it also lacks soil moisture
(SM) control.

SM can not only control the conversion of incident radiation into sensible and la-
tent heat fluxes but also determine the distribution of rainfall in infiltration, runoff, and
evaporation [26]. Up until now, only a few studies have been conducted to estimate ET
components using SM observations, mainly since the accurate values of SM observation are
difficult to obtain. Instead, previous studies usually use the land surface temperature and
vegetation index, which can serve as proxy indicators of the surface moisture status over
a range in spatial scales [27], to estimate plant T and Es [28,29]. Along with the constant
development of remote sensing techniques on SM (e.g., the global Soil Moisture Climate
Change Initiative project, SMCCI, 1978; Soil Moisture and Ocean Salinity, SMOS, 2009;
Soil Moisture Active Passive, SMAP, 2015), SM data have become increasingly available in
recent years [30,31]. Within this context, Purdy et al. (2018) incorporated the launch of the
SMAP satellite-derived surface SM control on the PT-JPL ET algorithm to estimate Es and
canopy T [24]. Walker et al. (2019) presented a modified ET model using a surface actual
water vapor pressure parameter, which was estimated by incorporating the SM from SMAP
products [32]. It is important to note that the SMAP mission was first launched in January
2015, and the length of SM observations is relatively short. Indeed, the increasing accuracy
and a variety of spatial scales of SM datasets will provide much assistance in ET estimates.
However, many of these remote sensing techniques can only provide SM estimates for
the surface [27,33–37], which cannot satisfy the transpiration water requirements for the
vegetation with deeper roots, such as trees and shrubs. Therefore, in order to investigate
the SM effect on vegetation T estimation, effective SM data from the deeper sources should
first be obtained.

Various adaptations of SM normalized by soil properties to compute the relative
extractable water (REW) have been applied to limit Es or T [24,29], while SM under the
canopy is just one of numerous environmental variables that constrains the photosynthesis
and/or canopy evaporative demand [4,20,38,39]. Moreover, the estimation accuracy of
vegetation T not only relies on the quality of environmental variables, such as temperature,
vapor pressure, radiation, and SM data, but also relates to the plant types, canopy heights,
and aboveground biomass [23,24,40]. However, the impact of environmental variables and
plant and soil types on soil water availability is difficult to quantify and subject to much
uncertainty. Recently, the availability of high-quality meteorological forcing datasets and
observations of vegetation characteristics and canopy heights, as well as SM-observing
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satellites, together with data assimilation techniques, provides us the opportunity to gather
further information on plant sensitivity to environmental conditions [24,32]. Nonetheless,
accurate documentation of the spatial and temporal distribution of multi-layer SM and
quantification of the effect of the environmental conditions on vegetation T are important
in the ET and its components’ estimates.

Overall, to the best of our knowledge, there is a scarcity of studies incorporating SM of
multi-layers into the physically and remote sensing-based ET algorithm, as well as of those
focusing on the role of SM in different ET components estimates. The primary objective
of this study is to estimate ET components at monthly scale based on a modified PT-JPL
ET algorithm by incorporating the SM constraints. To this end, SM data of multi-layers
are integrated from observation and remote sensing products. As a case study, both the
original PT-JPL ET algorithm and the modified algorithm (here-after called PT-SM) are
evaluated using the observed ET from 17 eddy covariance sites across different land covers
in China. Ultimately, we also apply the new PT-SM model to the whole of China using SM
data at different depths, and the individual component contribution to the mean annual
ET is investigated.

2. Materials and Methods
2.1. PT-JPL Algorithm

Potential evapotranspiration (PET, in mm) is defined in terms of the radiation- and
temperature-based Priestley–Taylor (PT) equilibrium equation:

PET = α
∆

λ(∆ + γ)
(Rn − G) (1)

where α is the PT coefficient of 1.26, ∆ is the slope of the saturated vapor pressure curve
(kPa ◦C−1), γ is the psychrometric constant (~0.066 kPa ◦C−1), λ is the latent heat of
vaporization (kPa ◦C−1), Rn is the net radiation at the surface (MJ m−2), and G is the
ground heat flux (MJ m−2).

Subsequently, Fisher et al. (2008) developed a modified PT model (i.e., the PT-JPL
model) to scale the PET down to the actual ET using eco-physiological constraints and
soil evaporation partitioning, which are driven by atmospheric moisture (vapor pressure
deficit and relative humidity, VPD and RH) and vegetation indices (normalized and soil
adjusted vegetation indices, NDVIs, and the enhanced vegetation index, EVI) [37]. The
PT-JPL algorithm estimate ET at the monthly scale is defined as follows:

ET = Es + Ei + T (2)

Es = [ fwet + (1− fwet) fsm]α
∆

λ(∆ + γ)
Rns (3)

Ei = fwetα
∆

λ(∆ + γ)
Rnc (4)

T = (1− fwet) fC fT fMα
∆

λ(∆ + γ)
Rnc (5)

where fwet is the relative surface wetness (RH4); fsm is a soil moisture constraint (RHmin
VPDmin/β,

where VPDmin is calculated by Tmax and RHmin); fC is the green canopy fraction (fAPAR/fIPAR)
with fAPAR being the fraction of absorbed photosynthetically active radiation (PAR) ab-
sorbed by green vegetation cover (m1EVI + b1) and fIPAR the fraction of intercepted PAR
(m2NDVI + b2); fT is a plant temperature constraint (exp(−((Tmax − Topt)/Topt)2)); fM is a
plant moisture constraint (the ratio between fAPAR and fAPARmax); Tmax is the maximum air
temperature; and Topt is Tmax at max (RnTmaxEVI/VPD). Rns is the net radiation at the soil
surface calculated as:

Rns = Rn exp(−kRn LAI) (6)
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where kRn = 0.60, and LAI is the leaf area index; Rnc is the canopy net radiation (Rn − Rns).

2.2. PT-SM Algorithm

In the PT-JPL model, the soil water deficit index, fsm (RHmin
VPDmin/β) is employed to

constrain the rate of evaporation from the soil surface according to the Bouchet’s comple-
mentary hypothesis that the surface moisture status is linked to the evaporative demand of
the atmosphere [37]. In the original PT algorithm, the REW is usually used as an index that
normalizes the impact based on the soil moisture and soil properties [41]. Note that Es is
driven by moisture within the top few centimeters of the soil profile. Therefore, with the
aid of observed surface soil moisture (SM, m3 m−3), the scalar f REW can be calculated from
the following equation:

fREW =
SM1 − SM1wp

SM1 f c − SM1wp
(7)

where SM1 is the 0–5 cm soil moisture (m3 m−3); SM1fc and SM1wp are the soil field capacity
and soil moisture at the wilting point, respectively. Therefore, the new Es equation is
conducted by replacing fsm with fREW:

Es = [ fwet + (1− fwet) fREW ]α
∆

λ(∆ + γ)
Rns (8)

In the original PT-JPL formulation, the plant moisture stress is inferred from the
deviation from maximum greenness ( fM), which is calculated by normalizing phenological
parameters by the maximum observed value per pixel. Actually, at the monthly scale, the
latent responses from vegetation to soil moisture deficits can also affect the vegetation T
to some extent, especially for arid and semi-arid regions [23]. To evaluate the influences
of plant access on atmospheric demand and of deeper water storage intensification or
mitigating vegetation sensitivity on water availability, the transpiration response curve
to soil water availability can be drawn (the relation between transpiration stress and soil
moisture conforms to the exponential form), and the results indicate that higher canopy
heights show less sensitivity to soil water availability [24,42]. Furthermore, the root system
developed in different vegetations is different. Generally, the depth of root system is related
to plant species, but it is also related to the climate [24]. For example, in the subtropical
region, there is plenty of rain, tree species can get enough water from the surface soil, so
they should not grow deeper into the soil. Therefore, in this study, vegetation is divided
into four categories, forest, shrub, grass, and crop, and a new eco-physiological scalar is
formulated as follows:

fTRM = max
[(

1− RH4(1−SRHk)(1−RH)
)

fM +
(

RH4(1−SRHk)(1−RH)
)

fTREW

]
(9)

where SRHk is the soil relative humidity at k-layer. Three layers (0–5, 5–20, and 20–100 cm)
are used in this study, k = 1, 2, 3 for frost and shrub covers, and k = 1, 2 for grass and crop
covers. While the transpiration constraint fTREW is supposed to be related to the type and
height of vegetation, and the climate condition, which can be calculated by:

fTREW = 1−
(

SMkCR − SMk
SMkCR − SMkwp

)CHscalar×VTscalar×CLscalar

(10)

where SMkCR is the critical k-layer soil moisture at which soil water availability limits ET;
CHscalar =

√
CH is a canopy height (CH) scalar set to range from 1 to 5, and the square

root is formed from Martens et al. (2017) [40]; VTscalar is a vegetation type (VT) scalar
that represents the impact of vegetation sensitivity on soil water availability; and CLscalar
is a climate (CL) scalar, e.g., the deep-rooted tree species can gradually change into the
shallow-rooted species in the subtropical environment. Both the vegetation type and
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climate scalars are set to 0–1, which are determined by comparing the modeled ET series to
the observations.

Thus, the algorithm of vegetation transpiration can be described as follows:

T = (1− fwet) fC fT fTRMα
∆

λ(∆ + γ)
Rnc (11)

2.3. Evaluation

Eddy covariance (EC) observations of latent heat flux (LE) across different land cover
types are often used for ET model evaluation. The performances of PT-JPL and PT-SM
algorithms for estimating monthly ET were evaluated by comparing the simulated monthly
ET series against ET values observed by EC sites. Four statistics, namely the coefficient of
determination (R2), the Nash–Sutcliffe Efficiency (NSE), the root mean square error (RMSE),
and the amount of system deviation (Bias), were used to evaluate the performances of
these two PT models. The four statistics are defined in the forms of

R2 =

(
∑n

i=1
(
ETsim,i − ETsim,i

)(
ETobs,i − ETobs,i

))2

∑n
i=1
(
ETsim,i − ETsim,i

)2
∑n

i=1
(
ETobs,i − ETobs,i

)2 (12)

NSE = 1− ∑n
i=1(ETsim,i − ETobs,i)

2

∑n
i=1
(
ETobs,i − ETobs,i

)2 (13)

RMSE =

√
∑n

i=1(ETsim,i − ETobs,i)
2

n
(14)

Bias =
∑n

i=1(ETsim,i − ETobs,i)

n
(15)

with ETobs,i =
n
∑

i=1
ETobs,i/n as the average of the observed ETi, where n is the number

of time-steps.

2.4. Eddy Covariance (EC) Flux Data

Ranging from 3.8 to 53.6◦N and from 73.6 to 135.1◦E (Figure 1), China is the third
largest national territorial area in the world with a total area of over 9.73 million km2. With
such a large area, China is characterized by a complex climate and diverse land cover
types and soil types (Figure 1B,C). Ground-measured LE data of 17 eddy covariance sites
from China FLUX, USCCC, WATER, and Asia flux, distributed in different land cover
types of China, were collected to validate the PT-JPL and PT-SM algorithms (Figure 1A
and Table 1). The land cover types of the flux towers include croplands (Crop; four sites),
deciduous needle leaf forests (DNF; one site), evergreen broadleaf forests (EBF; two sites),
open shrubland (OSH; one site), evergreen needle leaf forests (ENF; one site), grasslands
(GRA; seven sites), and mixed forests (MF; one site). Our analysis is based on EC site data
during the period of 2003–2011 (see Table 1). It has been noted that the sum of sensible heat
(H) and LE as measured by the EC method is generally less than the available energy [43].
Therefore, the original ground-measured LE was corrected using the method put forward
by Twine et al. (2000) and Jung et al. (2010) [19,44].

2.5. Observed Meteorological and Hydrological Data

A high spatial–temporal resolution (with a daily temporal resolution and a spatial
resolution of 0.1◦), gridded, near-surface meteorological dataset from the China Meteoro-
logical Forcing Dataset (CMFD) was used in this study. The dataset was made through
fusion of remote sensing products, reanalysis of the dataset, and in situ observations at
weather stations [45]. Monthly precipitation, relative humidity, radiation, and maximum
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and minimum temperatures at a spatial resolution of 0.25◦ during the 2003–2015 period
were calculated and resampled.
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Figure 1. (A) Locations of the study area, 17 eddy covariance sites and 577 meteorological stations. (B) Land cover
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Table 1. Description of 17 eddy covariance sites used in this study.

Tower SITE_NAME IGBP LAT (◦N) LON (◦E) Time Period NETWORK

CN-Din Dinghushan EBF 23.17 112.54 2004–2005 ChinaFLUX
CN-Qia Qianyanzhou ENF 26.74 115.06 2003–2005 ChinaFLUX
XSBN Xishuangbanna EBF 21.90 101.27 2003–2005 ChinaFLUX

CN-Cha Changbaishan MF 42.40 128.10 2003–2005 ChinaFLUX
DX Daxing Crop 39.62 116.43 2008–2010 WATER
MY Miyun Crop 40.63 117.32 2008–2010 WATER
QH Qinghai GRA 37.60 101.33 2002–2004 Asiaflux
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Table 1. Cont.

Tower SITE_NAME IGBP LAT (◦N) LON (◦E) Time Period NETWORK

CN-Ha2 Haibei Shrubland OSH 37.61 101.33 2003–2005 ChinaFLUX
YC Yucheng Crop 36.96 116.63 2003–2005 ChinaFLUX

GT-1 Guantao Crop 36.52 115.13 2008–2010 WATER
AR Arou GRA 38.09 100.52 2009–2011 WATER

CN-Du2 Duolun_grassland (D01) GRA 42.05 116.28 2006–2008 USCCC
CN-Cng Changling GRA 44.59 123.51 2007–2010 USCCC
CN-Dan Dangxiong GRA 30.50 91.07 2003–2005 ChinaFLUX
CN-Sw2 Siziwang Grazed (SZWG) GRA 41.79 111.90 2011 USCCC

GT-2 Guantan DNF 38.53 100.25 2010–2011 WATER
NMG Neimenggu GRA 44.13 116.30 2004–2005 ChinaFLUX

2.6. Remote Sensing NDVI, EVI, and LAI Data

The time series of EVI and NDVI were acquired from moderate resolution imag-
ing spectroradiometer (MODIS) products (MOD13A3), which provide 1 km spatial and
monthly temporal resolutions. We used an average of four surrounding pixels around the
EC flux sites to acquire the EVI and NDVI values. The LAI and FPAR products, potential
factors influencing total ET segmentation, were extracted from MCD15A2H at 500 m spatial
and 8-day temporal resolution. The 8-day temporal EVI, NDVI, LAI, and FPAR records
were integrated into a monthly scale.

2.7. Canopy Height and Soil Moisture Data

Observations of canopy height were used to model plant sensitivity to water content
at different depths. These canopy height (CH) and soil relative humidity (SRH) datasets
of 376 agricultural gas stations spanning from 2003 to 2015 on the China meteorological
data network (http://data.cma.cn (accessed on 11 June 2021)) were selected. Since the
datasets only include the CH and SRH data of the cropland, the CH from the Geoscience
Laser Altimeter System (GLAS) on the Ice, Cloud, and Land Elevation Satellite [46] and
soil moisture obtained from the outputs of the GLDAS-2 Noah Land Surface Model (LSM)
L4 model [47], which here-after is referred to as LDAS-derived SM, were employed to
enrich the basic study data. Considering the different spatial–temporal resolution of each
SM data product (see Table 2), in this study, using the multiple linear regression and
trapezoidal method [48], monthly SM data from 2003 to 2015 of three layers (0–5, 5–20, and
20–100 cm) were reconstructed through integrating the observed precipitation, farmland
SRH observation, SM dataset from Yang et al. (2020) [49], GRACE-derived ∆TWS [50], and
GLDAS SM outputs at different depths (0–10, 10–40, and 40–100 cm).

The multiple linear regression used in our study is in terms of

SMreconstructed = a1 × P + a2 × ∆TWS + a3 × SMLDAS + a4 × SRH (16)

where SM is the soil moisture; SRH is the soil relative humidity, SRH = SM/SMfield moisture

capacity × 100%. During January 2002–December 2011, we define SMreconstructed = SMITPLDAS,
then the coefficients (a1, a2, a3, and a4) are estimated, and SMreconstructed during January
2012–December 2015 are calculated. Note that the relationship between SRH observations
and products was transplanted to the neighbored grid where there was a lack of observations.

The trapezoidal method [51] used in this study can be described as:

Ŝ =

[
2.5θ̂1 +

k

∑
i=2

θ̂k

]
∆z (17)

where the subscript of θ̂ refers to the soil layer (from i = 1 to k); k corresponds to the final
depth of measurement; and ∆z is the depth interval between two successive measurements.

http://data.cma.cn
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Table 2. Overview of the data used to reconstruct soil moisture in the study.

Data Designation Time-Period
Resolution

SourceTemporal Spatial

Total precipitation (mm) P January
2003–December 2015 monthly 0.1 × 0.1◦ China Meteorological

Forcing Dataset
GRACE-derived land

water storage changes (cm) ∆TWS January
2003–December 2015

monthly 1.0 × 1.0◦ GRACE satellite images

Soil relative humidity (%) SRH January
2003–December 2015

10-days stationly China Meteorological
Forcing Dataset

GLDAS-2 Noah Land
Surface Model (LSM) L4
model outputs (kg m−2)

SM January
2003–December 2015

monthly 0.25 × 0.25◦ GLDAS-2

Soil-
Moisture_from_ITPLDAS SM January

2002–December 2011 daily 0.25 × 0.25◦
National Tibetan

Plateau/Third Pole
Environment Data Center

3. Results
3.1. Spatial Distribution Characteristics of Soil Moisture

The estimation and prediction of SM, especially the root zone SM, have gained the
interest of researchers [52,53]. Overall, many kinds of methods, including land surface
modeling and the data assimilation technique, have been applied to estimate the multilayer
SM. In this study, the monthly SM data from 2003 to 2015 of three layers (0–5, 5–20, and
20–100 cm) were reconstructed from multi-sources. Particularly, SM data collected at
three observational networks (i.e., Ngari, Maqu, and Naqu; detailed information can be
found in Yang et al. (2020)) across the Tibetan Plateau were employed to validate the
reconstructed SM dataset [49]. Due to the lack of observation from deeper soils, Figure 2
only shows the comparison of the LDAS-derived and reconstructed monthly SM with the
observed ones in the three layers of Naqu and surface layer of Ngari and Maqu. Both the
observed station-averaged SM and its standard deviation are given in this figure. Only
the LDAS-derived SM at a depth of 5 cm in the Ngari network is higher than the in situ
data, as the LDAS-derived SM in the Maqu and Naqu networks are lower than the in situ
data. This phenomenon might be due to the fact that the LDAS-derived SM only denoted
liquid water and did not account for soil ice. In general, the reconstructed SM is much
closer to the observation in all three networks. However, the Ngari network still exhibits
underestimation in summer (Figure 2A), and the Naqu network exhibits a minor amount
of overestimation in summer (Figure 2C).

Spatial distributions of the reconstructed SM of 0–5, 5–20, and 20–100 cm averaged
over 2003–2015 are respectively plotted in Figure 3. For all depths, the SM values range
from 0.007 to 0.600, with the high values (over 0.4) distributed in northeast China and
the southern part of China. In contrast, the SM values are relatively small in northwest
China, the upper and middle reaches of the Yellow River, and western part of the Tibetan
Plateau. From Figure 3A–C, we can also see that the SM values of individual depth are
different, for example, the SM values of 0–5 cm in depth in southwest China are higher
than those of 5–20 and 20–100 cm in depth. This region belongs to the tropical rainforest
climate, the forest coverage is high, and the surface layer of soil has a strong capacity of
water fixation [54]. A significant positive correlation between SM and P in eastern China
has been identified in many previous studies [55,56]. Despite this, the relation between
SM and P is a complex non-local process, and it is still unclear whether it represents the
discovery of relevant phenomena or the explanation of the possible mechanism.
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3.2. Comparison of Algorithm Parameters

The differences between the parameters of the PT-JPL algorithm and PT-SM algo-
rithm lie in the core of the performances of these two algorithms. Therefore, before we
evaluate the performances of the PT-JPL algorithm and PT-SM algorithm at EC sites and
hydrological catchments, the model parameters, including soil moisture constraint on soil
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evaporation f sm, f REW, soil water availability constraint on transpiration f M, and f TRM
are firstly examined and compared. As a typical site with different underlying surfaces,
Figure 4 shows the variation plot between f sm and f REW, f M and f TRM calculated from the
reconstructed SM data at the CN-Qia (forest) flux tower, CN-Ha2 (shrub) flux tower, CN-
Du2 (grass) flux tower, and YC (crop) flux tower. It can be seen that for all biomes, almost
all of the f TRM values are larger than the f M values, and the values of f REW are larger than
those of f sm, especially in the valley values. Comparatively, the values of f REW are much
larger than those of f sm for the forest and the shrub biomes, while those of f TRM are much
larger than those of f M for the forest and the crop land cover types. This result is reasonable,
as several studies have shown that in comparison with shorter vegetation, taller vegetation
is less sensitive to soil water deficits since the deeper root can absorb water from deep
soil or groundwater, where there is a delay in response to drought [23,57]. For instance,
Figure 4G,H indicates that for the crop biome, the f REW series closely follows f sm, while
in the peak values, the values of f REW are larger than those of f sm. For f TRM, it can also
be clearly seen that the new soil water availability constraints on transpiration are always
higher than the original f M, especially at the f M valley values (mostly occurring in the
period from October to next March). Moreover, f TRM being considerably higher could be
due to the fact that Yucheng tower is an agricultural experiment station that monitors areas
in which wheat and corn crops are mainly planted in winter and summer, respectively.
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3.3. Comparison of Incorporating Soil Moisture into Soil Evaporation and Transpiration

Since the algorithm models individual ET components, we can separately quantify the
added value from incorporating SM into soil E and canopy T. Consequently, we evaluated
the updated PT-SM algorithm with SM incorporation into soil E (PT_Es), the updated
algorithm with SM incorporation into T (PT_T), and the updated algorithm with SM
incorporation into both soil E and T (PT-SM) compared with the original PT-JPL model.
Comparisons among the four EC sites, i.e., CN-Qia (forest) flux tower, CN-Ha2 (shrub) flux
tower, CN-Du2 (grass) flux tower, and YC (crop) flux tower, are shown in Figure 5. It can
be clearly seen that incorporating explicit SM can improve estimates of monthly ET series.
Especially at the Yucheng EC site, the updated PT-SM algorithm shows greater R2 and
NSE (PT-JPL: 0.93 and 0.85; PT_Es: 0.95 and 0.91; PT_T: 0.91 and 0.98; PT-SM: 0.98 and 0.98,
respectively), lower RMSE and Bias (PT-JPL: 11.29 and −8.09; PT_Es: 9.50 and −6.01; PT_T:
5.20 and −1.07; PT-SM: 5.02 and 1.17, respectively), and larger slopes (PT_Es: 0.840, PT_T:
0.941, PT-SM: 0.970) closer to 1.0 when compared with the PT-JPL model (PT-JPL: 0.821)
(Figure 5D and Table 3). At the Yucheng EC site, by only replacing soil evaporation Es, R2

and NSE increased by 2% and 7%, respectively, and RMSE and Bias decreased by 16% and
2 mm, respectively. By only replacing canopy T, R2 and NSE increased by 4% and 15%,
respectively, and RMSE and Bias decreased by 54% and 7 mm, respectively. According to
our results, the performance of the updated PT-SM algorithm with SM incorporation into
both Es and canopy T considerably improved (i.e., R2 and NSE increased by 5% and 15%,
respectively, and RMSE and Bias decreased by 56% and 9 mm, respectively; Table 3) when
compared with the original PT-JPL-modelled ET. Moreover, observations between 60 and
120 mm are better represented by the updated model with a scatter closer to the 1:1 line
from raised underestimation in ET (see Figure 5).

Table 3. Quantitative measures of original PT-JPL model, updated algorithm PT-SM with soil moisture incorporation into
soil evaporation (PT_Es), updated algorithm with soil moisture incorporation into transpiration (PT_T), and updated PT-SM
ET performance at monthly time-steps for 17 flux sites.

Tower PT-JPL PT_Es PT_T PT-SM
R2 NSE RMSE Bias R2 NSE RMSE Bias R2 NSE RMSE Bias R2 NSE RMSE Bias

CN-Din 0.87 0.54 12.68 −10.33 0.89 0.65 9.85 −5.68 0.90 0.89 6.58 −3.52 0.94 0.93 4.76 −1.10
CN-Qia 0.96 0.96 6.30 −2.29 0.96 0.96 5.77 −0.17 0.96 0.94 7.38 4.43 0.96 0.91 8.87 6.40
XSBN 0.90 0.78 7.98 −5.76 0.90 0.88 6.65 −1.45 0.90 0.89 5.13 1.89 0.93 0.92 4.82 1.59

CN-Cha 0.98 0.91 8.50 −6.28 0.98 0.92 6.57 −3.18 0.98 0.94 5.27 1.58 0.98 0.97 4.87 2.46
DX 0.93 0.89 10.33 −6.47 0.93 0.91 9.85 −2.30 0.94 0.93 8.42 −1.05 0.95 0.95 7.03 0.14
MY 0.95 0.94 8.41 −3.00 0.95 0.95 7.57 −1.05 0.96 0.96 7.80 −0.62 0.97 0.96 7.00 1.33
QH 0.98 0.93 7.77 −5.26 0.98 0.94 6.57 −3.61 0.97 0.95 5.29 −0.81 0.98 0.97 4.86 1.17

CN-Ha2 0.98 0.90 10.20 −7.68 0.99 0.95 7.15 −5.10 0.99 0.99 3.48 0.66 0.99 0.98 4.59 2.90
YC 0.93 0.85 11.29 −8.09 0.95 0.91 9.50 −6.01 0.97 0.98 5.20 −1.07 0.98 0.98 5.02 1.17

GT-1 0.87 0.77 6.34 −3.05 0.89 0.82 4.51 −1.99 0.96 0.95 4.46 0.71 0.99 0.98 4.41 1.90
AR 0.86 0.79 13.01 −7.70 0.90 0.84 8.17 −5.46 0.97 0.94 7.83 0.88 0.98 0.97 6.96 2.35

CN-Du2 0.91 0.82 7.29 −5.15 0.93 0.86 5.32 −3.54 0.99 0.99 3.06 0.75 0.98 0.96 5.42 3.77
CN-Cng 0.93 0.73 12.20 −9.23 0.96 0.80 11.45 −6.57 0.95 0.87 9.54 1.80 0.95 0.91 7.93 3.71
CN-Dan 0.91 0.69 17.48 −8.69 0.93 0.76 10.87 −5.67 0.96 0.95 7.81 −2.64 0.98 0.97 6.92 2.03
CN-Sw2 0.90 0.72 6.93 −4.72 0.94 0.83 5.41 −3.25 0.98 0.96 4.03 1.52 0.99 0.96 3.40 2.68

GT-2 0.92 0.82 7.12 −3.48 0.93 0.90 6.57 −1.58 0.97 0.95 6.18 2.85 0.98 0.95 5.81 4.57
NMG 0.94 0.76 7.41 −5.67 0.95 0.83 5.44 −2.57 0.96 0.95 4.97 1.55 0.96 0.95 4.58 2.03

Change
rate
(%)

PET/P < 1.7 0 6 −16 3 1 12 −29 6 2 14 −31 8
PET/P > 1.7 3 9 −23 2 7 23 −39 7 8 25 −40 9
All towers 2 7 −20 3 4 18 −34 7 5 20 −36 8

Among all of the EC towers, we noted that, by only replacing soil evaporation Es, the
R2 and NSE increased by 2% and 7%, respectively, and the RMSE and Bias decreased by 20%
and 3 mm, respectively. By only replacing canopy T, R2 and NSE increased by 4% and 18%,
respectively, and RMSE and Bias decreased by 34% and 7 mm, respectively (see Table 3).
The improvement to the updated PT-SM algorithm is more obvious at the EC towers in the
arid area (PET/P > 1.7) than that at the EC towers in the humid regions (PET/P < 1.7), with
the R2 and NSE being increased by 8% and 25%, respectively, and RMSE and Bias being
decreased by 40% and 9 mm, respectively. In addition, both Figure 5 and Table 3 show that
this improvement is strongly dependent on the simulation accuracy of vegetation T; the



Remote Sens. 2021, 13, 3118 12 of 24

result also confirms that our approach of incorporating the soil moisture constraints into a
simple algorithm can provide good estimates of ET series at different land cover regions.
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3.4. Model Evaluation with In Situ Forcing

Both the PT-JPL and PT-SM algorithms were executed for in situ evaluation. The
in situ modeled ET from both the PT-JPL and PT-SM show good consistency with the
observations (Figure 6, Table 3). We noted a site-wide average improvement in R2, NSE,
RMSE, and absolute Bias as a result of the model improvements. Sites are ordered from
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wet to dry (left to right; top to bottom) based on the aridity index (PET/P). The PT-SM
algorithm demonstrates greater performance than that of the original PT model at water-
limited sites (Table 3). On average, the PT-SM algorithm shows an apparent decrease in
RMSE and absolute Bias (36% and 8 mm, respectively), a weak increase in R2 (5%), and a
large increase in NSE (20%) when compared with the original PT-JPL model. An interesting
feature is that the more overall statistical improvements are observed at CN-Cng and YC
sites, two sites that both have relatively dry conditions (PET/P = 2.38 and 1.82, respectively;
Figure 6M,I) and a large fraction of ET comes from soil evaporation. It can also be seen that
at YC, AR, and CN-Cng sites, the PT-SM model demonstrates considerable improvements
to the model estimation of ET during the seasonal dry term (Figure 6).

Compared with the observed 17 EC sites’ monthly ET series, the R2 and NSE of the
PT-JPL monthly ET series are 0.94 and 0.90, respectively, and the RMSE and Bias are 10.05
and −6.34, respectively (Figure 7A). The R2 and NSE of the PT-SM monthly ET series are
0.97 and 0.96, respectively, and the RMSE and Bias are 5.90 and 2.13, respectively, when
compared with the observed ET (Figure 7B). Among all of the land covers (biomes), both
models represent the observed monthly ET series well, especially at the EC sites across the
MF and Crop biomes. Only at the EC sites in the GRA land cover type, the two models
represent the observed monthly ET series not so well. Comparing Figure 7B to Figure 7A,
we can see that the PT-SM model provides much better improvements than those of the
original PT-JPL model at the EC sites across the EBF and GRA land cover types. This
phenomenon illustrates that at the EBF and GRA land cover regions, the PT ET model,
considering the soil water availability constraint on transpiration, is better at reflecting the
monthly ET series.

3.5. Evapotranspiration Partitioning

As an important component of ET, the interception evaporation (Ei) of vegetation
plays a vital role in water resources at both global and regional scales [23,57,58]. The ratios
of canopy interception evaporation-to-precipitation (Ei/P) values of different land covers
are notably different, with the averages for all biomes ranging from 0.11 to 0.27, but all
values are below 0.30 (Figure 8 and Table 4). The average Ei/P for the ENF land cover
is higher than that of other types, and the OSH biome has the lowest value (0.11). This
may be related to different raining conditions and LAIs across land cover types. The Ei/P
variation in the Crop biome is larger than that of other biomes, with values ranging from
0.11 to 0.27 and an average across the four Crop sites of 0.18. Research on the Ei/P ratio has
attracted much attention. Under Mediterranean climate conditions, Llorens and Domingo
(2007) discovered that for an annual rainfall of 90–800 mm, the mean relative interception
was approximately 18% for trees and 31.6% for shrubs [59]. Miralles et al. (2010) reviewed
42 studies from different periods and found average Ei/P values for the EBF biome of 0.17
with ranges from 0.08 to 0.29, and the ENF biome average was 0.23 with ranges from 0.16
to 0.42 [57]. Gu et al. (2018) obtained the Ei/P from 11 terrestrial biomes based on 75 eddy
covariance towers and found average Ei/P values for the Crop biome of 0.12 with ranges
from 0.06 to 0.16, and the GRA biome average was 0.13 with ranges from 0.02 to 0.17 [58].
Compared with these previous studies, the overall variation is relatively consistent, but
the Ei/P of the individual biome is somewhat different, which is most likely due to the
fact that the EC sites used in this study are relatively few in number (e.g., Crop: 11 sites in
Gu et al. (2018) vs. four sites in our study; GRA: 12 sites in Gu et al. (2018) vs. seven sites
in our study) [58]. Overall, we found that the Ei/P variation in the land covers was large,
ranging from 0.11 to 0.27, with an average of 0.16 among 17 sites (see Figure 8A), which is
relatively reasonable compared with those of other similar studies (shown in Table 4). The
canopy interception evaporation-to-evapotranspiration (Ei/ET) ratios across different land
cover types are shown in Figure 8B. The average Ei/ET values across biomes range from
0.11 (OSH biome) to 0.32 (GRA biome). Large variations are noted within each land cover
type, with the GRA biome having the greatest range (0.19–0.32) followed by the EBF biome
(ranges of 0.20–0.28, respectively).
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Figure 8C demonstrates that the average T/ET values across biomes range from 0.37
(GRA biome) to 0.65 (EBF biome). Large variations are noted within the GRA biome
(ranges of 0.37–0.48). The average T/ET values for the Crop biome of 0.53 range from
0.49 to 0.55, and the EBF biome average of 0.63 has a range from 0.61 to 0.65 (Figure 9C).
Overall, our estimated T/ET values are much lower than the 0.80–0.90 global values that
Jasechko et al. (2013) found using isotope approaches, but similar with the results of Gu
et al. (2018) [58,60], that used 75 eddy covariance towers across a wide range of biomes.
Previous studies [6,13,16] also indicate that a large variability occurs in T/ET, which is
partly due to different ET measurements, model structures, and inconsistent spatial and
temporal resolutions of forcing data.
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Table 4. Annual ratios (average) of canopy evaporation losses to the total precipitation based on land
cover types.

Landcover
Interception Ratio

Current Study Literature

Crop 0.18 0.17 (Vinukollu et al. 2011); 0.12 (Gu et al. 2018)
DNF 0.14 0.12 (Vinukollu et al. 2011); 0.23 (Miralles et al. 2010)

EBF 0.15 0.14 (Vinukollu et al. 2011); 0.17 (Miralles et al. 2010);
0.16 (Gu et al. 2018)

ENF 0.19 0.19 (Vinukollu et al. 2011); 0.23 (Miralles et al. 2010);
0.12 (Gu et al. 2018)

GRA 0.16 0.14 (Vinukollu et al. 2011); 0.13 (Gu et al. 2018)
MF 0.19 0.19 (Vinukollu et al. 2011); 0.13 (Gu et al. 2018)

OSH 0.11 0.09 (Gu et al. 2018)
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The soil evaporation-to-evapotranspiration ratios across different biomes are shown
in Figure 8D. The average Es/ET values across biomes range from 0.11 (EBF biome) to 0.49
(OSH biome). The largest variation was noted for the GRA biome, having a greatest range
of 0.27–0.39, followed by the Crop biome (range of 0.26–0.35). Our estimated Es/ET values
are within the range of previously reported values.

3.6. Spatial Distributions of Mean Annual Evapotranspiration and Its Components

We applied the verified PT-SM algorithm to the whole of China for the period of
2003–2015 at a spatial resolution of 0.25◦ using CMFD meteorological data, MODIS prod-
ucts, and integrated SM datasets as described in Sections 3.2–3.4. Figure 9 shows the maps
of mean annual ET, Ei, T, and Es over the period of 2003–2015. The mean annual ET
distribution presented an intricate spatial structure with relatively high ET values in the
southern China and low values located in the northwest. In most regions of the Xinjiang,
Tibet, Qinghai, and Inner Mongolia provinces, the ET values are lower than 200 mm/year.
In contrast, in the south of the Yangtze River and the Huai River, the ET values are higher
than 800 mm/year. Generally, the mean annual ET increased from the northwest to the
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southeast (Figure 9A). Almost all of the Ei values in Xinjiang, Qinghai, and Inner Mon-
golia provinces are lower than 50 mm/year, especially in the northwestern part of China
(barren lands) (Figure 9B). Similarly, T values of the northwestern part are lower than 100
mm/year, while only in the upper of Huai River basin, the Pearl River basin, central China,
the southwest and southeast parts of China are the values of T higher than 600 mm/year.
Notably, in the south region of Yunnan province, the T values are larger than 800 mm/year
(Figure 9C). Furthermore, Es values lower than 100 mm/year were found in the arid and
desert regions of the northwest part of China, while in some parts of southern China, the
Es values are higher than 400 mm/year (see Figure 9D).

4. Discussion
4.1. Soil Water Availability Constraint on Evaporation and Transpiration

Many previous studies have tried to estimate soil moisture by measurements, such
as time domain reflectometry soil moisture probes [61], hydrologic models [62], remote
sensing techniques [63] or statistical learning tools such as support vector machines [64].
Unfortunately, most of these studies only paid attention to the SM at the surface. For
vegetation with deeper roots, the transpiration water requirements also need the SM
at the root zone. However, although the estimation of SM at the root zone has drawn
great attention [53,65], its retrieval is difficult for spatial heterogeneity. Consequently, in
this study, the multiple linear regression model and trapezoidal method were employed
to estimate the SM of both the surface and root zone. The simulated SM performs the
observation well (see Figure 2), and it was noted that the observation-driven model SM
displays superior strength with coupling precipitation, soil relative humidity, ∆TWS, and
GLDAS soil moisture outputs. These results further confirmed that for most regions, SM is
closely related to precipitation and terrestrial water storage change, which is consistent
with the findings of previous studies [34,53,65].

The performances of the updated PT-SM algorithm with the SM constraint separately
on Es and T are different (see Table 3). Overall, it was observed that the updated PT-SM
algorithm with the SM constraint on T (PT_T) performs the observation better than the
PT-SM algorithm with the SM constraint on Es (PT_ Es), and the PT-SM model showed
increased R2 and NSE and reduced RMSE and Bias, with the greatest improvements occur-
ring in water-limited regions. With the aid of SMAP-derived surface soil moisture data,
Purdy et al. (2018) indicated that the performance of the updated PT-SM algorithm with
the soil moisture constraint on Es has improved performance on T across the 14 Ameriflux
EC sites distributed across the US [24]. This result is different with our study, a difference
that may have resulted from the difference in fREW and fTRM estimates. In particular,
some studies also demonstrated that SMAP might underestimate SM for the low biases in
the Global Modeling and Assimilation Office surface temperature [39]. While Purdy et al.
(2018) estimated the ET components with SMAP-derived soil moisture at a single depth
(5 cm), in our study, SM data of three layers (0–5, 5–20, and 20–100 cm) were employed to
estimate the ET components, which is a possible explanation of the difference.

Figure 10 is plotted to investigate the spatial difference of Es and T estimation by the
PT-JPL algorithm and PT-SM algorithm. In contrast to the T estimated in July 2003 by the PT-
JPL algorithm (Figure 10A), the estimated T results of the PT-SM algorithm showed higher
values, especially in the central, southern, and northeastern parts of China (see Figure 10B),
regions showing higher SM values (see Figure 3) and LAIs [66]. For Es estimation, the
large differences also occurred in the northeastern, southern, and central parts of China
(Figure 10C,D). The results further illustrate that estimation of ET components can only be
improved by adequate soil moisture.
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(A) and updated PT–SM algorithm (B); comparisons of soil evaporation (Es) from the PT–JPL model
(C) and PT–SM model (D) in July, 2003 across China.

4.2. Contribution of Each ET Component to the Total ET

We also evaluated the contribution of each ET component to the total ET by different
algorithms for the whole of China. Figure 11 shows that the PT-SM algorithm considering
SM estimated a higher T/ET value than those of the original PT-JPL model (64.9% vs.
53.7%) and lower Ei/ET and Es/ET values (21.2% vs. 15.4%; 25.1% vs. 19.7%). Overall, the
average estimates of the T/ET value in our study are somewhat lower than previous studies’
results, although the T/ET value was improved by incorporating SM of multilayers into the
original PT-JPL model. In essence, there are two possible reasons behind this phenomenon:
(1) In terms of the site scale, Ei of vegetation has rarely been separately considered by
previous studies, as usually, only Es and T are observed, and, therefore, the T/ET estimates
would be higher; (2) different research scales, monitoring techniques or algorithms may
also contribute to the variability—for instance, the isotope-based approach constrained by
hydrologic decoupling always overestimates T/ET [60]. Additionally, the PT-SM Es/ET
and Ei/ET values of our study are larger than the similarly reported fractions from the
GLEAM model by 7–15% and 11–12%, respectively [23,57], but similar with Es/ET, T/ET,
and Ei/ET at 23 ± 1.7%, 54 ± 1.6%, and 21 ± 0.8% of total ET, respectively, as reported in
Purdy et al. (2018). It is worth noting that all of these studies focus on the global scale.

Figure 11C reveals the spatial patterns of dominant ET components. It can be seen that
the bare soil evaporation is dominated across almost the entire arid area of northwest China,
especially in the arid and semi-arid regions, while in some warmer and wet regions, such as
southeastern of Tibet, the interception loss is the main component. In contrast, transpiration
typically takes up most of the remaining regions (especially the forested terrain), while
in some areas in southern China (often rainforests), the total interception loss is generally
the dominant component. These findings are consistent with the partitioning obtained
from other datasets [6,24]. Nonetheless, this phenomenon is a comprehensive reflection of
climate, water absorption capacity of vegetation, growth status, soil moisture, etc.
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dicates soil evaporation (Es), blue indicates vegetation transpiration (T), and red indicates canopy
interception evaporation (Ei). Below, (C) the spatial distribution of the dominant percent contribution
to total ET from components as Es, T, and Ei.

4.3. Inter-Annual Variability of ET for 2003–2015

It can be seen that the whole of China is characterized by complex spatial patterns
in ET and its change in components (Figure 12). For the total ET, more than half of
the entire area of China show upward trends, while the other half show downward
trends. Additionally, the largest upward trend of the annual ET series is recognized
at the Qinghai–Tibet Plateau with a value of 3.35 mm/y, while the largest downward
trend (i.e., −2.88 mm/y) can be found at the southeastern part of China (Figure 12A).
Moreover, based on a modified Priestley–Taylor algorithm, Yao et al. (2013) found that
the LE decreased over large areas in central China, northwest China, and Inner Mongolia
while increasing in the northeast, north, and south regions of China during the period
of 2001–2010 by driving monthly MODIS products [29]. These two results are different
partly due to the different study periods, and another reason could be the difference in
data and methods used. By employing the ensembles of remote sensing-based physical
models and machine learning algorithms, overall increasing trends (0.62 and 0.38 mm/y,
respectively) in global terrestrial ET during the period of 1982–2011 were evaluated by
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Pan et al. (2020) [17]. A further investigation into the control factors of ET variations
showed that anthropogenic Earth greening was the dominating factor, which has also been
reported by previous studies [1,67]. By contrast, drought and reducing solar radiation
caused by substantial increases in aerosol optical depth (AOD) were usually identified as
the main possible factors of ET reduction [68,69].
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transpiration (T); and (D) soil evaporation (Es) during 2003–2015.

The ET components are not only influenced by vegetation cover and growth period
but also by environmental factors, such as climate conditions, topography, and soil charac-
teristics [70]. However, the control degree of different influencing factors on individual ET
components varies with energy and water conditions. Ei across northwest China indicates
upward trends, and this may be a result of the afforestation and grassland projection
over the past two decades. For almost the whole southeastern part of China, Ei shows
downward trends with the largest downward trend (i.e., −2.57 mm/y) being found in
central China (Figure 12B), this result is relatively reasonable due to the development of
modern agricultural technology, a large number of agricultural water-saving technologies
have been implemented in the southeast region, the water use efficiency was increased, and
the unnecessary evaporation dissipation was reduced [71]. As for the vegetation T, most
areas presented upward trends, except small areas in the northeastern and southeastern
parts of the country, and the larger upward trends of annual T series were recognized
at the Tibetan Plateau, with a value over 2.00 mm/y (Figure 12C). Unlike the general
paradox regarding whether or not the growing-season precipitation amount or the pre-
cipitation pattern is the main reason for vegetation T change [6,72], increased NDVI and
LAI as a result of large-scale afforestation and agricultural intensification have been widely
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identified to play the most important role in the increase in vegetation T [17,58,73]. Es
across China (with the exception of the southeastern region) presented downward trends.
Furthermore, the changing trends were mostly less than 3.00 mm/y (Figure 12D). Similar
to Ei, Es also represents the ineffective water consumption that does not directly contribute
to production. Although the slopes of the trends were different, all of the values of ET and
its components have been found to show increasing trends with increasing precipitation
by Gu et al. (2018) [58]. Meanwhile, the variation of f REW (relative extractable water) has
the most significant impact on the Es simulation in arid areas with low vegetation [74].
Nevertheless, such Es reduction may be due to the decrease in solar radiation or drought.
Additionally, many studies noted that the sensibility of ET components changes in relation
to different climatic environments, biomasses, soil properties, plant types, and canopy
heights [7,23,75]. Therefore, the reasons for the distinction of the performances of the up-
dated PT-SM algorithm with a soil moisture constraint on Es and T separately are complex
and warrant further investigation.

5. Conclusions

By incorporating soil moisture into the widely used PT-JPL ET algorithm, in this study,
ET and its components series at a spatial scale of 0.25 × 0.25◦ were estimated. For this
purpose, SM data at three layers (0–5, 5–20, and 20–100 cm) were firstly reconstructed by
the multiple linear regression model and trapezoidal method, integrating the datasets of
humidity observations relative to farmland soil, observed precipitation, GRACE solutions,
and SM datasets obtained from the LDAS-2 outputs and Yang et al. (2020). High SM values
generally occurred in the southeastern part of China, while low values were distributed in
the northwestern part of the country. Meanwhile, the two algorithms’ parameters in the
update PT-SM ET algorithm (f REW and f TRM) were compared with the parameters in the
original PT-JPL algorithm (f sm and f M). The values of parameters in the updated PT-SM
ET algorithm (i.e., f REW and f TRM) were observed to be larger than those of the original
PT-JPL algorithm (i.e., f sm and f M), especially in the peak or valley values.

The updated algorithm (i.e., PT-SM) model shows increased R2 and NSE and reduced
RMSE and Bias, with the greatest improvements occurring in water-limited regions. SM
incorporation into Es can improve ET estimates by increasing R2 and NSE by 2% and 7%,
respectively; RMSE and Bias were reduced by 20% and 3 mm, respectively; while SM
incorporation into T improved ET estimates by increasing R2 and NSE by 4% and 18%,
respectively. RMSE and Bias were reduced by 34% and 7 mm, respectively. These updated
PT-SM ET estimates distinctly show a reduced error and provide a rich dataset to evaluate
land surface models, vegetation or anthropogenic perturbation response to changes in
water availability. The mean annual ET distribution presented an intricate spatial structure
with relatively high ET values in the southeast of China and low values in the north-
western part. As a whole, the soil moisture constraint resulted in a higher transpiration
estimate and lower evaporation estimate. These results can provide more accurate water
consumption data for regional water resource management and planning. In the future,
a high spatial–temporal resolution ET is expected to be obtained. Therefore, the critical
variables determining the model’s ability to simulate ET components, vegetation, surface,
and root-zone soil moisture at high spatial–temporal resolution, are urgently needed.
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