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Abstract: Remote sensing image scene classification (RSISC) has broad application prospects, but
related challenges still exist and urgently need to be addressed. One of the most important challenges
is how to learn a strong discriminative scene representation. Recently, convolutional neural networks
(CNNs) have shown great potential in RSISC due to their powerful feature learning ability; however,
their performance may be restricted by the complexity of remote sensing images, such as spatial
layout, varying scales, complex backgrounds, category diversity, etc. In this paper, we propose an
attention-guided multilayer feature aggregation network (AGMFA-Net) that attempts to improve the
scene classification performance by effectively aggregating features from different layers. Specifically,
to reduce the discrepancies between different layers, we employed the channel–spatial attention on
multiple high-level convolutional feature maps to capture more accurately semantic regions that
correspond to the content of the given scene. Then, we utilized the learned semantic regions as
guidance to aggregate the valuable information from multilayer convolutional features, so as to
achieve stronger scene features for classification. Experimental results on three remote sensing scene
datasets indicated that our approach achieved competitive classification performance in comparison
to the baselines and other state-of-the-art methods.

Keywords: convolutional neural networks (CNNs); multilayer feature aggregation; attention mecha-
nism; remote sensing image scene classification (RSISC)

1. Introduction

With the rapid development of remote sensing imaging technology, a large amount
of high-resolution remote sensing images, captured from space or air, can provide rich
detail information, e.g., spatial layout, shape, and texture, about the Earth’s surface. This
information is a significant data source and has been used to many applications, such as
land use classification [1,2], land use change detection and management [3,4], geospatial
object detection [5], etc. As a fundamental and challenging task in remote sensing image
understanding, remote sensing image scene classification (RSISC) has already become one
of the hot topics in research in recent years, the main purpose being to automatically assign
one or multiple predefined tags (e.g., airport, river, bridge) to a given remote sensing scene
according to its semantic content. In this paper, we mainly concentrated on the single-label
remote sensing image scene classification problem.

Due to the imaging characteristics of high-resolution remote sensing images, a remote
sensing scene is usually composed of different land use units, and different combinations
of them may generate different scene categories. As shown in Figure 1, a remote sensing
scene labeled “bridge” consists of five different land cover units including vehicle, trees,
ship, river, and bridge. However, to classify this scene, we only need to pay more attention
to the “bridge” regions, i.e., the red-box-covered region; the other regions can be considered
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as interference. In addition, imaging viewpoint, spatial resolution, illumination, and scale
variation also significantly influence the final classification accuracy [6]. Therefore, how to
learn discriminative and robust feature representation is very crucial for improving scene
classification performance.

Figure 1. The characteristics of a remote sensing scene image. A remote sensing scene consists of
many types of land cover units. However, to classify this scene, we only need to pay more attention
to the key regions, i.e., bridge, while other regions can be regarded as interference.

To address the RSISC problem, the traditional approaches mainly rely on some hand-
crafted visual features, for example the color histogram [7], texture [8], scale-invariant
feature transformation [9], or the histogram of oriented gradients [10], and try to extract
discriminative scene representation for the classification. However, the performance of
these methods was compromised by the limited expressive capacity of the hand-crafted
features, especially when dealing with some complex scenes.

Recently, deep learning techniques, especially convolutional neural networks (CNNs),
have achieved state-of-the-art performance in all kinds of computer vision tasks, e.g., image
classification [11,12], object detection [13], and semantic segmentation [14], due to their
powerful feature learning ability. Compared with the hand-crafted features, deep features
have richer semantic information, which is more suitable for describing the true content of
images. Starting from the earliest convolutional neural network, i.e., AlexNet [11], many
high-performance CNNs, such as VGGNet [12], ResNet [15], and DenseNet [16], have been
developed and successfully employed in many other domains.

In the task of remote sensing scene classification, capturing scene representation with
sufficient discriminative ability is important to improve the classification accuracy. In recent
years, deep learning has also shown great potential on this task and a large number of
deep-learning-based approaches [17–22] have been developed. Among them, considering
the complementarity features of different layers of a convolutional neural network is an
effective strategy to improve scene classification accuracy [6,23–25]. To comprehensively
utilize different layers’ convolutional features, the simplest way is to directly concatenate
them together [25]. The other solution is to concatenate them after using a certain feature
selection mechanism. However, these methods have some limitations. First, the direct
concatenation strategy can simply merge the features in different layers, but it suffers from
a limited ability to suppress feature redundancy and interference information, which is not
conducive to highlight discriminative features. Second, some current methods generally
operate under the belief that features from the last convolutional layer can best represent
the semantic regions of the given scene, so they usually utilize the last convolutional
features to guide the multilayer feature fusion. However, by referencing some research
conclusions and convolutional feature visualization experiments, we found that the last
convolutional features can only extract the most discriminative features while ignoring
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other crucial information that is also important for classification. In other words, only using
the last convolutional features may lack semantic integrity. Third, in order to maximize the
fusion feature’s representation ability, the multilayer feature aggregation operation should
follow certain rules, that is, for different layers’ convolutional features, we should only fuse
those valuable regions of different layers and selectively suppress irrelevant information.
Through this adaptive selection mechanism, more powerful scene representation can finally
be obtained.

Inspired by this, we propose an attention-guided multilayer feature aggregation net-
work (AGMFA-Net). Specifically, we first extracted multiple convolutional feature maps
with different spatial resolutions from the backbone network. Then, the channel–spatial
attention was adopted on multiple high-level convolutional feature maps to obtain com-
plete semantic regions that were consistent with the given scene as accurately as possible.
Third, in order to integrate the valuable information from different convolutional layers
and alleviate the impacts of discrepancies between them, we used the learned semantic
regions to guide the multilayer feature aggregation operation. Finally, the aggregated
features were fed into the classifier to perform remote sensing scene classification.

The main contributions of this paper are listed as follows:
(1) We propose an attention-guided multilayer feature aggregation network, which

can capture more powerful scene representation by aggregating valuable information from
different convolutional layers, as well as suppressing irrelevant interference between them;

(2) Instead of only considering discriminative features from the last convolutional
feature map, we employed channel–spatial attention on multiple high-level convolutional
feature maps simultaneously to make up for information loss and capture more com-
plete semantic regions that were consistent with the given scene,. The visualization and
qualitative results in the experiments demonstrated its effectiveness;

(3) We evaluated the proposed AGMFA-Net on three widely used benchmark datasets,
and the experimental results showed that the proposed method can achieve better classifi-
cation performance in comparison to some other state-of-the-art methods.

The rest of the paper is organized as follows. Related work is reviewed in Section 2,
followed by the detailed presentation of the proposed method in Section 3. Experiments
and the analysis are presented in Section 4. Section 5 is the conclusion.

2. Related Works

Over the past few years, many RSISC approaches have been proposed. Among them,
deep-learning-based methods have gradually become the main stream. In this section, we
mainly review the relevant deep learning methods and then briefly describe some attention
methods that are related to the proposed AGMFA-Net. As for the traditional RSISC
approaches based on hand-crafted features, we recommend reading the papers [17,18].

2.1. Deep-Learning-Based Remote Sensing Image Scene Classification

The advent of deep learning techniques, especially convolutional neural networks,
has brought huge performance gains to remote sensing image scene classification. In
comparison to the hand-crafted features, deep features contain more abstract and discrimi-
native semantics, which can describe the given scene more precisely. In this subsection, we
summarize the existing deep-learning-based scene classification methods as follows.

2.1.1. Fine-Tuning Methods

In the early stage, it is generally acknowledged that fully training a new CNN model
on the target remote sensing datasets is a good strategy. However, compared with nat-
ural image datasets, e.g., ImageNet [26], the available remote sensing scene datasets are
relatively insufficient, which cannot train a good model because they easily suffer from
the overfitting problem. Therefore, some works [17,27] attempted to directly fine-tune the
parameters of pretrained CNN models (e.g., AlexNet [11], GoogLeNet [28]) for remote
sensing image scene classification. Although good performance has been witnessed, these
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methods commonly use the features from fully connected layers for classification, while
ignoring the spatial information in remote sensing scenes, which is also crucial.

2.1.2. Deep Feature Encoding Methods

Instead of directly using the features from a pretrained CNN as the final scene repre-
sentation, deep feature encoding methods regard the deep CNN as a feature extractor to
capture various different levels of features, then encode these features using some unsuper-
vised feature encoding techniques. Zhao and Du [29] utilized bag of words (BoW) [30] to
encode local spatial patterns into a new scene representation. Zheng et al. [31] extracted
multiscale local feature information from the last convolutional layer using the proposed
multiscale pooling strategy and then generated the holistic scene representation with the
Fisher vector (FV) [32]. Several methods attempt to encode multilayer convolutional fea-
tures to capture more discriminative scene features due to the complementarity between
them. Wang et al. [33] used the vectors of locally aggregated descriptors (VLADs) [34] to
aggregate multilayer convolutional features. He et al. [35] presented a covariance pooling
algorithm to integrate multilayer convolutional features and achieved great performance.

2.1.3. Multiple Feature Fusion Methods

It is generally believed that features from different scales have different representation
abilities to describe the given scene. Therefore, fusing different features is a good solution
to improve classification performance. According to the types of features used, existing
multiple feature fusion methods can be roughly classified into two categories: the methods
fusing both deep and hand-crafted features and the methods fusing different deep features.
For the former, hand-crafted features have been proven to be effective in describing some
special scenes; thus, some works [36,37] attempted to combine hand-crafted features with
deep features to improve the feature representation ability. For example, Lu et al. [36]
proposed a bidirectional adaptive fusion model to effectively fuse SIFT features and deep
features together and successfully addressed the problem of scale and rotation variability.
Yu et al. [37] proposed two feature-level fusion architectures, which used the mapped
local binary pattern (LBP) and saliency coded networks as two auxiliary streams and then
separately integrated them with the raw RGB network for further enhancing the scene
representation capacity. The second category of methods have been popular in recent years,
which mainly fuse multilayer deep features from a single CNN [6,23–25,38] or multilevel
deep features from multiple different CNN branches [39–42] to obtain diverse features
for classification.

In addition, to solve the scale variation of the objects in remote sensing imagery,
Liu et al. [43] proposed a dual-branch multiscale CNN architecture. Furthermore,
Zhang et al. [44] utilized the attention mechanism to extract discriminative features at
different scales and then fused them for classification.

2.1.4. Other Methods

Recently, a variety of new ideas and theories have been introduced into the remote
sensing image scene classification task, such as the attention mechanism [45–47], Cap-
sNet [48], GAN [49], loss function optimization [50], deep bilinear transformation [51],
neural architecture search [52], meta learning [53], etc. It should be noted that these ap-
proaches aim to solve specific issues, such as capturing discriminative scene representation,
solving the problem of small training samples, searching the optimal network architecture
for classification, etc.

2.2. Attention in CNNs

Inspired by the human sensing process, attention mechanisms have been studied
extensively in computer vision (CV) [54–56] and natural language processing (NLP) [57].
The basic idea of attention is to construct a constraint mechanism that can selectively
emphasize and reserve the key regions to extract the important features while depreciat-
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ing other harmful interference information. Currently, many attention mechanisms have
been proposed and successfully applied in various fields. Hu et al. [54] presented the
squeeze-and-excitation network (SENet) to model correlations between different channels
for capturing the importance of different feature channels. In addition, CBAM [55] consid-
ers capturing feature information from spatial and channel attention simultaneously, which
significantly improves the feature representation ability. Recently, the nonlocal neural net-
work [56] has been widely used in salient object detection [58], image superresolution [59],
etc. Its main purpose is to enhance the features of the current position by aggregating
contextual information from other positions and solve the problem that the receptive field
of a single convolutional layer is ineffective to cover correlated regions. Compared with
the typical convolution operation, the nonlocal structure can capture global receptive field
information and further improve the feature discrimination. Later, some improved algo-
rithms were proposed, such as the GCNet [60] and the CCNet [61], to address the problem
of computational complexity. Recently, some studies [62,63] introduced the self-attention
mechanism into remote sensing image scene classification and achieved promising results.
Benefiting from the advantages of the attention mechanism, we introduced the channel and
spatial attention in this paper simultaneously in order to capture more accurate semantic
regions for multilayer feature aggregation.

3. The Proposed Method

In this section, we first introduce the overall architecture of the proposed AGMFA-Net
in Section 3.1. Section 3.2 gives the details of the multilayer feature extraction module.
Finally, the implementation of the multilayer feature aggregation module is provided in
Section 3.3.

3.1. Overall Architecture

The goal of the proposed method is to learn discriminative feature representation
for remote sensing image scene classification. Figure 2 illustrates the overall architecture
of AGMFA-Net, which consists of three main components: feature extraction module,
multilayer feature aggregation module, and classification module. Our network was built
on ResNet-50 [15] as the backbone. Firstly, the input image is fed into the backbone to
generate a series of convolutional feature maps that contain different levels of information
about the given scene; we denote them as Res2, Res3, Res4_1, Res4_2, and Res4_3. Then,
the multilayer feature aggregation module is utilized to fuse these features to generate
a new feature with more powerful scene representation ability. Concretely, in order to
achieve semantic regions corresponding to the given scene as accurately as possible, the
channel–spatial attention module was simultaneously employed on multiple high-level
feature maps, i.e., Res4_1, Res4_2, and Res4_3, and a new attention mask is generated.
Then, we used this mask to guide the multilayer feature aggregation procedure. Through
this process, discriminative information of different feature maps will be well fused to
generate a more powerful scene representation, as well as suppress some interference
or useless information caused by low-level feature maps. After that, a block operation
(including convolution, ReLU, normalization) was employed to merge the information of
the aggregated features among the channel. Finally, a fully connected layer and a softmax
layer followed to predict the label of the input scene. In the following subsections, we
introduce each component in detail.
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Figure 2. The overall architecture of our proposed AGMFA-Net.

3.2. Multilayer Feature Extraction

Limited by the scarcity of training samples in remote sensing images, many existing
methods capture multilayer convolutional features using the pretrained CNN models.
Currently, many famous CNN architectures have been developed, e.g., AlexNet, VGGNet,
ResNet, etc. Considering the excellent classification performance of ResNet on ImageNet,
in this paper, we used the modified ResNet-50 to extract multilayer convolutional feature
maps from remote sensing scenes. For the ResNet-50 model, it starts with an initial
convolutional layer with a kernel of size 7 × 7 and a stride of 2. Then, a max-pooling
layer is added with a 3 × 3 window and a stride of 2. The later portion is composed of
four residual blocks; we denote the outputs of each residual block as Res1, Res2, Res3,
and Res4, respectively. Because we only extracted multilayer feature maps, we deleted all
layers after Res4. In addition, to retain more spatial information, we changed the stride
of Res4 from 2 to 1. Assuming the size of the input image is 3 × 224 × 224, the sizes of
Res2, Res3, and Res4 are 512 × 28 × 28, 1024 × 14 × 14, and 2048 × 14 × 14, respectively.
At the same time, the size of high-level convolutional feature maps (e.g., Res4_1, Res4_2,
and Res4_3) was the same, i.e., 512 × 14 × 14. It is worth noting that Res4 and Res4_3
denote the same feature map; they both represent the output of the last residual block of
ResNet-50. To ensure that the size of each feature map is consistent, we downsampled
Res2 to change its size to 512 × 14 × 14 by using a max-pooling operation. The main
motivation to extract multilayer convolutional features was that they can complement each
other, which has been proven to be helpful for improving the remote sensing image scene
classification accuracy.
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3.3. Multilayer Feature Aggregation

In general, the features from deeper layers can describe the semantic information
of the given scenes better, while the features from lower layers have rich appearance
information; they are both important for classification. Thus, fusing features from different
layers has become a commonly used strategy to obtain a more comprehensive scene
representation. However, directly aggregating multilayer features without considering the
discrepancies between them, e.g., feature redundancy, semantic ambiguity, and background
interference, may result in reducing the discriminative ability. To aggregate multilayer
convolutional features more effectively and obtain more valuable information of each
feature map, an attention-guided multilayer feature aggregation module was designed,
as shown in Figure 2. It mainly consists of two parts: semantic region extraction and
multilayer feature aggregation.

To reduce the impacts of semantic interference, feature redundancy, etc., between
different convolutional layers, we followed a rule that only aggregates multilayer features
corresponding to the semantic regions of the given scene. Therefore, there are two key
issues that need to be considered: (1) how to accurately obtain the semantic regions of
the input scenes; (2) how to fuse different levels of feature maps based on the learned
semantic regions?

3.3.1. Semantic Region Extraction

For the first issue, a commonly used solution is to only use the last convolutional
activation as the semantic regions. However, this solution is not effective because the
semantic regions are incomplete and ignore other discriminative regions, which are also
important for scene classification. To address this problem, we first analyzed the activation
characteristics of different high-level convolutional feature maps in the last residual block
of ResNet-50, and the visualization results are shown in Figure 3 by using the gradient-
weighted class activation mapping (Grad-CAM) algorithm [64]. It can be observed that a
single convolutional feature map usually only activates the most discriminative regions of
the given scene, while ignoring the importance of other semantic areas. In addition, the
activation regions of different convolutional feature maps are different, but also overlap.
Furthermore, multiple convolutional feature maps can compensate each other to achieve
more complete activation regions.

Figure 3. Grad-CAM visualization results. We compare the visualization results of our proposed
channel–spatial attention with three other high-level convolutional feature maps of the last residual
block of ResNet-50.

In order to capture more semantic regions of the given scene accurately, we proposed to
simultaneously aggregate multiple high-level convolutional features based on the channel–
spatial attention mechanism. Recently, benefiting from the human visual system, various
attention mechanisms have been developed and have achieved great success in many fields,
which aim to selectively concentrate on the prominent regions to extract the discriminative
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features from the given scene while discarding other interference information. Among
them, the CBAM [55] algorithm is excellent and has been introduced in remote sensing
scene classification. CBAM considers two different dimensions of the channel and spatial
information simultaneously to capture important features and suppress useless features
more effectively. Therefore, we employed CBAM in this paper to obtain important semantic
regions from each high-level convolutional feature map.

Suppose Res4_1 ∈ RC×H×W , Res4_2 ∈ RC×H×W , and Res4_3 ∈ RC×H×W denote
three high-level convolutional feature maps from the last residual block of ResNet-50,
respectively. C, H, and W represent the channel number, height, and width of each feature
map. As shown in Figure 2, each high-level convolutional feature map is first separately
passed to the channel–spatial attention module to generate three different attention masks,
and these masks are then multiplied to obtain the final semantic regions.

Figure 4 demonstrates the detailed workflow of the channel–spatial attention opera-
tion, which consists of two components: the channel stream and the spatial stream. Let
the input feature map be X ∈ RC×H×W , where C, H, and W are the number of channels,
height, and width, respectively. Firstly, two pooling operations, i.e., global max pooling
and global average pooling, are employed to aggregate the spatial information of X and
generate two C × 1 × 1 spatial contextual descriptors; we denote them as XC

max ∈ RC×1×1

and XC
avg ∈ RC×1×1, respectively. Then, two descriptors are fed into a shared network

with a hidden layer and multilayer perception. To reduce the computational overhead, the
activation size of the hidden layer is RC/r×1×1, where r is the reduction ratio. After that,
two output features of the shared network are added after a sigmoid activation function to
obtain the channel attention map MC ∈ RC×1×1. Finally, the refined feature X

′
is obtained

by multiplying MC with the input feature map X. In summary, the entire process of channel
attention can be expressed as follows:

X
′
= Mc(X)⊗ X (1)

where ⊗ represents elementwise multiplication and Mc(X) denotes the channel attention
map, which can be described as:

MC(X) = σ(MLP(AvgPool(X)) + MLP(MaxPool(X)))
= σ(W1(W0(XC

avg)) + W1(W0(XC
max)))

(2)

where σ denotes the sigmoid function, MLP represents the multi-layer perceptron, AvgPool
and MaxPool denote the global average pooling and global max pooling, respectively, and
W0 ∈ RC/r×C and W1 ∈ RC×C/r are the weights of the MLP.

Figure 4. Diagram of the channel–spatial attention module.

Different from channel attention, spatial attention aims to utilize the interspatial
relationships of features to generate a spatial attention map, which mainly focuses on
the discriminative areas. To obtain the spatial attention map MS ∈ RH×W , the average
pooling and max pooling operations are adopted along the channel dimension at first to
generate two 1 × H ×W channel descriptors, which are denoted as XS

avg ∈ R1×H×W and
XS

max ∈ R1×H×W . Then, these two channel descriptors are concatenated to generate a new
descriptor. After that, a 7 × 7 convolution and sigmoid function are used to capture a
spatial attention map MS, which can highlight the important regions of the given scenes
while suppressing other interference regions. It should be noted that we only need to



Remote Sens. 2021, 13, 3113 9 of 22

generate the spatial attention map, instead of reweighting the input feature map X
′

to
generate a refined feature map. Therefore, the spatial attention is computed as:

MS(X
′
) = σ( f 7×7concat[AvgPool(X

′
); MaxPool(X

′
)])

= σ( f 7×7concat[XS
avg; XS

max])
(3)

where σ and concat denote the sigmoid function and concatenation operation, respectively,
f 7×7 represents a convolution operation with a filter size of 7 × 7, and AvgPool and
MaxPool represent the average pooling and max pooling along the channel dimension.
By referring to [55], we connected channel attention and spatial attention in a sequential
arrangement manner, which can more effectively focus on important semantic regions of
the given scene.

For high-level convolutional feature maps, Res4_1, Res4_2, and Res4_3, we separately
pass them into the channel–spatial attention module to capture different attention masks,
denoted as M4_1, M4_2, and M4_3. It is worth noting that each mask mainly concentrates
on discriminative regions, but they complement each other. To obtain a more accurate
semantic region mask, we conducted the matrix multiplication operation on the above
three masks, and the newly generated semantic region mask is denoted as M. Compared
with the discriminative mask only using the last convolutional features of ResNet-50, our
method makes full use of the information from multiple high-level convolutional feature
maps to obtain a more efficient and complete semantic region mask, as shown in the last
column in Figure 3. The expression of this procedure can be written as follows.

M = M4_1⊗M4_2⊗M4_3 (4)

where ⊗ denotes the elementwise multiplication operation.

3.3.2. Multilayer Feature Aggregation

It is acknowledged that convolutional features extracted from different layers can de-
scribe different levels of information of the given scene; some published research [6,33,38]
has also proven that fusing multiple convolutional features can significantly promote the
scene classification performance. However, integrating multilayer convolutional features
indiscriminately may be easily affected by the differences, e.g., semantic ambiguity, feature
redundancy, and background interference, resulting in the discrimination of the learned
scene representation being insufficient. To solve this problem, we designed a novel mul-
tilayer feature fusion strategy. Specifically, we first obtained semantic regions in terms
of the semantic region extraction operation, then used the learned semantic regions to
guide the process of multilayer feature aggregation. Compared with other fusion strategies,
e.g., fusion by addition, our method not only fuses valuable feature information of each
convolutional layer effectively, but also avoids the interference of unfavorable factors.

As shown in Figure 2, Res2, Res3, and Res4 are three different convolutional feature
maps captured from the backbone network. M represents the semantic region mask.
To aggregate multilayer convolutional features, we separately multiply Res2, Res3, and
Res4 by M to generate new features; we present them as Res2

′
, Res3

′
, and Res4

′
. By this

step, different convolutional layers’ important information, which is consistent with M, is
selected for the subsequent fusion procedure. After that, these features are concatenated
along the channel dimension. Specifically, in order to reduce the feature dimension and
merge the information of the concatenated features among the channels, a 1× 1 convolution
operation and a ReLU operation are followed; we denote the output features as Y. Therefore,
we can use the formula to express this as follows:

Res2
′
= Res2⊗M

Res3
′
= Res3⊗M

Res4
′
= Res4⊗M

Y = δ( f 1×1concat[Res2
′
; Res3

′
; Res4

′
])

(5)
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where ⊗ denotes the elementwise operation, δ represents the ReLU function, f 1×1 de-
notes a convolution operation with the filter size of 1 × 1, and concat represents the
concatenation operation.

After obtaining Y, it is sent into the classifier for scene classification.

3.4. Loss Function

During training, the cross entropy loss function is used to minimize a weighted
cumulation loss. Suppose that I={(x1, y1), ..., (xN , yN)} is a training batch of N images,
where yi, a one-hot vector, is the label of the i-th image xi. pi is a vector in which the j-th
element is the probability that image xi is classified into the j-th class. Then, the cross
entropy loss can be formulated as follows:

L = − 1
N

N
∑

i=1

(
yi

I log(pi)
)

(6)

4. Experiments

In this section, we conduct a series of experiments to verify the effectiveness of the
proposed AGMFA-Net.

4.1. Datasets

To evaluate the performance of the proposed method, the following commonly used
remote sensing scene classification datasets were employed: the UC Merced Land Use
dataset [30], the more challenging large-scale Aerial Image Dataset (AID) [18], and the
NWPU-RESISC45 dataset [17].

(1) UC Merced Land Use dataset (UCML): The UCML dataset is a classical benchmark
for remote sensing scene classification. It consists of 21 different classes of land use images
with a pixel resolution of 0.3 m. It contains a total of 2100 remote sensing images with 100
samples for each class. These samples are all annotated from a publicly available aerial
image, and the size of each sample is 256 × 256 pixels. The example images of each class
are shown in Figure 5.

Figure 5. Examples of the UCML dataset.

(2) Aerial Image Dataset (AID): The AID dataset has 10,000 remote sensing scene
images, which are divided into 30 different land cover categories. Each category’s number
varies from 220 to 420. The size of each image is 600 × 600 pixels, and the spatial resolution
ranges from about 8 m to 0.5 m. It is noted that the AID dataset is a relatively large-scale
remote sensing scene dataset and is challenging for classifying. Some examples of each
category are presented in Figure 6.
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Figure 6. Examples of the AID dataset.

(3) NWPU-RESISC45 dataset: This dataset is more complex and challenging compared
with the above three datasets. It contains a total of 31,500 images divided into 45 different
scenes. Each scene has 700 images with an image size of 256 × 256 pixels. Because of the
more diverse scenes, the spatial resolution of the images varies from 0.2 m to 30 m. Figure 7
shows some examples of this dataset.

Figure 7. Examples of the NWPU-RESISC45 dataset.

To ensure a fair comparison, we employed the commonly used training ratios to
divide each dataset. For the UCML dataset, we set the training ratio to 80% and the rest of
the samples (20%) for testing. For the AID dataset, we set two training–testing ratios, i.e.,
20–80% and 50–50%, respectively. Similarly, two training ratios, i.e., 10–90% and 20–80%,
were used for the NWPU-RESISC45 dataset.

4.2. Implementation Details

All experiments were completed using the PyTorch [65] deep learning library. We
employed ResNet-50 as the backbone network. To verify the scalability of the proposed
method, we also conducted experiments with the VGGNet-16 network. All networks were
trained using one NVIDIA GeForce RTX 2070 Super GPU. To make the network converge
quickly, all the experimental networks were first pretrained on the ImageNet and then
fine-tuned with the above three benchmark datasets. Our proposed network was optimized
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by the stochastic gradient descent (SGD) algorithm with the momentum as 0.9, the initial
learning as 0.001, and the weight decay penalty as 1 ×10−5. After every 30 epochs, the
learning rate decayed by 10 times. The batch size and maximum training iterations were
set to 32 and 150, respectively. In the training stage, data augmentation was adopted to
improve the generalization performance. Concretely, the input images were first resized to
256 × 256 pixels, then randomly cropped to 224 × 224 pixels as the network input after
random horizontal flipping.

4.3. Evaluation Metrics

To comprehensively evaluate the classification of the proposed method, three evalua-
tion metrics were used in this paper. They include the overall accuracy and the confusion
matrix. Each evaluation metric is explained as follows:

(1) Overall accuracy (OA): The OA is defined as the ratio between the number of
correctly classified images and the total number of testing images;

(2) Confusion matrix (CM): The CM is a special matrix used to visually evaluate the
performance of the algorithm. In this matrix, the column represents the ground truth and
the row denotes the prediction. From it, we can observe the classification accuracy of each
scene, as well as the categories that are easily confused with each other.

4.4. Ablation Study

In our proposed method, we mainly improved the discriminative capability of the mul-
tilayer feature aggregation from two aspects. To separately demonstrate the effectiveness
of each component, we conducted ablation experiments on the AID and NWPU-RESISC45
datasets using ResNet-50 as the backbone network.

4.4.1. The Effectiveness of Semantic Region Extraction

We conducted experiments to qualitatively analyze the effectiveness of semantic region
extraction. In the following, we compare the following network architectures, i.e., ResNet-
50, ResNet-50+DA (direct aggregation), ResNet-50+WA (without attention), ResNet-50+SA
(spatial attention), Ours (low-level features), Ours (multiple high-level features). Specifi-
cally, ResNet-50 was the baseline network. ResNet-50+DA represents directly aggregating
multiple high-level convolutional feature maps indiscriminately. ResNet-50+WA denotes
aggregating multiple high-level convolutional feature maps without using attention. In-
stead, we employed the method in [66], which captures semantic regions by utilizing
multiple high-level convolutional feature maps in an unsupervised way. ResNet-50+SA
represents using the spatial attention following each high-level convolutional feature map,
then aggregating them to generate new semantic regions. Ours (low-level features) and
Ours (high-level features) are two methods that adopt channel attention and spatial at-
tention separately on low-level and high-level features to capture semantic regions. More
intuitively, we illustrate the activation maps of the aggregated features between different
compared methods using the Grad-CAM algorithm in Figure 8. It can be observed that the
above six methods can activate the discriminative regions, which are consistent with the
semantic label of the scenes; however, the activation regions of our proposed method are
more complete and can accurately cover the overall discriminative regions.

4.4.2. The Effectiveness of Multilayer Feature Aggregation

We also conducted experiments on the AID and NWPU-RESISC45 datasets to quanti-
tatively evaluate the performance of the proposed multilayer feature aggregation strategy,
and the results are shown in Table 1. From Table 1, we can make the following conclu-
sions: (1) For the AID and NWPU-RESISC45 datasets, the multilayer feature aggregation
methods can further promote the classification accuracy when compared with the baseline.
This observation verified that fusing features from different layers can indeed achieve
better results. (2) The classification accuracy of ResNet-50+DA and ResNet-50+WA was
similar. We considered the reason is partly that ResNet-50+WA employs an unsupervised
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method to obtain semantic regions, which cannot suppress the impacts of complex back-
grounds, resulting in worse accuracy. (3) The methods based on attention were better
than ResNet-50+DA and ResNet-50+WA, except the training ratio of the NWPU-RESISC45
dataset was 10%. We also respectively compared the classification performance when
obtaining semantic regions based on low-level and high-level features in our method. (4)
We found that when using low-level features, its classification performance on the AID
and NWPU-RESISC45 datasets was better than the baseline, but lower than other methods.
We considered the reason to be that the use of low-level revolutionary features cannot
effectively reduce the interference of background noise and semantic ambiguity, resulting
in the captured semantic regions being inaccurate, which further reduces the performance
of multilayer feature fusion. (5) When using multiple high-level convolutional features to
capture semantic regions, our method can achieve optimal classification accuracy because
we used channel and spatial attention together to obtain more accurate semantic regions.
Therefore, the final aggregated features have better discrimination.

Figure 8. Grad-CAM visualization results. We compare the visualization results of the proposed
AGMFA-Net (ResNet-50) with the baseline (ResNet-50) and three other multilayer feature aggregation
methods. The Grad-CAM visualization is computed for the last convolutional outputs.

Table 1. Ablation experimental results on two datasets with different training ratios.

Method
AID NWPU-RESISC45

20% 50% 10% 20%

ResNet-50 (Baseline) 92.93 ± 0.25 95.40 ± 0.18 89.06 ± 0.34 91.91 ± 0.09
ResNet-50+DA 93.54 ± 0.30 96.08 ± 0.34 90.26 ± 0.04 93.21 ± 0.16
ResNet-50+WA 93.66 ± 0.28 96.15 ± 0.28 90.24 ± 0.07 93.08 ± 0.04
ResNet-50+SA 93.77 ± 0.31 96.32 ± 0.18 90.13 ± 0.59 93.22 ± 0.10
Ours (low-level features) 93.51 ± 0.51 95.98 ± 0.20 89.16 ± 0.36 92.76 ± 0.11
Ours (high-level features) 94.25 ± 0.13 96.68 ± 0.21 91.01 ± 0.18 93.70 ± 0.08

4.5. State-of-the-Art Comparison and Analysis
4.5.1. Results on the UCML Dataset

UCML is a classical dataset for evaluating the performance of remote sensing image
scene classification. To illustrate the superiority of our proposed method, we compared
it with some state-of-the-art scene classification methods that are reviewed in Section 2,
and the comparison results are shown in Table 2. As can be seen from Table 2, our method,
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which employed ResNet-50 as the backbone, achieved the optimal overall classification
accuracy. In addition, when using VGGNet-16, our method also surpassed most of the
methods and obtained a competitive classification performance. It is worth noting that the
overall accuracy of most of the compared methods reached above 98%, but our method
still showed good superiority and demonstrated its effectiveness.

Table 2. The OA (%) and STD (%) of different methods on the UCML dataset.

Methods Accuracy

VGGNet-16 [12] 96.10 ± 0.46
ResNet-50 [15] 98.76 ± 0.20

MCNN [43] 96.66 ± 0.90
Multi-CNN [41] 99.05 ± 0.48
Fusion by Addition [25] 97.42 ± 1.79
Two-Stream Fusion [39] 98.02 ± 1.03
VGG-VD16+MSCP [35] 98.40 ± 0.34
VGG-VD16+MSCP+MRA [35] 98.40 ± 0.34
ARCNet-VGG16 [45] 99.12 ± 0.40
VGG-16-CapsNet [48] 98.81 ± 0.22
MG-CAP (Bilinear) [22] 98.60 ± 0.26
MG-CAP (Sqrt-E) [22] 99.00 ± 0.10
GBNet+global feature [38] 98.57 ± 0.48
EfficientNet-B0-aux [50] 99.04 ± 0.33
EfficientNet-B3-aux [50] 99.09 ± 0.17
IB-CNN(M) [51] 98.90 ± 0.21
TEX-TS-Net [37] 98.40 ± 0.76
SAL-TS-Net [37] 98.90 ± 0.95
ResNet-50+EAM [47] 98.98 ± 0.37

Ours (VGGNet-16) 98.71 ± 0.49
Ours (ResNet-50) 99.33 ± 0.31

Figure 9 shows the confusion matrix of our proposed method when the training ratio
was 80%. It can be seen that almost all scenes can be accurately classified except for some
easily confused categories, such as freeway and overpass, medium residential and dense
residential, and forest and sparse residential. This is because some scenes are composed
of multiple different land use units (e.g., sparse residential contains forest and building
together) or show different spatial layout characteristics (e.g., freeway and overpass both
contain road, but they have different spatial layouts). These issues make them difficult
to classify.

4.5.2. Results on the AID Dataset

AID is a larger and more challenging dataset than the UCML dataset. We compared
our method with other scene classification methods with two training ratios, 20% and 50%.
For both training ratios, our method performed better than other competitors, as shown in
Table 3. For a training ratio of 50%, our method with VGGNet-16 as the backbone surpassed
almost all the compared methods that use the same backbone, such as Fusion by Addi-
tion [25], VGG-16+MSCP [35], ARCNet-VGG16 [45], MF2Net [6], VGG-16-CapsNet [48],
etc. Similarly, when using ResNet-50 as the backbone, our method achieved the highest
classification accuracy, which exceeded other methods that use ResNet or more advanced
network as the backbone. For example, our method increased by 0.06% over ResNet-
50+EAM [47], 0.11 over IB-CNN (M) [51], and 0.12 over EfficientNet-B3-aux [50]. For a
training ratio of 20%, our method that used VGGNet-16 showed mediocre performance;
however, when using ResNet-50 as the backbone, our method performed better than all
the other methods. Specifically, our method was slightly higher than EfficientNet-B3-aux
and IB-CNN(M) by 0.16% and 0.02% and exceeded ResNet-50+EAM by 0.16%.
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Figure 9. Confusion matrix of the proposed method on the UCML dataset with a training ratio of 80%.

The CMs of different training ratios are illustrated in Figures 10 and 11, respectively.
For a training ratio of 50% in Figure 10, most of the categories achieved a classification
accuracy higher than 95%, except the scenes of resort (92%) and school (93%). Specifically,
the most difficult scenes to classify were resort and park, because they are composed of
some similar land use units and also have the same spatial structures. In addition, school
is easily confused with square and industrial. For a training ratio of 20% in Figure 11,
our method can also obtain excellent classification accuracy, except for the following four
scenes: center (87%), resort (79%), school (84%), and square (86%).

4.5.3. Results on the NWPU-RESISC45 Dataset

For the larger NWPU-RESISC45 dataset, the comparison results are shown in Table 4.
For two training ratios, our methods obtained remarkable performance. When the training
ratio was 20%, our method that used ResNet-50 as the backbone exceeded all the com-
petitors. Specifically, in comparison to the baselines, our method separately improved by
1.79% (ResNet-50) and 2.86% (VGGNet-16) when using different networks. When using
VGGNet-16 as the backbone, we surpassed other methods that use the same backbone,
e.g., Two-Stream [39], VGGNet16+MSCP, MF2Net, and VGG-16-CapsNet. In addition, our
method achieved the highest classification accuracy when using ResNet-50, higher than
ResNet-50+EAM by 0.19% and higher than IB-CNN (M) by 0.37%. For the training ratio of
10%, our methods can also obtain excellent classification performance.
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Table 3. Overall accuracy and standard deviation (%) of different methods on the AID dataset.

Method
Training Ratio

20% 50%

VGGNet-16 [12] 88.81 ± 0.35 92.84 ± 0.27
ResNet-50 [15] 92.93 ± 0.25 95.40 ± 0.18

Fusion by Addition [25] - 91.87 ± 0.36
Two-Stream Fusion [39] 80.22 ± 0.22 93.16 ± 0.18
Multilevel Fusion [40] - 95.36 ± 0.22
VGG-16+MSCP [35] 91.52 ± 0.21 94.42 ± 0.17
ARCNet-VGG16 [45] 88.75 ± 0.40 93.10 ± 0.55
MF2Net [6] 91.34 ± 0.35 94.84 ± 0.27
MSP [31] 93.90 -
MCNN [43] - 91.80 ± 0.22
VGG-16-CapsNet [48] 91.63 ± 0.19 94.74 ± 0.17
Inception-v3-CapsNet [48] 93.79 ± 0.13 96.32 ± 0.12
MG-CAP (Bilinear) [22] 92.11 ± 0.15 95.14 ± 0.12
MG-CAP (Sqrt-E) [22] 93.34 ± 0.18 96.12 ± 0.12
EfficientNet-B0-aux [50] 93.69 ± 0.11 96.17 ± 0.16
EfficientNet-B3-aux [50] 94.19 ± 0.15 96.56 ± 0.14
IB-CNN(M) [51] 94.23 ± 0.16 96.57 ± 0.28
TEX-TS-Net [37] 93.31 ± 0.11 95.17 ± 0.21
SAL-TS-Net [37] 94.09 ± 0.34 95.99 ± 0.35
ResNet-50+EAM [47] 93.64 ± 0.25 96.62 ± 0.13

Ours (VGGNet-16) 91.09 ± 0.30 95.10 ± 0.78
Ours (ResNet-50) 94.25 ± 0.13 96.68 ± 0.21

Figure 10. Confusion matrix of the proposed method on the AID dataset with a training ratio of 50%.
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Figure 11. Confusion matrix of the proposed method on the AID dataset with a training ratio of 20%.

Table 4. Overall accuracy and standard deviation (%) of different methods on the
NWPU-RESISC45 dataset.

Method
Training Ratio

10% 20%

VGGNet-16 [12] 81.15 ± 0.35 86.52 ± 0.21
ResNet-50 [15] 89.06 ± 0.34 91.91 ± 0.09

Two-Stream [39] 80.22 ± 0.22 83.16 ± 0.18
VGG-16+MSCP [35] 85.33 ± 0.17 88.93 ± 0.14
MF2Net [6] 85.54 ± 0.36 89.76 ± 0.27
VGG-16-CapsNet [48] 85.08 ± 0.13 89.18 ± 0.14
Inception-v3-CapsNet [48] 89.03 ± 0.21 92.60 ± 0.11
MG-CAP (Bilinear) [22] 89.42 ± 0.19 91.72 ± 0.16
MG-CAP (Sqrt-E) [22] 90.83 ± 0.12 92.95 ± 0.13
EfficientNet-B0-aux [50] 89.96 ± 0.27 92.89 ± 0.16
IB-CNN(M) [51] 90.49 ± 0.17 93.33 ± 0.21
TEX-TS-Net [37] 84.77 ± 0.24 86.36 ± 0.19
SAL-TS-Net [37] 85.02 ± 0.25 87.01 ± 0.19
ResNet-50+EAM [47] 90.87 ± 0.15 93.51 ± 0.12

Ours (VGGNet-16) 86.87 ± 0.19 90.38 ± 0.16
Ours (ResNet-50) 91.01 ± 0.18 93.70 ± 0.08

Figures 12 and 13 are the confusion matrix results for the training ratios of 20% and
10%, respectively. It can be observed that when setting the training ratio to 20%, almost all
the scenes can achieve above 90% classification accuracy, except two scenes, i.e., church
(83%) and palace (83%), which are very easily confused with each other. In addition, for the
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training ratio of 10%, most of the scenes can be classified well; the scenes with the lowest
classification accuracy still remain church (77%) and palace (75%).

Figure 12. Confusion matrix of the proposed method on the NWPU-RESISC45 dataset with a training ratio of 20%.
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Figure 13. Confusion matrix of the proposed method on the NWPU-RESISC45 dataset with a training ratio of 10%.

5. Conclusions

One of the crucial challenges of remote sensing image scene classification is how to
learn a powerful scene representation. To address this problem, we presented a novel
attention-guided multilayer feature aggregation network in this paper, which consisted of
three parts: the multilayer feature extraction module, the multilayer feature aggregation
module, and the classification module. Concretely, we first used the backbone network
to extract multiple convolutional feature maps with different spatial resolutions. Then, a
semantically guided multilayer feature aggregation module was used to integrate features
from different convolutional layers to reduce the interferences of useless information
and at the same time improve the scene representation capacity. Specifically, to capture
semantic regions that were consistent with the given scene accurately, we employed
channel–spatial attention to make full use of the feature information of multiple high-
level convolutional feature layers. Compared with the semantic regions captured from
a single convolutional layer, our method showed better results. Finally, the aggregated
features were fed into the classifier for scene classification. Experiments on three benchmark
datasets were conducted, and the results demonstrated that our proposed method can
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achieve promising classification performance and outperform other remote sensing image
scene classification methods.
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