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Abstract: A successful application of low-cost 3D cameras in combination with artificial intelligence
(AI)-based 3D object detection algorithms to outdoor mobile mapping would offer great potential
for numerous mapping, asset inventory, and change detection tasks in the context of smart cities.
This paper presents a mobile mapping system mounted on an electric tricycle and a procedure
for creating on-street parking statistics, which allow government agencies and policy makers to
verify and adjust parking policies in different city districts. Our method combines georeferenced
red-green-blue-depth (RGB-D) imagery from two low-cost 3D cameras with state-of-the-art 3D object
detection algorithms for extracting and mapping parked vehicles. Our investigations demonstrate the
suitability of the latest generation of low-cost 3D cameras for real-world outdoor applications with
respect to supported ranges, depth measurement accuracy, and robustness under varying lighting
conditions. In an evaluation of suitable algorithms for detecting vehicles in the noisy and often
incomplete 3D point clouds from RGB-D cameras, the 3D object detection network PointRCNN,
which extends region-based convolutional neural networks (R-CNNs) to 3D point clouds, clearly
outperformed all other candidates. The results of a mapping mission with 313 parking spaces show
that our method is capable of reliably detecting parked cars with a precision of 100% and a recall
of 97%. It can be applied to unslotted and slotted parking and different parking types including
parallel, perpendicular, and angle parking.

Keywords: parking statistics; vehicle detection; mobile mapping; robot operating system; 3D camera;
RGB-D; performance evaluation; convolutional neural networks; smart city

1. Introduction

We are currently witnessing a transformation of urban mobility from motorized indi-
vidual transport towards an increasing variety of multimodal mobility offerings, including
public transport, dedicated bike paths, and various ridesharing services for cars, bikes,
e-scooters, and the like. These offerings, on the one hand, are expected to decrease the
need for on-street parking spaces and the undesirable traffic associated with searching for
available parking spots, which has been shown to account for an average of 30% of the total
traffic in major cities [1]. On the other hand, government agencies are interested in freeing
street space—for example, that which is currently occupied by on-street parking—to accom-
modate new lanes for bikes etc. to support and promote more sustainable traffic modes.

On-street parking statistics support government agencies and policy makers in re-
viewing and adjusting parking space availability, parking rules and pricing, and parking
policies in general. However, creating parking statistics for city districts or even entire
cities is a very labor-intensive process. For example, parking statistics for the city of Basel,
Switzerland were obtained in 2016 and 2019 using low-cost GoPro videos captured from
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an e-bike in combination with manual interpretation by human operators [2]. This inter-
pretation is time-consuming and costly and thus limits the number of observation epochs,
the time spans, and the repeatability of current on-street parking statistics. However, the
human interpretation also has a number of advantages: firstly, it can cope with all types
of on-street parking such as parallel parking, angle parking, and perpendicular parking;
secondly, it can be utilized with low georeferencing accuracies, since the assignment of cars
to individual parking slots or areas is part of the manual interpretation process.

A future solution for creating parking statistics at a city-wide scale should (a) support
low-cost platforms and sensors to ensure the scalability of the data acquisition, (b) be
capable of handling all relevant parking types, (c) provide an accurate detection of vehicles,
and (d) support a fully automated and robust assignment to individual parking slots or
unslotted parking areas of the respective GIS database. The feasibility of reliable roadside
parking statistics using observations from mobile mapping systems has been successfully
demonstrated by Mathur et al. [3], Bock et al. [4], and Fetscher [5]. However, the first
two solutions are limited to parallel roadside parking, the second relies on an expensive
mobile mapping system with two high-end LiDAR sensors, and the third utilizes 3D street-
level imagery that does not provide the required revisit frequencies for time-of-the-day
occupancy statistics.

In the time since the above-cited studies, two major developments relevant to this
project have occurred: (a) the development of increasingly powerful low-cost (3D) mapping
sensors and (b) the development of Al-based object and in particular vehicle detection
algorithms. Both developments are largely driven by autonomous driving and mobile
robotics. Low-cost 3D sensors or RGB-D cameras with depth sensors either based on active
or passive stereo or on solid-state LIDAR could also play an important role in 3D mobile
mapping and automated object detection and localization.

Low-cost RGB-D cameras have found widespread use in indoor applications such as
gaming and robotics. Outdoor use has been limited due to several reasons, e.g., demanding
lighting conditions or the requirement for longer measurement ranges. However, recent
progress in 3D sensor development, including new stereo depth estimation technologies,
increasing measurement ranges, and advancements in solid-state LiDAR, could soon make
outdoor applications a reality.

Our paper investigates the use of low-cost RGB-D cameras in a demanding outdoor
mobile mapping use case and features the following main contributions:

e A mobile mapping payload based on the Robot Operating System (ROS) with a
low-cost global navigation satellite system/inertial measurement unit (GNSS/IMU)
positioning unit and two low-cost Intel RealSense D455 3D cameras

e Integration of the above on an electric tricycle as a versatile mobile mapping research
platform (capable of carrying multiple sensor payloads)

e A performance evaluation of different low-cost 3D cameras under real-world out-
door conditions

e A neural network-based approach for 3D vehicle detection and localization from
RGB-D imagery yielding position, dimension, and orientation of the detected vehicles

e A GIS-based approach for clustering of vehicle detections and to increase the robust-
ness of the detections

o  Test campaigns to evaluate the performance and limitations of our method.

The paper commences with a literature review on the following main aspects: (a) smart
parking and on-street parking statistics, (b) low-cost 3D sensors and applications, and
(c) vehicle detection algorithms. In Section 3, we provide an overview of the system
and workflow, introduce our data capturing system, and discuss the data anonymization
and 3D vehicle detection approaches. In Section 4, we introduce the study area and the
measurement campaigns used for our study. In Section 5, we discuss experiments and
results for the following key issues: georeferencing, low-cost 3D camera performance in
indoor and outdoor environments, and Al-based 3D vehicle detection.
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2. Related Work
2.1. Smart Parking and On-Street Parking Statistics

Numerous works deal with the optimal utilization of parking space, on the one
hand, and with approaches to limit undesired traffic in search of free space, on the other.
Polycarpou et al. [6], Paidi et al. [7], and Barriga et al. [8] provide comprehensive overviews
of smart parking solutions. Most of these approaches rely on ground-based infrastructure.
Therefore, they are typically limited to indoor parking or to off-street parking lots. Several
studies are aimed at supporting drivers in the actual search for free parking spaces [9,10].
However, these approaches are limited to the vicinity of the current vehicle position and
are not intended for global-scale mapping. In contrast to the large number of studies on
smart parking, only a few works address the acquisition of on-street parking statistics
for city districts or even entire cities. These works can be distinguished by the sensing
technology (ultrasound, LiDAR, 2D and 3D imagery), the detection algorithm and type
(e.g., gap or vehicle), and the supported parking types.

In one of the earlier studies called ParkNet, Mathur et al. [3] equipped probe vehicles
with GPS and side-looking ultrasonic range finders mounted to the passenger door to
determine parking spot occupancy. In ParkNet, the geotagged range profile data are sent
to a central server, which creates a real-time map of the parking availability. The authors
further propose an environmental finger printing approach to address the challenges of
GPS positioning uncertainty with position errors in the range of 5-10 m. In their paper, the
authors claim a 95% accuracy in terms of parking spot counts and a 90% accuracy of the
parking occupancy maps. The main limitations of their approach are that the ultrasound
range finders are unable to distinguish between actual cars and other objects with a similar
sensory response (e.g., cyclists and flowerpots) and that the approach is limited to parallel
curbside parking.

In a more recent study, Bock et al. [4] describe a procedure for extracting on-street
parking statistics from 3D point clouds that have been recorded with two 2D LiDAR
sensors mounted on a mobile mapping vehicle. Parked vehicles are detected in a two-step
approach: an object segmentation followed by an object classification using a random forest
classifier. With their processing chain, the authors present results with a precision of 98.4%
and a recall of 95.8% and demonstrate its suitability for time-of-the-day parking statistics.
The solution supports parallel and perpendicular parking, but its practical use is limited
due to the expensive high-end dual LiDAR mobile mapping system.

More recently, there have been several studies investigating image-based methods for
detecting parked vehicles or vacant parking spaces. Grassi et al. [11], for example, describe
ParkMaster, an in-vehicle, edge-based video analytics service for detecting open parking
spaces in urban environments. The system uses video from dash-mounted smartphones
to estimate each parked car’s approximate location—assuming parallel parking only. In
their experiments in three different cities, they achieved an average accuracy of parking
estimates close to 90%. In the latest study, Fetscher [5] uses 3D street-level imagery [12]
to derive on-street parking statistics. The author first employs Facebook’s Detectron2 [13]
object detection algorithms to detect and segment cars in 2D imagery. These segments are
subsequently used to mask the depth maps of 3D street-level imagery and to derive 3D
point clouds of the candidate objects. The author then presents two methods for localizing
the vehicle positions in the point clouds: a corner detection approach and a clustering
approach, which yield detection accuracies of 97% and 98.3%, respectively, and support
parallel, angle, and perpendicular parking types.

2.2. Low-Cost 3D Sensors and Applications

Gaming, mobile robotics, and autonomous driving are the main driving forces in
the development of low-cost 3D sensors. 3D cameras integrating depth sensors with
imaging sensors have the potential advantages of improved scene understanding through
combinations or fusion of image-based and point cloud-based object recognition and of
direct 3D object localization with respect to the camera pose. 3D or RGB-D cameras provide
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two types of co-registered data covering a similar field of view: imagery (RGB) and range
or depth (D) data. Ulrich et al. [14] provide a good overview of the different RGB-D
camera and depth estimation technologies, including passive stereoscopy, structed light,
time-of-flight (ToF), and active stereoscopy [14]. Low-cost depth and RGB-D cameras have
been widely researched for various close-range applications in indoor environments. These
include applications such as gesture recognition, sign language recognition [15], body pose
estimation [16], and 3D scene reconstruction [17].

2.2.1. RGB-D Cameras in Mapping Applications

There are numerous works investigating the use of low-cost action and smartphone
cameras for mobile mapping purposes [18-20] and an increasing number investigating the
use of RGB-D cameras for indoor mapping [21,22]. By contrast, there are only a few pub-
lished studies on outdoor applications of RGB-D cameras [23]. Brahmanage et al. [23], for
example, investigate simultaneous localization and mapping (SLAM) in outdoor environ-
ments using an Intel RealSense D435 RGB-D camera. They discuss the challenges of noisy
or missing depth information in outdoor scenes due to glare spots and high illumination
regions. Iwaszczuk et al. [24] discuss the inclusion of an RGB-D sensor on their mobile
mapping backpack and stress the difficulties with measurements under daylight conditions.

2.2.2. Performance Evaluation of RGB-D Cameras

If RGB-D cameras are to be used for measuring purposes and specifically for mapping
applications, knowing their accuracy and precision is a key issue. There are a number of
studies evaluating the performance of RGB-D sensors in indoor environments [14,25,26]
and a study by Vit and Shani in a close-range outdoor scenario [27]. Halmetschlager-
Funek et al. [25] evaluated 10 depth cameras for bias, precision, lateral noise, different
light conditions and materials, and multiple sensor setups in an indoor environment
with ranges up to 2 m. Ulrich et al. 2020 [14] tested different 3D camera technologies
in their research on face analysis and ranked different technologies with respect to their
application to recognition, identification, and other use cases. In their study, active and
passive stereoscopy emerged as the best technology. Lourengo and Araujo [26] performed
an experimental analysis and comparison of the depth estimation by the RGB-D cameras
SR305, D415, and L515 from the Intel RealSense product family. These three cameras use
three different depth sensing technologies: structured light projection, active stereoscopy,
and ToF. The authors tested the performance, accuracy, and precision of the cameras in an
indoor environment with controlled and stable lighting. In their experimental setup, the
L515 using solid-state LIDAR ToF technology provided more accurate and precise results
than the other two. Finally, Vit and Shani [27] investigated four RGB-D sensors, namely,
Astra S, Microsoft Kinect II, Intel RealSense SR300, and Intel RealSense D435, for their
agronomical use case of field phenotyping. In their close-range outdoor experiments with
measuring ranges between 0.2 and 1.5 m, Intel’s RealSense D435 produced the best results
in terms of accuracy and exposure control.

2.3. Vehicle Detection

Vehicle detection is a subtask of object detection, which focuses on detecting instances
of semantic objects. The object detection task can be defined as the fusion of object recogni-
tion and localization [28]. For object detection in 2D space within an image plane, different
types of traditional machine learning (ML) algorithms can be applied. Such algorithms are
usually based on various kinds of feature descriptors combined with appropriate classifiers
such as support vector machine (SVM) or random forests. In recent years, traditional
approaches have been replaced by neural networks with increasingly deep network archi-
tectures. This allows the use of high dimensional input data and automatic recognition of
structures and representations needed for detection tasks [29].

The localization of detected objects within the image plane is insufficient for many
tasks such as path planning or collision avoidance in the field of autonomous driving.
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To estimate the exact position, size, and orientation of an object in a geodetic reference
frame (subsequently referred to as world coordinates), the third dimension is required [30].
Arnold et al. [30] divide 3D object detection (3DOD) into three main categories based on
different sensor modality.

2.3.1. Monocular

3D object detection methods using exclusively monocular RGB images are usually
based on a two-step approach since no depth information is available. First, 2D candidates
are detected within the image, before in the second step 3D bounding boxes representing
the object are computed based on the candidates. Either neural networks, geometric
constraints, or 3D model matching are used to predict the 3D bounding boxes [29].

2.3.2. Point Cloud

Point clouds can be obtained by different sensors such as stereo cameras, LiDAR,
or solid-state LIDAR. The 3D object detection methods based on point clouds can be
subdivided into projection, volumetric representations, and point-nets methods [30]. To use
the well-researched and tested network architectures from the field of 2D object detection,
some projection-based methods convert the raw point clouds into images. Other projection-
based approaches transform the point clouds into depth maps or project them onto the
ground plane, leveraging bird’s eye-projection techniques. The reconstruction of the 3D
bounding box can be performed by position and dimension regression [30]. Volumetric
approaches transform the point cloud in a pre-processing step into a 3D grid or a voxel
structure. The prediction of the 3DOD is done by fully convolutional networks (FCNs) [30].
Methods leveraging PointNet architectures such as PointRCNN [31] or PV-RCNN [32]
do not require a pre-processing step such as projection or voxelization. They can process
raw point clouds directly and return the 3D bounding boxes of objects of interest [30].
The leaderboard of the KITTI 3D object detection benchmark [33] shows that most of the
currently top ranked methods for 3D object detection [34-36] use point clouds as input data.

2.3.3. Fusion

Fusion-based approaches combine both RGB images and point clouds. Since images
provide texture information and point clouds supply depth information, fusion-based
approaches use both information to improve the performance and reliability of 3DOD.
These methods usually rely on region proposal networks (RPNs) from RGB images such as
Frustum PointNets [37] or Frustum ConvNet [38].

3. Materials and Methods
3.1. Overview of System and Workflow

In the following sections, we introduce our mobile mapping platform and payload
incorporating two low-cost 3D cameras and a low- to mid-range GNSS/INS system. This
is followed by the description of the workflow for deriving on-street parking statistics from
georeferenced 3D imagery. The main components of this workflow are illustrated in Figure 1.

3.2. Data Capturing System

For our investigations, we developed a prototypic RGB-D image-based mobile map-
ping (MM) sensor payload using low-cost components. This enables easy industrialization
and scaling of the system in the future. At the present stage of development, we used an
electric tricycle as an MM platform. It includes two racks in the front and rear (Figure 2a)
where our sensor payloads can be easily attached.
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Figure 1. Overview of the workflow for acquiring, processing, and analyzing RGB-D imagery to detect parked vehicles and

generate on-street parking statistics.
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Figure 2. (a) Electrical tricycle mobile mapping platform with the low-cost sensor setup, which
is mounted on the front luggage carrier (I) with (Ia) multi-sensor frame and (Ib) computer for
data registration. Our backpack MMS that is fixed on the back luggage carrier (II) was used as a
reference system for our investigations. (b) Outline of our low-cost multi-sensor frame showing
sensor coordinate frames as the body frame b, both RealSense coordinate frames cam 1 and 2, and
the GNSS L1 phase center GNSS. View frusta are indicated with dashed lines.

3.2.1. System Components

Our developed MM payload includes both navigation and mapping sensors as well as
a computer for data pre-processing and data storage. The GNSS and IMU-based navigation
unit SwiftNav Piksi Multi consists of a multi-band and multi-constellation GNSS RTK
receiver board and a geodetic GNSS antenna. The GNSS receiver board also includes the
consumer-grade IMU Bosch BMI160. Furthermore, the navigation unit provides numerous
interfaces, e.g., for external precise hardware-based timestamp creation [39].

For mapping, we used the RGB-D camera Intel RealSense D455. The manufacturer
specifies an active stereo depth resolution up to 1280 x 720 pixels and a depth diagonal
field of view over 90° (see Table 1). Both depth and RGB cameras use a global shutter. The
specified depth sensor range is from 0.4 m to over 10 m, but the range can vary depending
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on the lighting conditions [40]. In addition, the RGB-D camera supports precise hardware-
based triggering using electric pulses, which is crucial for kinematic applications. However,
external hardware-based triggering is currently only provided for depth images.

Table 1. Sensor specifications of the Intel RealSense D455 [40].

RGB Sensors Depth Sensors
Shutter Type Global Shutter Global Shutter
Image Sensor OV9782 0OVv9282
Max Framerate 90 fps (with max resolution 30 fps) 90 fps (with max resolution 30 fps)
Resolution 1 MP (1280 x 800 px/3 um) 1 MP (1280 x 720 px/3 um)
Field of View H:87° £3/V:58° £1/D:95° £ 3 H:87° £3/V:58° £1/D:95° +£3

Finally, our MM payload includes the embedded single-board computer nVidia Jetson
TX2, which includes a powerful nVidia Pascal-family GPU with 256 cuda cores that enables
Al-based edge computing with low energy consumption [41].

3.2.2. System Configuration

Our MM sensor payload consists of a robust aluminum frame to which we stably
attached our sensor components. We mounted our sensor frame on the front rack of
the electrical tricycle. Both navigation and mapping sensors sit on top of the sensor
frame (Figure 2a(la)), while the computer and the electronics for power supply and sensor
synchronization are in the gray box below the sensors (Figure 2a(Ib)).

The aluminum profiles for the sensor configuration on top of the sensor frame are
each angled 45° to the corresponding side. We fixed two RGB-D Intel RealSense cameras
on it, so that the first camera, cam 1, points to the front left and the second camera, cam 2,
points to the front right (Figure 2b). The second camera thus will detect parking spaces and
vehicles that are often located on the right-hand side of the road in urban areas. In the case
of one-way streets, the first camera will also detect parking spaces on the left side of the
road. Furthermore, the oblique mounting ensures common image features in successive
image epochs in moving direction.

We mounted the GNSS and IMU-based navigation unit SwiftNav Piksi Multi on top
of the sensor configuration, so that the GNSS antenna is as far up and as far forward as
possible and does not obscure the field of view of the cameras or the driver’s field of view.
At the same time, the GNSS signal should be obscured as little as possible by the driver or
by other objects.

In addition, we mounted our self-developed BIMAGE backpack mobile mapping
system (MMS) [42,43] on the rear rack of the electrical tricycle. The BIMAGE backpack is
a portable high-performance mobile mapping system, which we used in this project as a
reference system for our performance investigations.

3.2.3. System Software

For this stage of development, we designed the system software for data capturing as
well as for raw data registration. However, our software has a modular and flexible design
and is based on the graph-based robotic framework Robot Operating System (ROS) [44].
This forms an ideal basis for further development steps towards edge computing and on-
board Al detection. Furthermore, the ROS framework is easily adoptable and expandable
in terms of how to integrate new sensors.

We use the ROS Wrapper for Intel RealSense Devices [45], which is provided and
maintained by Intel for the RealSense camera control. For hardware-based device triggering,
we use our self-developed ROS trigger node.
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3.2.4. Data Acquisition and Georeferencing

Generally, an MM campaign using GNSS/INS-based direct georeferencing starts and
ends with the system initialization. The initialization process determines initial position,
speed, and rotation values for the Kalman filter used for the state estimation, whereby the
azimuth component between the local body frame and the global navigation coordinate
frame is the most critical component. The initialization requires a dynamic phase, which
from experience requires about three minutes with good GNSS coverage. The initialization
procedure at the beginning and at the end of a campaign enables combined forward as well
as backward trajectory post-processing, thus ensuring an optimal trajectory estimation.

During the campaign, the computer triggers both RealSense RGB-D cameras as well
as the navigation unit with 5 fps. The navigation unit generates precise timestamps of the
camera triggering and continuously registers GNSS and IMU raw data on a local SD card.
At the same time, the computer receives both RGB and depth image raw data, which are
stored in a so-called ROS bag file on an external solid-state drive (SSD).

A first post-processing workflow converts the image raw data into RGB-D images
and performs a combined tightly coupled forward and backward GNSS and IMU sensor
data fusion and trajectory processing in Waypoint Inertial Explorer [46]. By interpolating
the precise trigger timestamps, each RGB-D image finally receives an associated directly
georeferenced pose.

3.3. Data Pre-Processing
3.3.1. Data Anonymization

Anonymization of the image data was a critical issue for the City of Basel as a project
partner. Therefore, the anonymization workflow was developed in close cooperation
with the state data protection officer and verified by the same at the end. The open-
source software “Anonymizer” [47] is used to anonymize personal image data in the street
environment. The anonymization process of images is divided into two steps. First, faces
and vehicle license plates are detected in the input images by a neural network pre-trained
on a non-open dataset [47]. In the second step, the detected objects are blurred by a
Gaussian filter and an anonymized version of the input image is saved. In “Anonymizer”,
both the probability scores of the detected objects and the intensity of the blurring can be
chosen. The parameters used were selected empirically, whereby a good compromise had
to be found between reliable anonymization and as few unnecessarily obscured areas in
the images as possible.

3.3.2. Conversion of Depth Maps to Point Clouds

All vehicle detection algorithms tested and used in this project require point clouds
as input data. As point clouds are not directly stored in our system configuration, an
additional pre-processing step is necessary. In this step, the point clouds are computed
using the geometric relationships between camera geometry and depth maps. The resulting
point clouds are cropped to a range of 0.4-8 m, because noise increases strongly beyond this
range (see experiments and results in Section 4.3) and are saved as binary files. Figure 3
shows three typical urban scenes with parked cars in the top row, the corresponding depth
maps in the middle row, and perspective views of the resulting point clouds in the bottom
row. The depth maps in the middle row show some significant data gaps, especially in areas
with very high reflectance, which are typical for shiny car bodies (in particular, Figure 3e).
The bottom row illustrates the relatively high noise level in the point clouds, which results
from the low-cost 3D cameras.
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Figure 3. Three different parked cars: (a—c) show the RGB images, (d-f) depict the associated depth maps, and (g-i)

represent the processed point clouds. The point clouds were colored in this visualization for better understanding of the

scene. However, the data pre-processing does not include coloring of the point clouds.

3.4. 3D Vehicle Detection and Mapping
3.4.1. Al-Based 3D Detection

The detection of other road users and vehicles in traffic is an important aspect in the
field of autonomous driving. To solve the problem of accurate and reliable 3D vehicle
detections, there are a variety of approaches. A good overview of the available approaches
and their performance is provided by the leaderboard of the KITTI 3D object detection
benchmark [33]. Because the best approaches on the leaderboard are all based on point
clouds, only those were considered in this project. At the time of the investigations, the best
approach was PV-RCNN [32]. In the freely available open-source project OpenPCDet [48],
besides the official implementation of PV-RCNN, other point cloud-based approaches for
3D object detection are provided. These are:

PointPillars [49]

SECOND [50]

PointRCNN [31]

Part-A2 net [51]

PV-RCNN [32].

All the approaches listed above were trained using the point clouds from the KITTI 3D
object detection benchmark [52]. It should be noted that only point clouds of the classes car,
pedestrian, and cyclist were used for the training. The KITTI point clouds were acquired
with a high-end Velodyne HDL-64E LiDAR scanner mounted on a car about 1.8 m above
the ground [52]. Figure 4 shows a comparison between the point clouds provided in the
KITTI benchmark and our own point clouds acquired with the RealSense D455. The KITTI
point clouds are sparse, and the edges of the vehicles are clearly visible (Figure 4a). By
contrast, our point clouds are much denser, but edges cannot really be detected (Figure 4b).
In addition, our point clouds also have significantly higher noise. This can be seen very
well on surfaces that should be even, such as the road surface or the sides of the vehicle.
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(a) - (b)

Figure 4. Comparison of point clouds. (a) Point cloud acquired with Velodyne HDL-64E LiDAR
scanner provided in KITTI benchmark [52]. (b) Point cloud obtained from RealSense D455 (own data).

Due to the higher noise in our own point clouds and the lower mounting of the
sensor by about half a meter compared with the KITTI benchmark, the question arose as
to whether the models pre-trained with the KITTI datasets could be successfully applied
to our data. For this purpose, all approaches provided in OpenPCDet were evaluated
in a small test area with 32 parked cars and 2 parked vans (Figure 5). PointRCNN [31]
detected 32 out of 34 vehicles correctly and did not provide any false detections. In contrast,
all other approaches could only detect very few vehicles correctly (13 or less out of 34).
Based on these results, we decided to use the method PointRCNN for 3D vehicle detection,
which consists of two stages. In stage 1, 3D proposals are generated directly from the raw
point cloud in a bottom-up manner via segmenting the point cloud of the whole scene into
foreground points and background. In the second stage, the proposals are refined in the
canonical coordinates to obtain the final detection results [31].

Figure 5. Test site to evaluate the approaches provided in OpenPCDet on our own data. The test road leads through a
residential neighborhood in the city of Basel with parking spaces on the left and right side. (a) Aerial image of the test road;
(b) map with the parking spaces (blue) (data source: Geodaten Kanton Basel-Stadt).

Parking space management in geographic information systems (GIS) relies on two-
dimensional data in a geodetic reference frame, further referred to as world coordinates.
Therefore, the detected 3D bounding boxes must be transformed from local sensor co-
ordinates to world coordinates, converted into 2D bounding boxes, and exported in an
appropriate format. For this purpose, the OpenPCDet software has been extended to
include these aspects. The transformation to world coordinates is performed by applying
the sensor poses from direct georeferencing as transformation. The conversion from 3D to
2D bounding boxes is done by projecting the base plane of the 3D bounding box onto the
xy-plane by omitting the z coordinates. The resulting 2D bounding boxes as well as the
associated class labels and the probability scores of the detected vehicles are exported in
GeoJSON format [53] for further processing. The availability of co-registered RGB imagery
and depth data resulting from the use of RGB-D sensors has several advantages: it allows
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the visual verification of the detection results in the imagery, e.g., as part of the feedback
loop of a future production system. The co-registered imagery could also be used to

facilitate future retraining of existing vehicle classes or for the training of new, currently
unsupported vehicle classes.

3.4.2. GIS Analysis

Following the object detection, we currently employ a GIS analysis in QGIS [54] to
obtain the number of parked vehicles from the detection results. Since the vehicle detection
algorithm returns all detection results, the highly redundant 2D bounding boxes must
first be filtered based on their probability scores. For the parking statistics, we only use
detected vehicles with a score greater than 0.9 (90% probability). For each vehicle, several
2D-bounding boxes remain after filtering (Figure 6); hence, we perform clustering.

(b)

Figure 6. Result of the vehicle detection algorithm (a) and filtered result according to the probability score (b) (data source
for background map: Geodaten Kanton Basel-Stadt).

First, each of the filtered 2D bounding boxes is assigned a unique ID and its centroid
is calculated. Then the centroids are clustered using the density-based DBSCAN algo-
rithm [55]. Each centroid point is checked as to whether it has a minimum number of
neighboring points (minPts) within a radius (¢). Based on this classification, the clusters
are formed. The parameters ¢ and minPts were chosen as 0.5 m and 3, respectively. The
bounding boxes are linked to the DBSCAN classes, a minimal bounding box is determined
for each cluster class, and the centroid of the new bounding box is calculated. To obtain the
number of parked vehicles, the points (centroids of minimal bounding boxes of clusters)
within the parking polygons are counted (Figure 7). In combination with the known num-

ber of parking spaces per polygon, it is straightforward to create statistics on the occupancy
of parking spaces.

=
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©
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Figure 7. Result of the GIS analysis. Centroids of the clustered and filtered vehicle detections (red

dots) plotted with the parking spaces (blue areas) (data source for background map: Geodaten
Kanton Basel-Stadt).
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Since we count the centroids of clustered vehicle detections within the parking spaces,
moving vehicles on the streets do not influence the result. Hence, we do not need to perform
a removal of moving vehicles, such as in Bock et al. [4]. Furthermore, we assume that while
the parked cars are recorded, they are static. Among other things, this assumption can also
be made because the passing MM vehicle prevents other vehicles from leaving or entering
parking spaces during capturing.

4. Experiments and Results

Our proposed low-cost MMS and object detection approach consists of three main
components determining the capabilities and performance of the overall system: the low-
cost navigation unit, the low-cost 3D cameras, and the Al-based object detection algorithms.
This section contains a short introduction to the study areas and the test data (Figure 8),
followed by a description of the three main experiments aimed at evaluating the main
components and the overall system performance:

Georeferencing investigations in demanding urban environments

3D camera performance evaluation in indoor and outdoor settings

Al-based 3D vehicle detection experiments in a representative urban environment

with different parking types.

N AL N

A A

0 250 500 750 1000 m 0 250 500 750 1000 m
I L ] I T ]
(a) (b)

Figure 8. Maps showing the mobile measurement campaigns conducted in the area of Basel, Switzer-
land: (a) Basel city, 11 December 2020, (b) Muttenz, 3 April 2021. Background map: © OpenStreetMap
contributors.

4.1. Study Areas and Data

Our proposed system was evaluated using datasets from two mobile mapping cam-
paigns in demanding urban and suburban environments (see Figure 8 and Table 2). The
test areas are representative of typical European cities and suburbs in terms of building
heights, streets widths, vegetation/trees, and a variety of on-street parking types.
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Table 2. Overview of two mobile mapping campaigns with their main purpose, characteristics, and the resulting datasets.

Test Campaign Characteristics

Basel City

Muttenz

Main purpose

Evaluation of 3D vehicle detection for
different on-street parking types

Georeferencing investigations with parallel
operation of the low-cost MMS and a high-end
reference MMS

Payload /Sensors

Front: Low-cost MM payload with single
RealSense D455

Front: Low-cost MM payload with dual
RealSense D455
Back: High-end BIMAGE Backpack as a
reference system (for configuration, see
Figure 2a)

Characteristics of test area

Residential district, west of the city center
of Basel; roads often lined by multi-story
buildings and trees; route mostly flat,
selected to encompass a large variety of

Suburban town located southeast of Basel;
route passing shopping district and historical
center; route partially lined by large trees;
partially steep roads and large

parking slot types elevation differences
Acquisition date 11 December 2020 3 April 2021
Trajectory length 9.7 km 3.4 km
Average acquisition speed 9km/h 10 km/h
GNSS epochs ~3500 ~3500
Image capturing frame rates 5 fps (D455) 5 fps (D455)/1 fps (BIMAGE)
Number of RGB-D images 22,382 5443

Investigated On-Street Parking Types

Four different types of parking slots that can be found along the campaign route

“Basel city” were included, as depicted in Figure 8a: parallel, perpendicular, angle, and
2 x 2 block parking. This allowed us to develop and test a workflow capable of handling
each type. With each parking type also comes a unique set of challenges to accurately detect
parked vehicles. In the case of several densely perpendicularly parked vehicles (Figure 9b),
only a small section of the vehicle facing the road is seen by the cameras. Similarly, with
angled parking spaces such as that shown in Figure 9¢, a large car (e.g., minivan or SUV)
can obstruct the view of a considerably smaller vehicle parked in the following space,
leading to fewer or no detections. Lastly, one of the residential roads contains a rather
unique parking slot type: an arrangement of 2 x 2 parking spaces on one side of the road
(Figure 9d). The main challenge with this type of on-street parking is to be able to correctly
identify a vehicle parked in the second, more distant row when all four spaces are occupied.

il

(a) (b)
(0) (d)

Figure 9. Types of parking slots encountered in the city of Basel. (a) (Slotted) parallel parking;
(b) perpendicular parking; (c) angle parking; (d) 2 x 2 parking slot clusters.
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4.2. Georeferencing Investigations

As outlined in Section 3.2.2., a high-end backpack MMS (Figure 2a, II) was installed
on the tricycle, serving as a kinematic reference for the low-cost MM payload. In this case,
the investigated low-cost system was mounted on the front payload rack of the vehicle and
the high-end reference system at the back, resulting in a fixed lever-arm between the two
positioning systems. Both systems have independent GNSS and IMU-based navigation
sensors. While the sensors of the low-cost MM sensor configuration fall into the consumer
grade category, the backpack MMS navigation sensors have tactical grade performance.
Since both navigation systems are precisely synchronized using the GNSS time, poses of
both systems are accurately time-stamped. Thus, poses from both processed trajectories can
be compared, e.g., to estimate the lever arm between both navigation coordinate frames.

-1
"Ty, = ("T,)  +°T,, §

Equation (1) describes the lever arm estimation using transformation matrices for
homogeneous coordinates. Here, we consider the poses of the navigation systems as
transformations from the respective body frame b to the global navigation coordinate frame
w. By concatenating the inverse navigation sensor pose of the reference system (backpack
MMS) “T, ~with the navigation sensor pose of the low-cost MMS “T, , we obtain the

transformation T, from the body frame of the low-cost navigation system b;. to the body
frame of the reference (backpack MMS) navigation system b,, from which we extract the
lever arm.

To investigate the magnitudes of the position deviations along-track and cross-track,
we subtracted the mean lever arm from all estimated lever arm estimations for each acqui-
sition period. Since the georeferencing performance of the high-end BIMAGE backpack—
serving as a reference—has been well researched [42,43], we can safely assume that position
deviations can be primarily attributed to the investigated low-cost system.

For further 3D vehicle detection and subsequent GIS analysis, an accurate 2D position
is crucial. By contrast, the accuracy of the absolute height is negligible due to the back
projection onto the 2D xy-plane for the GIS analysis. Therefore, we considered the 2D
position and the height separately in the following investigations.

We investigated two different acquisition periods from our dataset from the test site
in Muttenz, and we used one pose per second for our examinations. The first “static”
period was shortly before moving into the town center, when the system had already
initialized but was motionless for 270 s and had good GNSS coverage. By contrast, the
second “dynamic” period was from the data acquisition in the village center during 1240 s
with various qualities of GNSS reception. For both datasets, we evaluated (a) the intrinsic
accuracy provided by the trajectory processing software and (b) the absolute position
accuracy, using the high-end system with its estimated pose and the mean lever arm as
a reference.

The investigations yielded the following results: In the “static” dataset, the mean
intrinsic standard deviation of the estimated 2D positions was 0.6 cm for the reference
system and 5.1 cm for the low-cost MM sensor components, respectively. In the “dynamic”
dataset, the mean intrinsic standard deviation of the 2D positions was 1.1 cm for the refer-
ence system and 10.5 cm for the low-cost MM sensor components, respectively. Regarding
the intrinsic standard deviation of the altitudes, they amount to 0.7 cm for the reference
system and 7.0 cm for the low-cost MM sensor configuration for the “static” dataset. For
the “dynamic” dataset, they amount to 1.1 cm for the reference system and 18.0 cm for the
low-cost MM sensor configuration.

The investigations of the absolute coordinate deviations between both trajectories
resulted in a mean 2D deviation of 8.3 cm in the “static” dataset and 36.4 cm in the
“dynamic dataset”. The mean height deviation amounted to 9.8 cm in the “static” dataset
and 90.9 cm in the “dynamic” dataset. The kinematic 2D deviations in the order of 1 m
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coordinate deviation [m]

0

are somewhat larger than the direct georeferencing accuracies of high-end GNSS/IMU
systems in challenging urban areas [56].

However, while the coordinate deviations in the “static” dataset remain in a range of
approx. 10 cm during the entire period (Figure 10a), they vary strongly in the “dynamic”
dataset with 2D position deviation peaks in excess of 100 cm (Figure 10b).
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Figure 10. Coordinate deviations between the low-cost data capturing system and the BIMAGE backpack reference systems

as a function of time in GNSS Seconds of Week (SOW). Two time periods with different conditions were investigated:

(a) static data recording with good GNSS reception; (b) dynamic data recording with different GNSS coverage.

Furthermore, we investigated the environmental conditions of some peaks in Figure 10b
to identify possible causes. At second 377,212, only five GNSS satellites were observed, while
a building in the southerly direction covers the GNSS reception at second 377,436. At second
377,613, the GNSS reception was affected by dense trees in the easterly direction and at second
377,832 by a church in the south. At second 377,877, a complete loss of satellites occurred, and
finally at second 378,218, a tall building in the south interfered with satellite reception.

4.3. 3D Camera Performance Evaluation

In earlier investigations by Frey [57], different RealSense 3D camera types, including
the solid-state LIDAR model L515 and the active stereo-based models D435 and D455, were
compared in indoor and outdoor environments. All 3D cameras performed reasonably well
in indoor environments. However, in outdoor environments and under typical daylight
conditions, the maximum range of the L515 LiDAR sensor was limited to 1-2 m and that of
the D435 to 2-3 m. The latest model D455, however, showed a clearly superior performance
in outdoor environments with maximum ranges of more than 5-7 m [57]. Based on
these earlier trials, the D455 was chosen for this project and subsequently evaluated in
more detail.

4.3.1. Distance-Dependent Depth Estimation

In a first series of experiments, we evaluated bias and precision of the depth measure-
ments with the Intel RealSense D455 in a controlled indoor environment. The evaluation
was conducted in line with the methodology and metrics proposed by Helmetschlager-
Funek et al. [25]. We examined three units (cam1, cam2, and cam3). The experimental
setup consisted of a fixed 3D camera and a reference plane oriented orthogonally to the
main viewing direction (Figure 11a,b). This plane was re-positioned in one-meter intervals
at measuring distances from 1 to 12 m, leading to a total of 12 evaluated distances. At
each interval, 100 frames were captured to obtain a sufficiently large number of measuring
samples. Ground-truth measurements were obtained with a measuring tape with an accu-
racy of approx. 1 cm. The analyses were performed on a 20 x 20 pixel window, and we
calculated the average difference to the reference distance (bias) and the precision (standard
deviation) over the 100 frames per position.
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Figure 11. Indoor experimental setup for the performance evaluation of depth measurements: (a) illus-
tration of the experimental concept; (b) practical setup for the evaluation of the left-facing 3D camera.

()

Table 3 shows the resulting bias and precision values of the three camera units
(cam 1-3) at selected distances of 4 m and 8 m. According to the manufacturer speci-
fications, the D455 should have a depth accuracy (bias) of <2% and a standard deviation
(precision) of <2% for ranges up to 4 m. In our experiments, only cam 2 showed a bias well
within the specifications, while the bias of cam 3 was more than double the expected value.

Table 3. Bias and precision values of depth measurements at 4 m and 8 m with three different
RealsSense D455 units with respective colors as shown in Figure 12. Percentage values show the

respective metric bias and precision values in relation to the respective range.

Cam 1 (Blue) Cam 2 (Red) Cam 3 (Black)
Bias Precision Bias Precision Bias Precision
im —11cm 5.7 cm —1cm 5.6 cm 17 cm 8.0 cm
(2.8%) (1.4%) (0.3%) (1.4%) (4.3%) (2.0%)
8m —27 cm 26.8 cm 0cm 27.2 cm 106 cm 9.4 cm
(3.4%) (3.4%) (0.0%) (3.4%) (13.3%) (1.2%)
2.0 109 -—- cam1 4
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Figure 12. Performance evaluation of depth measurements by three different D455 units (cam 1-3): (a) bias in relation to

measuring distance; (b) precision in relation to measuring distance.
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Figure 12a,b show the bias and precision values for all the evaluated measuring
distances from 1 to 12 m. Bias and precision show a roughly linear behavior for distances
up to 4 (to max. 6 m). For longer ranges, all cameras exhibited a non-linear distance-
dependent bias and precision—except cam 3 with an exceptional, nearly constant value for
precision. The exponential behavior of the precision can be expected from a stereo system
with a small baseline of only 95 mm and a very small b/h ratio for longer measuring
distances. The large bias of cam 3 over 4 m and the exponential behavior of its distance-
dependent bias values indicate a calibration problem.

4.3.2. Influence of Lighting Conditions on Outdoor Measurements

Outdoor environments pose several challenges for (3D) cameras, including large
variations in lighting conditions and in the radiometric properties of objects to be mapped.
The main question of interest was whether the D455 cameras could be operated in full
daylight, at dusk, or even at night with only artificial street lighting available. For this
purpose, we investigated the influence of lighting conditions on the camera performance.

In this experiment, cam 3 was placed in front of a staircase in the park of the FHNW
Campus in Muttenz (Figure 13). Selected steps of the stair featured targets so that three
different distances (3.81 m, 5.13 m, 6.09 m) could be evaluated. Additionally, a luxmeter was
used for measuring light intensity and a tachymeter for reference distance measurements.
The experiment was performed in full daylight on a sunny day with a maximum light
intensity of 1770 lux and during sunset until dusk with a minimal intensity of only 2 lux.
For comparison, typical indoor office lighting has an intensity of approx. 500 lux.

35m-55m

D455

(a)

Figure 13. Outdoor experimental setup for the performance evaluation of depth measurements under
different lighting conditions: (a) schematic view of the experiment; (b) illustration of the outdoor
test field.

Data capturing and analysis were carried out in analogy to the indoor experiments
outlined above, but this time with the capture of 100 frames per lighting condition and with
the evaluation of 20 x 20 pixel windows. Bias values for the three targets were derived by
comparing the observed average distance with the respective reference distance.

The results for bias and precision under different lighting conditions are shown in
Figure 14a,b. It can be seen in Figure 14a that the bias values for cam 3 exhibit the same
distance-based scale effect as already shown in the indoor tests above. Bias and precision
values proved to be relatively stable under medium light intensities between 330 and
1000 lux. Slight increases in bias can be observed in very dark and very bright conditions—
with a sharp increase for the target at 6.09 m under 1750 lux, for which we currently have
no plausible explanation. The highest bias of 0.95 m is with 2 lux at a distance of 6.09 m.
This corresponds to the end of the sunset in almost complete darkness. The precision
values for the two shorter distances were very stable and consistently below 10 cm, varying
only by £2.4 cm across all investigated illuminations. So, rather surprisingly, lighting
conditions seem to have no significant influence on measuring precision. The larger values
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and variations in precision at a distance of 6.09 m are likely caused by the fact that this
target was brown while the others were white.
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Figure 14. Performance evaluation of depth measurements by D455 (Cam 3): (a) bias and (b) precision in relation to the
three measuring distances (light, middle, and dark blue values) and lighting intensity.

4.4. Al-Based 3D Vehicle Detection

To evaluate the Al-based 3D vehicle detection algorithm used, images of seven streets
in the test area Basel were processed according to the workflow described in Section 3.4. The
streets were selected so that all parking types were represented. However, since the types
of parking spaces occur with different frequencies, their number in the evaluation varies
greatly. In total, the selected test streets include 350 parking spaces, of which 283 were
occupied. The vehicle detections were manually counted and verified.

Initial investigations using the point cloud-based PointRCNN 3D object detector as
part of OpenPCDet yielded a recall of 0.87, whereby no tall vehicles such as family vans,
camper vans, or delivery vans were detected. Further investigations revealed that the
pre-trained networks provided in OpenPCDet can only detect the classes car, pedestrian,
and cyclist and do not yet include classes such as van, truck, or bus. In order to correctly
assess the detection capabilities for a vehicle class with existing training data, subsequently
only the class “car” representing standard cars (including hatchbacks, sedans, station
wagons, etc.) was considered. Thus, all 37 tall vehicles were removed from the dataset. For
the evaluation, a total of 313 parking spaces were considered, 246 of which were occupied
by cars. Our 3D detection approach achieved an average precision of 1.0 (100%) and an
average recall of 0.97 (97%) for all parking types (Table 4). Parallel parking showed the best
detection rate with a recall of 1.0, followed by angle parking with 0.96 and perpendicular
parking with 0.94. Cars parked in 2 x 2 parking slots were significantly harder to detect,
resulting in a recall of only 0.50. However, the sample for this type is too small for a
statistically sound evaluation.

Table 4. Al-based detection results for cars, broken down by type of parking space.

Parallel Perpendicular Angle 2x2 Overall
True positive 163 49 24 3 239
True negative 36 26 4 1 67
False positive 0 0 0 0 0
False negative 0 3 1 3 7
Precision 1.00 1.00 1.00 1.00 1.00
Recall 1.00 0.94 0.96 0.50 0.97
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5. Discussion
5.1. Georeferencing Investigations

Creating valid on-street parking statistics requires absolute object localization accu-
racies roughly at the meter level if the occupation of individual parking slots is to be
correctly determined. As shown in several studies [42,56], georeferencing in urban areas
is very challenging, even with high-end MMS. In our georeferencing investigations, we
equipped our electrical tricycle with our low-cost mobile mapping payload and with the
well-researched high-performance BIMAGE backpack as the second payload, which subse-
quently served as a reference for static and kinematic experiments. By estimating a lever
arm between both systems for each measurement epoch and comparing these estimates
with the lever arm fixed to the MMS body frame, the georeferencing performance could
successfully be evaluated. The direct georeferencing comparisons yielded a good average
2D deviation between the low-cost and the reference system for the static case of approx.
10 cm. The kinematic tests resulted in an average 2D deviation of 0.9 m, however with
peaks of more than 1 m. These peaks can be attributed to locations with extended GNSS
signal obstructions caused by buildings or large trees. The georeferencing tests showed
that the current low-cost system fulfills the sub-meter accuracy requirements in areas with
few to no GNSS obstructions. However, in demanding urban environments it does not yet
fulfill these strict requirements, mainly due to its low-quality IMU, and complementary
positioning strategies will likely be required. Future research could include the evaluation
of higher-grade and possibly redundant low-cost IMUs, and the development of novel map
matching approaches offered by 3D cameras. However, the current system shortcomings
only limit the absolute localization and automated mapping capabilities of the system; they
do not affect the 3D vehicle detection performance and the object clustering, which mainly
rely on relative accuracies.

5.2. 3D Camera Performance

In our experiments, we investigated the depth accuracy and precision of RealSense
D455 low-cost 3D cameras. In a previous evaluation, this camera type had proven to
be the first 3D camera suitable for outdoor applications supporting measuring ranges
beyond 4 m. In a first experiment, we investigated three units for depth accuracy (bias)
and depth precision (standard deviation) at different measuring distances, ranging from
1 to 12 m. Two of the three units exhibited a depth accuracy and a depth precision with
a significant non-linear dependency on measuring range, which confirmed the findings
of Halmetschlager et al. [25]. The manufacturer specification [40] of <2% accuracy for
ranges up to 4 m was only met by one unit. The specification of <2% precision was met by
all units. The investigations showed that 3D cameras should be tested—and if necessary
re-calibrated—if they are to be used for long-range measurements. By limiting the depth
measurements to a max. range of 8 m, we limited the localization error contribution of the
depth bias to max. 0.3-0.4 m. The second experiment demonstrated that ambient lighting
conditions have no significant effect on the depth bias and precision of the RealSense D455—
with only a minor degradation in very dark and very bright conditions. This robustness
towards different lighting conditions and the capability to reliably operate in very dark
and very bright environments is an important factor for our application.

5.3. 3D Object Detection Evaluation

In the last experiment, we addressed the challenge of reliably detecting and localizing
vehicles in the point clouds derived from the low-cost 3D cameras, which are significantly
noisier and have more data gaps than LiDAR-based point clouds. In an evaluation of five
candidate 3D object detection algorithms, PointRCNN clearly outperformed all the others.
On our dataset in the city of Basel with four different parking types (parallel, perpendicular,
angle, and 2 x 2 blocks) and a total of 313 parking spaces, we obtained an average precision
of 100% and an initial average recall of 97%. These detection results apply for the class
“car”, representing typical standard cars such as sedans, hatchbacks, etc. It should be
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noted that our current detection framework has not yet been trained for other vehicle
classes such as vans, buses, or trucks. Consequently, tall vehicles such as family or delivery
vans are not yet detected. For the supported class of cars, our approach outperformed the
other approaches (Mathur et al. [3], Bock et al. [4], Grassi et al. [11], and Fetscher [5]) in
precision and was equal or better for recall. When broken down by the type of parking
space, all cars in parallel parking spaces were detected with slightly inferior performance
for angle and perpendicular parking (see Table 4). In conclusion, PointRCNN, which was
originally developed for and trained with point clouds from high-end LiDAR data, can
be successfully applied to depth data from low-cost RGB-D cameras. Ongoing and future
research includes the training of PointRCNN for additional vehicle classes, in particular
“vans”, which according to our preliminary investigations account for about 10% of the
vehicles in the test area. The intention is to use the labeled object classes from the KITTI 3D
Object detection benchmark [33] and to complement the training data with RGB-D data
from mobile mapping missions with our own system.

5.4. Overall Capabilities and Performance

Table 5 shows a comparison of our method with the state-of-the-art methods intro-
duced in Section 2. It shows that our low-cost system has the potential for the necessary
revisit frequencies, e.g., for temporal parking analyses over the course of the day. The
comparison also shows that only our approach and the one by Fetscher [5] support the
three main parking types of parallel, angle, and perpendicular parking. However, the latter
method by Fetscher is not suitable for practical statistics due to its reliance on street-level
imagery. One of the advantages of our approach is the availability of the complementary
nature of the co-registered RGB imagery and depth data from the 3D cameras. This not
only allows for the visual inspection of the detection results, but it will also facilitate
future retraining of existing vehicle classes or the training of new, currently unsupported
vehicle classes in 3D object detection, e.g., by exploiting labels from 2D object detection
and segmentation [13].

Table 5. Comparison of our method with the main methods for deriving on-street parking statistics from mobile sensors.

Mathur et al. [3] Bock et al. [4] Grassi et al. [11] Fetscher [5] Ours
Maopi latf. Probe vehicles High-end Vehicle High-end multi-view Electric Tricvel
apping platiorm (e.g., taxis) MLS vehicle (dashboard-mounted) stereo MMS ectric meycle
Mapping sensors/ Ultrasonic range Dual LiDAR/3D Smartphone ng?a_z?eci;:?reo LOC‘ZI_;Z:;;D
mapping data finder/range profiles point clouds camera/2D imagery RGB-D imagery RGB-D imagery
Revisit frequency potentially high on-demand potentially high low potentially high
Supported parking parallel parallel, angle, parallel, angle,
parallel only . parallel only perpendicular, perpendicular,
types perpendicular
2 x 2 clusters 2 x 2 clusters
. object segmentation . . Al-based 3D object
. gaps (in range e image-based car corner detection or .
Detection type rofiles) and classification detection Justerin detection
F (RF) & (PointRCNN)
Sample size (# of 57 717 8176 184 313
slots or vehicles)
. o Recall 93.7% o o Recall 97%
Detection accuracy ~90% (of free spaces) Precision 97 4% ~90% 97.0-98.3% Precision 100%

6. Conclusions and Future Work

In this article, we introduced a novel system and approach for creating on-street
parking statistics by combining a low-cost mobile mapping payload featuring RGB-D
cameras with Al-based 3D vehicle detection algorithms. The new payload integrates two
active stereo RGB-D consumer cameras of the latest generation, an entry-level GNSS/INS
positioning system, and an embedded single-board computer using the Robot Operating
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System (ROS). Following direct georeferencing and anonymization steps, the RGB-D
imagery is converted to 3D point clouds. These are subsequently used by PointRCNN
for detecting vehicle location, size, and orientation—subsequently represented by 3D
bounding boxes. These vehicle detection candidates and their scores are subsequently used
for a GIS-based creation of parking statistics. The new automated mobile mapping and
3D vehicle detection approach yielded a precision of 100% and an average recall of 97%
for cars and can support all common parking types, including perpendicular and angle
parking. To our knowledge, this is one of the first studies successfully using low-cost 3D
cameras for kinematic mapping purposes in an outdoor environment.

In our study, we investigated several critical components of a mobile mapping so-
lution for automatically detecting parked cars and creating parking statistics, namely,
georeferencing accuracy, 3D camera performance, and Al-based vehicle detection.

The methods and results described in this paper leave room for further improvement.
One of the first goals is the training of the PointRCNN detector to allow the detection of
tall vehicles and vans. For this purpose, a reasonably large training and validation dataset
will be collected in further mobile mapping missions. Another goal is to employ edge
computing for onboard 3D object detection. This would eliminate the current need for
massive onboard data storage performance and capacity, would avoid privacy issues, and
would dramatically reduce the post-processing time. Finally, we will investigate novel map
matching strategies, which will be offered by the RGB-D data and which will avoid some
of the current difficulties with direct georeferencing.
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