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Abstract: Soil salinization is a significant factor affecting corn growth in coastal areas. How to use
multi-source remote sensing data to achieve the target of rapid, efficient and accurate soil salinity
monitoring in a large area is worth further study. In this research, using Kenli District of the Yellow
River Delta as study area, the inversion of soil salinity in a corn planting area was carried out based
on the integration of ground imaging hyperspectral, unmanned aerial vehicles (UAV) multispectral
and Sentinel-2A satellite multispectral images. The UAV and ground images were fused, and the
partial least squares inversion model was constructed by the fused UAV image. Then, inversion
model was scaled up to the satellite by the TsHARP method, and finally, the accuracy of the satellite-
UAV-ground inversion model and results was verified. The results show that the band fusion of
UAV and ground images effectively enrich the spectral information of the UAV image. The accuracy
of the inversion model constructed based on the fused UAV images was improved. The inversion
results of soil salinity based on the integration of satellite-UAV-ground were highly consistent with
the measured soil salinity (R2 = 0.716 and RMSE = 0.727), and the inversion model had excellent
universal applicability. This research integrated the advantages of multi-source data to establish a
unified satellite-UAV-ground model, which improved the ability of large-scale remote sensing data
to finely indicate soil salinity.

Keywords: Sentinel-2A; UAV; ground imaging hyperspectral; multi-source remote sensing data;
soil salinity

1. Introduction

Globally, declining soil quality poses a significant challenge to improving agricultural
productivity, economic growth and a healthy environment [1,2]. In coastal areas, soil
salinity and alkalinity are major soil limiting factors for agricultural and land degrada-
tion [3]. Soil salinization not only reduces soil quality and land productivity, leading to a
decline in crop yield, but also threatens ecological security and sustainable land use [4–6].
With the change of natural environment and the disturbance of human behavior, regional
salinization becomes more and more serious, which affects the sustainable development
of agriculture coastal areas to a great extent [7]. It is of great significance for agricultural
production and sustainable development to accurately extract the soil salinization status
and grasp its spatial distribution law in the main crop corn planting area of coastal areas.

To improve the accuracy and efficiency of obtaining regional soil salinization spa-
tial distribution information is a prerequisite for rational management and utilization
of salinized soil [8]. The traditional method of obtaining soil salinity information in the
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corn planting area is mainly through field survey sampling and laboratory testing, which
is time consuming and laborious. Remote sensing technology has become a frequently
used method for the quantitative analysis of soil salinization information because of its
advantages of fast, large-scale, and non-destructive acquisition of ground feature infor-
mation [9]. At present, ground, UAV and satellite remote sensing technologies provide a
powerful means for monitoring the salt content of surface soils and have been widely used
in the monitoring of farmland soil salinization [10–13]. Mohammad et al. [14] implemented
the monitoring of soil salinity in a large area of Qom County, Qom Province, Iran, based
on Sentinel-2A data. Wei et al. [15] took advantage of UAV equipped with Micro-MCA
multispectral sensors to obtain images and realized the estimation of soil salinity in a small
area of Hetao Irrigation District. Wang et al. [16] utilized a portable spectrometer ASD
to obtain soil hyperspectral to construct a soil salinity inversion model in Baidunzi Basin,
China, and achieved high model accuracy. However, most satellite images have low spatial
resolution, so it is hard to achieve high precision real-time monitoring; UAV technology
can obtain images with high temporal and spatial resolution, but the observation range
is small, and it is unable to realize large scale monitoring; hyperspectral data can build
high precision inversion models, but point information is incapable of monitoring soil
salinity in a continuous spatial range. Therefore, due to the mutual constraints between
the spatial resolution, spectral resolution and imaging width of the sensor, it is difficult
for a single sensor to meet the requirements of large-scale, high precision and rapid soil
salinity monitoring simultaneously [17]. Making full use of the complementary advantages
of multi-source remote sensing data to carry out satellite-UAV-ground integrated inversion
is an possible way to improve the accuracy of remote sensing inversion of regional soil
salinity [18–20].

At present, Satellite-UAV-ground multi-source optical remote sensing data fusion has
been applied to regional soil salinity inversion [21–25]. Solmaz et al. [26] constructed an in-
version model through Landsat 8 and ASTER image fusion to obtain the spatial distribution
of soil salinity in the Balikhli-Chay watershed, which improved the accuracy of soil salinity
monitoring in the watershed. However, by the affection of inconsistency of sensor bands
and satellite data acquisition time, the accuracy of soil salinity inversion after data fusion
still needed to be improved. Zhang et al. [27] took advantage of band correction coefficients
to normalize the reflectivity of satellite images based on the correlation between UAV and
satellite image reflectivity, which improved the accuracy of soil salinity inversion, but the
relationship between UAV and satellite image band spectrum information is nonlinear, and
it was unable to accurately express the relationship between the two using only normalized
coefficients. Sun et al. [28] used the measured soil hyperspectral data and Landsat-8 OLI
multispectral data fusion to improve the retrieval accuracy of soil salt, and analyzed the
differences of salt remote sensing in different seasons. Jia et al. [29] built a soil salinization
estimation model based on the fusion of ASD hyperspectral and Landsat-8 OLI images,
which expanded hyperspectral data from isolated point information to pixel and regional
scale; however, due to the large spectral differences, it was difficult to effectively establish
the corresponding relationship between the two samples, limiting the improvement of the
inversion accuracy. In conclusion, the satellite-UAV-ground integration of regional soil
salinity inversion is subject to the following limitations at present. First of all, the discrete
hyperspectral observation data cannot accurately match the continuous spatial scale of
UAV and satellite data; second, the simple linear method is used to fuse remote sensing
data of different scales, and the accuracy of the inversion model built therefrom is limited;
third, until now most of the inversion research based on satellite-UAV-ground multi-source
remote sensing data fusion is based on the data fusion of two platforms, and the research
of soil salinity inversion systems based on the integration of remote sensing data of three
platforms still needs further exploration.

The overall objective of this research is to to explore the nonlinear fusion method
of ground imaging hyperspectral and UAV multi-spectral images, build a soil salinity
inversion model based on the fused UAV images, and then to try to construct a high
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accuracy inversion model based on satellite image through the upscaling method, so
as to realize satellite-UAV-ground integrated soil salinity monitoring in a coastal corn
planting area.

2. Materials and Methods
2.1. Study Area

The study area is located in Kenli District, which is located at the estuary of the Yellow
River Delta, China (37◦24′–38◦10′N, 118◦15′–119◦19′E) (Figure 1). The area has a warm
temperate continental monsoon climate with four distinct seasons [30]. The terrain in the
area is typical of the delta landform, with a slight fan shape from southwest to northeast.
The soil is developed on the alluvium of the Yellow River, with sandy loam in the majority;
due to the lateral infiltration of the Yellow River and the jacking and impregnation of sea
water, the land is irrigated backward, and the phenomenon of secondary salinization of
the soil is more serious [31]. At present, there is still a large amount of unused saline-alkali
wasteland, which has huge development and utilization potential. The main crops are
winter wheat, corn, rice and cotton, with extensive management and low yield. Corn
planting areas are mainly distributed in the southwest and in the middle, and the soil
salinization variation is obvious, which is an ideal area for this research.
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Based on the investigation of Kenli District, two test areas, A and B (Figure 1), were
selected to carry out field measurement of soil salinity, ground imaging hyperspectral
measurement and UAV flight test. Test area A was a rectangular area of 70 m× 80 m, and
test area B was a rectangular area of 60 m × 90 m. Through investigation, the planting
time, tillage methods, and fertilization conditions in the test areas A and B were basically
the same, the growth of corn in the test areas was significantly different, and the soil salt
content was distributed in all grades, which was typical and representative.

2.2. Data Acquisition and Processing
2.2.1. Ground Data Acquisition and Preprocessing

Field investigation in the study area was carried out on 14–15 July 2020, corn seedling
stage. In order to ensure the uniform distribution of the points, 3 sample points were
pre-arranged in every 5 km × 5 km grid in the study area, and finally 37 soil sample points
in the corn planting area were collected for regional inversion verification. A ground card
was placed every 10 m on the peripheral boundary of test area A and B respectively, and a
10 m× 10 m sample grid was formed after connecting with the measuring rope. Taking
the grid intersection as the sampling point, a total of 142 sample points were collected,
including 72 in test area A and 70 in test area B. The 6 outliers in the sampling points were
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eliminated, and the remaining 136 samples were used for the construction and verification
of the corn soil salinity inversion model.

An EC110 portable salinity meter (Spectrum Technologies, Inc., Aurora, CO, USA)
equipped with a 2225FST series probe (conductivity temperature correction had been
completed) was used to measure the electrical conductivity of the soil surface 10 cm of the
corn plant at each sample point, and the average value of multi-point measurement was
taken as the EC value of each sample point, in dS/m. According to the previous research
results of the laboratory, the formula SS = 2.18 × EC + 0.727 was applied to convert the
measured EC data into the soil salt content (SS), in g/kg [32].

Hyperspectral images were obtained from a SOC710VP portable hyperspectral imager
with a spectral range of 400–1000 nm, spectral resolution of 4.68 nm, 128 bands, and the
lens type was C-Mount [33]. The hyperspectral image acquisition time was 11:00–15:00, the
weather was clear and cloudless, and the wind was light. The SOC710VP was placed on a
tripod, and the lens height was 1.6 m. Ten hyperspectral images were collected in the four
corners and the center of the two test areas, as shown in Figure 2a,b. At the same time, the
gray plate images were collected for correction. The ground range of the acquired images
was 60 cm × 80 cm, and the images were processed to realize reflectance conversion.
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2.2.2. UAV Data Collection and Preprocessing

From 11:00–15:00 on 14–15 July 2020, the DJI Matrice 600 Pro six-rotor UAV (SZ DJI
Technology Co., Ltd. Shenzhen, Guangdong Province, China) was equipped with a Sequoia
multispectral camera (Parrot Sequoia, Parrot Inc., Paris, France) to obtain UAV images.
The camera can receive a total of 4 bands of information, which are green light (G), red
light (R), red edge (RE) and near infrared (NIR). Its spectral response function was shown
in Figure 3. The Sequoia multi-spectral camera was fixed on the UAV gimbal, and the
Sunshine sensor which measured the solar irradiance was mounted on the top of the UAV,
and the radiation correction data were used to correct the image during the flight [34].

The Sequoia multispectral camera and radiation sensor were calibrated, and the
ground standard whiteboard image was collected before the UAV took off. The flying
height was 50 m, the flying speed was 5 m/s, and the image acquisition interval was 1.5 s.
After the data were collected, they were imported into Pix4D Mapper software (Pix4D,
Prilly, Switzerland) for splicing, radiation correction and other processing to obtain the high
resolution ortho-reflection image of the test area, with a spatial resolution of 5 cm. In order
to eliminate the random error caused by the reflectance of a single point, a 5 × 5 pixels-size
image was taken with the sampling point as the center, and the average reflectance of the
image was taken as the reflectance data of the sampling point.
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Figure 3. Sequoia sensor spectral response function.

2.2.3. Sentinel-2A Data Acquisition and Preprocessing

The Sentinel-2 satellite comprises two small satellites, A and B, with a revisit period
of 5 days. The main payload is an MSI multispectral imager, covering the 0.4–2.4 µm
spectral range, including 10 m (4 bands) and 20 m (6 bands), 60 m (3 bands) ground
resolution [28]. The Sentinel-2A product was downloaded from the ESA Copernicus
data sharing website (https://scihub.copernicus.eu/, accessed on 16 December 2020).
Considering the acquisition time of ground and UAV data and the quality of the image, the
Sentinel-2A Level-1C multispectral image on 15 July 2020 was selected for modeling and
inversion of soil salinity, and images on 14 August 2020 and 18 October 2020 were selected
for extraction of the corn planting areas.

Radiometric calibration, atmospheric correction and resampling of L1C data were
carried out to generate images with a spatial resolution of 10 m, and the Sentinel-2A true
color image of the study area was obtained by stitching and clipping (Figure 1). Four bands,
B3, B4, B6 and B7, of Sentinel-2A image were selected which harmonized with the UAV
image bands. The central wavelengths are 560 nm, 665 nm, 740 nm and 783 nm respectively,
and the band widths are 45 nm, 38 nm, 18 nm and 28 nm respectively.

2.3. UAV-Ground Data Fusion

The mapping relationship between the coincidence area of the UAV and the ground
image was established by utilizing the ground hyperspectrum and UAV pixel reflectivity
of the homonymy points in the coincident area to solve the reconstruction of the spectral
information of the non-coincident area. The fusion of high-fidelity space and spectral
information of images with different widths was realized, so as to enrich the spectral
information of the UAV image [35]. The spatial resolution of the ground hyperspectral
image was resampled to 5 cm, which was the same as the spatial resolution of the UAV
image. According to the spectral response function of the Sequoia sensor, the hyperspectral
data were fitted into UAV band data by convolution operation. The calculation formula is
shown in Equation (1) [36]:

ρUAV =

∫ λmax
λmin

s(λ)ρ(λ)dλ∫ λmax
λmin

s(λ)dλ
(1)

where ρUAV is the simulated UAV band reflectivity, s(λ) is the UAV spectral response
function, λmax and λmin are the upper and lower limits of the band, respectively, and ρ(λ)
is the ground hyperspectral data.

The relationship between ground hyperspectral and UAV image spectrum was non-
linear [37], so the quadratic polynomial model was used to train the mapping relationship
of the coincident area and expand the spectral information of the non-coincidence area, to

https://scihub.copernicus.eu/
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realize the construction of a UAV image with rich spectral information and high spatial
resolution. The quadratic polynomial model adopted is shown in Equation (2):

S′U = a× S2
U + b× SU + c (2)

where a and b are spectral index conversion coefficients, c is the conversion residual, SU is
the reflectance of unfused UAV image, and S′U is the reflectance of fused UAV image.

The reflectivity of pixels with homonymous points on the UAV and ground images
were analyzed by fitting degree, and the consistency of spectral information between UAV
band unfused and fused and the ground hyperspectrum was explored. The closer the fit
degree was to 1, the higher the consistency between the two. The mathematical expression
of the degree of fit (R2) is shown in Equation (3) [38]:

R2 = 1− ∑ (yU,i−yG,i)
2

∑ (yG,i−yG,i)
2 (3)

where yG,i is the reflectance of a certain point in the ground hyperspectrum, yG,i is the
average reflectance of the sample points, and yU,i is the reflectance of the homonymous
point in the UAV image. i = l, 2, . . . , n.

2.4. Construction of Soil Salinity Inversion Model Based on Fused UAV Images
2.4.1. Screening of UAV Image Vegetation Index

The vegetation index can show the characteristics of vegetation and effectively reflect
the growth and health of vegetation [39]. When the degree of soil salinization becomes
greater, the visible light reflectance of the vegetation increases, and the near-infrared
reflectance decreases [40]. In this research, various vegetation indices related to red light
and near-infrared were selected, mainly including normalized difference vegetation index
(NDVI), normalized difference red edge index (NDRE), optimized soil adjusted vegetation
index (OSAVI), difference vegetation index (DVI), normalized green difference vegetation
index (GNDVI), and green-red vegetation index (GRVI).

The 6 vegetation indexes were calculated by the fused UAV band spectrum, and the
formulas are shown in Table 1. The correlation coefficient between each vegetation index
and soil salinity was calculated, and the variance inflation factor (VIF) between vegetation
indexes was calculated by the formula VIF = 1/(1 − r × r) (r was the correlation coefficient
between vegetation indexes) [41], excluding the low correlation or VIF > 10, which was the
parameter that cannot be diagnosed by collinearity. The sensitive vegetation indexes were
selected for soil salinity modeling.

Table 1. Formulas and corresponding citation for vegetation indexes.

NO. Vegetation Index Formula Citation

1 NDVI (NIR − R)/(NIR + R)

[34]
2 NDRE (NIR − RE)/(NIR + RE)
3 OSAVI (1 + 0.16) (NIR − R)/(NIR + R + 0.16)
4 DVI NIR − R

5 GNDVI (NIR − G)/(NIR + G)
[42]6 GRVI (G − R)/(G + R)

Note: NIR—Near infrared band; R—Red band; RE—Red edge band; G—Green band.

2.4.2. Construction and Verification of Inversion Model

The salt contents of 136 samples were sorted from small to large, and the modeling
set and validation set were sampled in a ratio of 2:1 to ensure that the construction model
samples and the validation samples were evenly distributed. A total of 91 samples were
selected for modeling and 45 samples were used for validation. Taking the sensitive
vegetation indexes as the model input variable, the corn soil salinity inversion model was
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constructed by the PLS method [43], which was implemented in Matlab 2016B. The accuracy
of model modeling and verification were evaluated by the coefficient of determination
(R2) and root mean square error (RMSE). R2 measured the fitting degree of the model, and
RMSE reflected the deviation between measured value and predicted value. The closer R2

was to 1, the smaller the RMSE, which means the higher the accuracy of the model, the
better the effect.

The degree of soil salinization is divided into 5 grades according to soil salinity
and relevant criteria [44], non-salinization (<1 g/kg), mild salinization (1–2 g/kg), and
moderate salinization (2–4 g/kg), severe salinization (4–6 g/kg) and saline soil (>6 g/kg),
and the distribution map of soil salinity grade will be obtained.

2.5. Satellite-UAV Upscale Conversion of Soil Salinity Inversion Model
2.5.1. Information Extraction of the Corn Planting Area

The planting area of corn in the study area was extracted by the time series features
composed of the NDVI of the Sentinel-2A images on 14 August 2020 and 18 October 2020.
Based on the investigation and analysis of the vegetation types in the study area, the middle
of August was the vigorous growth period of the vegetation, which was the best time to
distinguish vegetation from non-vegetation, and October was the season when the corn
had been harvested and the rice and cotton were mature, so the corn field was straw or
bare land, showing lower NDVI vegetation characteristics. From August to October, the
decrease in NDVI of corn crops was the largest, while the decrease in NDVI of other crops
was less; the NDVI of forest and other green land remained basically unchanged. Therefore,
through NDVI time series feature changes, combined with the training sample data, the
following decision rules were established:

Corn =


0 < NDVI10.18 < 0.19;
NDVI8.14 > 0.44;
NDVI8.14 − NDVI10.18 > 0.52;

(4)

where NDVI8.14 was the NDVI image of Kenli District on 14 August 2020; NDVI10.18 was
the NDVI image of 18 October 2020; and the corn planting area in the study area was
obtained by masking.

2.5.2. Upscale Transformation of Inversion Model

The TsHARP method is often used for downscaling conversion of land surface tem-
perature in remote sensing [45]. The method assumes that the relationship between surface
temperature and NDVI remains unchanged at each scale, and the scale conversion of
land surface temperature is realized by introducing NDVI to construct trend surface. This
research improved the TsHARP method and introduced the PLS model constructed by
NDVI, DVI and GRVI as the trend surface to achieve the upscaling conversion of the soil
salinity inversion model.

Firstly, the relationship between soil salinity and trend surface factor at UAV scale
was established:

S0.05 = F0.05 (B0.05) (5)

S0.05—The soil salt content inverted by the trend surface transfer function at the UAV scale;
B0.05—Trend surface factors at the UAV scale, namely vegetation index NDVI, DVI and GRVI;
F0.05—Trend surface inversion function, which was also applicable to the inversion between
soil salinity and trend surface factors upscaled to the 10 m spatial resolution of the Sentinel-
2A satellite.

Considering that the trend surface may be affected by factors such as soil moisture
content, it was difficult for the trend surface factor to fully reflect the distribution of soil
salinity, which was reflected in the conversion residual ∆S0.05 on the UAV scale:

∆S0.05 = S − S0.05 (6)
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where S is the measured value of soil salinity.
Due to the error caused by the variation of soil spatial scale, the soil salt content S10

after scale conversion should be constituted of the soil salt content, which was calculated by
applying the trend surface established on the UAV scale to the Sentinel-2A data, and ∆S10,
which was the conversion residual of the UAV scale ∆S0.05 interpolated to the residual on
the satellite scale. The calculation formula was S10 = F0.05 (B10) +∆S10, and the satellite scale
soil salinity inversion model was obtained.

2.5.3. Satellite-UAV-Ground Soil Salinity Inversion and Accuracy Verification

The satellite scale soil salinity inversion model was applied to Sentinel-2A image,
and the distribution map of soil salinity in the corn planting area in Kenli District was
obtained and compared with the measured values of soil salinity. At the same time, the
results of satellite-UAV-ground integrated inversion were compared with the results of soil
salinity inversion based on the PLS model built by the direct fusion of UAV and satellite.
The R2 and RMSE of soil sampling points’ data and inversion results of two methods
were calculated, respectively, and comparative analysis and quantitative evaluation were
carried out.

In addition, in order to verify the universality of the model, the satellite-UAV-ground
integrated inversion model was applied to the Sentinel-2A image of the Kenli corn planting
area on 19 July 2019, and the spatial distribution of soil salinity was obtained. The mea-
sured soil salinity in the corn planting area and the inverted soil salinity were compared
and verified.

3. Results and Analysis
3.1. Results of UAV-Ground Data Fusion

Table 2 presents the quadratic polynomial fusion model of four bands based on ground
hyperspectral images and UAV multispectral images, as well as the fitting degree of the
unfused and fused UAV image with the hyperspectral pixel of the homonymy points. The
UAV and the hyperspectral bands have a high degree of fit, all greater than 0.6. The fitting
degree of the four bands after fusion was significantly improved compared with unfusion,
and the fitting degree of green, red, red-edge and near-red bands and hyperspectral bands
were improved by 0.132, 0.096, 0.111 and 0.187, respectively. Therefore, the fusion of UAV
and ground band can enrich the spectral information of the UAV image effectively.

Table 2. UAV-ground band fusion model and fitting degree.

Fusion Model
Fitting Degree R2

Unfusion Fusion

Green Y= 3.254x2 − 0.234x + 0.089 0.629 0.761

Red Y= −0.197x2 + 0.194x + 0.068 0.705 0.801

Redg Y= −0.125x2 + 0.238x + 0.194 0.664 0.775

Nir Y= 1.705x2−0.439x + 0.319 0.611 0.798

3.2. Correlation between UAV Vegetation Index and Soil Salinity

Table 3 shows the correlation coefficient between vegetation index of fused UAV image
and measured soil salinity. In the correlation coefficient matrix, vegetation index and soil
salinity all had high correlation; the highest correlation coefficient between NDVI and soil
salinity was 0.739, the lowest correlation coefficient between NDRE and soil salinity was
0.440. The VIF values of OSAVI, GNVI and DVI were all higher than 10, showing strong
multicollinearity. Therefore, three vegetation indexes, NDVI, DVI and GRVI, were selected
as the independent variables to construct the model.
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Table 3. Correlation coefficient between vegetation index and soil salinity.

r SS NDVI NDRE OSAVI DVI GNDVI GRVI

SS 1

NDVI −0.739 ** 1

NDRE −0.440 ** 0.330 ** 1

OSAVI −0.708 ** 0.989 ** 0.328 ** 1

DVI −0.715 ** 0.908 ** 0.287 ** 0.959 ** 1

GNDVI −0.728 ** 0.950 ** 0.408 ** 0.950 ** 0.890 ** 1

GRVI −0.625 ** 0.882 ** 0.484 ** 0.874 ** 0.803 ** 0.935 ** 1
Significance levels: ** 0.01.

3.3. The Soil Salinity Inversion Model Based on the UAV-ground Fusion Image and the Inversion
Result of the Test Area

Table 4 illustrates the PLS model and its accuracy constructed by the three sensitive
vegetation indexes of NDVI, DVI and GRVI before and after UAV fusion. The accuracy
of the PLS inversion model based on the fused UAV images is better than the inversion
model established without fusion. The R2 of the modeling set was improved by 0.104, and
the RMSE was reduced by 0.22. The R2 of the verification set was improved by 0.109 and
the RMSE decreased by 0.258. As a consequence, the inversion model based on the fused
UAV images can improve the prediction ability of soil salinity.

Table 4. UAV-ground unfusion and fusion inversion model and accuracy.

Inversion Model
Modeling Set Validation Set

R2 RMSE R2 RMSE

UAV-ground unfusion S0.05 = 5.885–1.669 × NDVI − 8.745 × DVI + 1.273 × GRVI 0.639 0.922 0.617 1.071

UAV-ground fusion S0.05 = 7.375–8.683 × NDVI − 3.083 × DVI + 0.211 × GRVI 0.743 0.702 0.726 0.813

For the salinity of the soil samples, the minimum value was 0.91 g/kg, the maximum
value was 7.58 g/kg, and the average value was 4.48 g/kg. Soil samples covered all grades
of soil salinization. Soil salinization is common in test areas A and B, and the salinity
difference of samples is obvious.

Figure 4 shows the spatial distribution of soil salinity in test areas A and B obtained
by inversion of the PLS model constructed based on the fusion of UAV images. Among the
136 samples, the inverted values of 115 samples were consistent with the measured salinity
grade on the ground, accounting for 84.5% of the total. The soil salinization in the two test
areas were mainly light and moderate salinization, which was basically consistent with
the field survey results in the test areas. The result indicates that the soil salinity inversion
model based on the fused UAV data can obtain better inversion results and provide more
powerful inversion ability.

3.4. Satellite-UAV-Ground Integrated Soil Salinity Upscale Inversion Model
3.4.1. Trend Surface Conversion Function

The PLS model based on the fused UAV images was used as the trend surface transfor-
mation function, that was F0.05 (B0.05) = 7.375–8.683×NDVI− 3.083× DVI + 0.211× GRVI.
Figures 5 and 6 show the comparisons of the secondary trend surfaces of soil salinity
obtained from the inversion of trend surface transfer functions and those measured. The
results indicate that the spatial distribution trends of soil salinity in the two trend sur-
faces are basically the same; the trend surface transfer function can well reflect the spatial
distribution trend of soil salinity in the study area.
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3.4.2. Analysis of Upscale Residual Results

The UAV scale conversion residual ∆S0.05 was interpolated and converted to the
satellite scale residual ∆S10. Table 5 shows the descriptive statistical features of residuals
∆S0.05 and ∆S10. There were some differences between residuals ∆S0.05 and ∆S10 of different
scales. The maximum and standard deviations of ∆S10 were all less than ∆S0.05, and the
minimum and average values were all larger than ∆S0.05; the distribution of ∆S10 was
concentrated and the dispersion was low. Figures 7 and 8 demonstrate secondary trend
surfaces of test area A and B constructed by UAV residuals ∆S0.05 and Sentinel-2A residuals
∆S10, respectively. The spatial distribution structure of residual ∆S0.05 and ∆S10 trend
surface was different, but the trend was basically the same.
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Table 5. Statistical characteristics of residuals error ∆S0.05 and ∆S10.

Numerical Value (g/kg)
Statistical Indicators

Maximum Value Minimum Value Average Value Standard Deviation

∆S0.05 0.972 −0.997 −0.027 0.524

∆S10 0.795 −0.813 −0.016 0.461
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Table 6. Correlation coefficient between vegetation indexes and residual error ∆S10.

Vegetation Index

r NDVI1 DVI1 GRVI1

∆S10 0.702 0.657 0.619

3.5. Corn Planting Area and Analysis of the Results of Soil Salinity Inversion

Figure 9 shows the corn planting area extracted by NDVI time series and decision rules.
The different colors indicate the inversion results of soil salinity in the corn planting area
obtained by using the satellite-UAV-ground integrated inversion model. Table 7 illustrates
the area statistics of different soil salinity grades. The result shows that soil salinization
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was common in the whole corn planting area. The non-salinized soil was less distributed;
most areas were mild salinized and moderate salinized soil, accounting for 88.36% of the
total area, which are mainly distributed in the relatively high topography of the southwest
and central regions. The area of severe salinized and saline soil was small, and it was
scattered in the corn planting area. The inversion result was consistent with the actual
survey situation in the study area and the distribution trend of soil salinity previously
studied [22,28], indicating the validity of the model for accurate inversion of soil salinity.

3.6. Verification of the Accuracy of the Inversion Model
3.6.1. Accuracy Verification of Model Inversion Results

The soil salinity obtained from the satellite-UAV-ground integrated inversion and the
satellite-UAV inversion at 37 sampling sites in the Kenli corn planting area were compared
with the measured soil salinity to establish the scatter plot—the result is shown in Figure 10.
The R2 and RMSE of the satellite-UAV-ground integrated inversion and the measured value
were 0.716 and 0.727, respectively, suggesting the inversion results and the measured value
were high consistency. Compared with the satellite-UAV inversion, the value of R2 was
higher by 0.133 and the value of RMSE was lower by 0.122. Therefore, the consistency
between the results of the satellite-UAV-ground integrated inversion and the measured
data was higher than that of the satellite-UAV inversion, and the satellite-UAV-ground
integrated inversion model had a better accuracy for the large-scale soil salinity inversion.
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Table 7. Statistics of soil salinity grade area in corn area (Unit: %).

Soil Salinity Level Non Saline Mild Salinization Moderate Salinization Severe Salinization Saline Soil

Proportion of
inversion result 6.21 40.18 48.18 5.31 0.12

3.6.2. Verification of Model Universality

The Sentinel-2A image of the corn planting area on 19 July 2019 and the measured soil
salt content at 44 ground points were used to verify the universality of the inversion model
of corn soil salinity. Figure 11 is a scatter plot of the inversion results of soil salinity in the
corn planting area and the measured soil salinity. The result was R2 = 0.605, RMSE = 0.719,
indicating that the inversion result had good coherence to the measured soil salinity, and the
model could be used as an inversion model of soil salinity in corn seedlings in coastal areas.
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4. Discussion

(1) In coastal soil salinization areas, soil salinity is the main factor affecting the growth
of corn and other crops, and other factors such as soil texture, fertility and nutrients, and
soil moisture have relatively balanced effects on crop growth. Therefore, the difference
of vegetation indexes only considers the influence of soil salinity, and the soil salinity is
indirectly inverted through the vegetation index, which has been confirmed by previous
studies [46–49]. The relationship between vegetation index and soil salinity of crops under
different environmental conditions and at different times is distinct, so the established
satellite-UAV-ground integrated inversion model is more suitable for the inversion of soil
salinity in the corn seedling stage in coastal areas. The model was used to invert corn soil
salinity at the seedling stage in 2019, and the results confirmed the universal applicability
of the model.

(2) Francos et al. found that the traditional field non-imaging spectral data are discrete
and easily affected by the soil background [50], while the ground hyperspectral imaging
technology has the characteristics of image and spectrum integration, which can accurately
determine the spectral information of the corn at the sampling point. The fusion of spectral
information of ground hyperspectral and UAV image effectively improves the ability of
UAV images to accurately express corn spectral information. Therefore, the accuracy of the
soil salt inversion model which was constructed by UAV images fused with hyperspectral
imaging data has been significantly improved.
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(3) The four bands of the UAV image were fused with the ground hyperspectral image,
and the degree of fitting was improved. However, the highest degree of fitting was 0.801,
which was still different from the spectral information of the ground hyperspectral image.
This is consistent with the results of previous studies [51,52]. Firstly, the divergence, proba-
bly due to the quadratic polynomial model used in image fusion, fails to fully explore the
internal relationship between the data. The second possibility is the uncertainty of remote
sensing data, and the band response functions of different sensors are different. When
spectral response function is used for UAV band spectral matching, spectral information
will be lost. Therefore, the next step of research should adopt more effective deep-level
and high-level feature mining methods, such as deep learning methods [53], and improve
the matching accuracy of the spectrum and space of the image to be fused to reduce the
influence of radiation and spatial characteristics on the fusion accuracy. The data fusion
method in this research has conducted a preliminary study on the fusion of images of
different widths and provided a reference for ideas and methodology.

(4) The focus of this research was the exploration of the integration method of satellite,
UAV and ground. Therefore, only the PLS inversion model was constructed. By the
foundation of the effectiveness of integrated satellite-UAV-ground inversion in this research,
the next step will be to integrate multi-dimensional features such as spectral features,
spatial textures, and crop parameters to construct higher-precision models such as machine
learning [54,55], and to screen the optimal model to further improve the accuracy of the
regional soil salinity inversion.

(5) The heterogeneity of the surface space seriously affects the spatial scale conver-
sion. The trend surface analysis method uses the multivariate statistical method to fit the
distribution of spatial elements. In this research, the trend surface was used to simulate
the spatial change trend of soil salinity, and the residual surface was used to simulate and
quantify the spatial variability of the residual. As the scale increases, the variability of the
soil salt residual becomes weaker and the standard deviation decreases; this agrees with the
multi-scale variation law of soil salinity in the study area [56]. The influence of information
loss and variation in the process of spatial scale upscaling is unavoidable [57,58]. The
formulation description of scale transformation and the construction of a better continuous
model are worthy of exploration.

(6) The satellite-UAV-ground integrated approach proposed in this study improves
the monitoring accuracy of regional soil salinization. Compared with the previous satellite-
UAV upscale inversion method, the inversion quality of the satellite-UAV-ground integra-
tion was better [59–61]. Although satellite-UAV upscaling improves the spatial resolution
of satellite images, the improvement of inversion accuracy was still limited by the restric-
tion of spectral information. Compared with the traditional scaling up method, the spectral
information of the original remote sensing data can be improved, and the spatial structure
characteristics can be maintained by introducing the high-resolution spectral information
fusion and constructing the trend surface to realize the ascending scale conversion. The in-
tegrated satellite-UAV-ground method proposed in this research can be used for large-scale
inversion of other surface parameters for reference.

5. Conclusions

In this research, ground-based hyperspectral imaging and UAV were fused to construct
an inversion model of corn soil salinity, and the model was scaled up to Sentinel-2A satellite
scale; the satellite-UAV-ground integrated inversion of soil salinity in the coastal corn
planting area was realized. The main conclusions are as follows:

(1) The fusion of the four bands of the UAV image with the ground hyperspectral im-
proved the degree of fitting with the hyperspectral data. The vegetation indexes based
on the UAV band after fusion had a high correlation with soil salinity. According
to the correlation coefficient and variance expansion factor, three sensitive vegeta-
tion indexes, NDVI, DVI, and GRVI, were selected as independent variables for PLS
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modeling and R2 = 0.743; thus, the inversion results were coincident with the actual
distribution of soil salinity in the test area.

(2) The PLS model S0.05 = 7.375–8.683×NDVI− 3.083×DVI + 0.211×GRVI constructed
with the fused UAV images was used as the trend surface conversion function, and
the PLS model of the residual ∆S10 was constructed as ∆S10 =−1.161 + 2.347×NDVI1
− 4.505 × DVI1 − 0.08 × GRVI1. Thus, the Sentinel-2A satellite scale PLS inversion
model of soil salinity in the coastal corn planting area of S10 = 6.214–6.336 × NDVI1
− 7.588 × DVI1 + 0.131 × GRVI1 was obtained.

(3) The actual soil salinity in the corn planting area was used to verify the inversion
results of satellite-UAV-ground integration and satellite-UAV ascending scale, and
the inversion results of satellite-UAV-ground were better than those of satellite-UAV
inversion and had high consistency with the actual salt distribution. The Sentinel-2A
image of corn growing area on 19 July 2019 was used to verify the universality of the
model; the R2 of soil salt inversion and measured soil salt was 0.605, which indicated
that the model had an excellent universality.

(4) The distribution of non-salinized soil in the study area was small, and the majority
was mild and moderate salinized soil, accounting for 88.36% of the total area, which
was concentrated in the southwest and central part of Kenli District, while the distri-
bution of severe salinized soil and salinized soil was small and scattered in the corn
planting area.

In this research, we proposed a satellite-UAV-ground integrated soil salinity inversion
method in the coastal corn planting area, which provides an effective means for quickly
and accurately obtaining soil salinity information in the corn area.
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