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Abstract: In this study, building extraction in aerial images was performed using csAG-HRNet by
applying HRNet-v2 in combination with channel and spatial attention gates. HRNet-v2 consists
of transition and fusion processes based on subnetworks according to various resolutions. The
channel and spatial attention gates were applied in the network to efficiently learn important features.
A channel attention gate assigns weights in accordance with the importance of each channel, and
a spatial attention gate assigns weights in accordance with the importance of each pixel position
for the entire channel. In csAG-HRNet, csAG modules consisting of a channel attention gate and a
spatial attention gate were applied to each subnetwork of stage and fusion modules in the HRNet-v2
network. In experiments using two datasets, it was confirmed that csAG-HRNet could minimize
false detections based on the shapes of large buildings and small nonbuilding objects compared to
existing deep learning models.

Keywords: deep learning; building extraction; attention gate

1. Introduction

Building extraction has been studied for a long time as a major topic in the utilization
of high-resolution images. Building information from high-resolution aerial images is used
for urban policy planning, regional management, and disaster analysis [1]. In recent years,
many deep learning networks have been studied along with improvements in graphics
processing unit (GPU) performance and the emergence of a large number of public datasets
for training deep learning models. With the development of the fully convolutional network
(FCN) architecture, deep learning algorithms have been adopted for various applications
in the computer vision field, such as medical care, autonomous driving, remote sensing,
and security. In particular, in the field of remote sensing, applications such as object
detection, cloud detection, pansharpening, change detection, superresolution, land cover
classification, and feature extraction are being studied [2–7]. Image segmentation extracts
meaningful information from an image pixel by pixel, and image segmentation capabilities
have been confirmed using various deep learning architectures, such as FCN [8], SegNet [9],
and U-Net [10]. Building on this, many related studies are being conducted. An FCN-
based model that can restore the original resolution of an input image can be obtained
by replacing the fully connected layer in the existing network with an upsampling layer.
SegNet uses 13 layers of VGG-16 [11] as an encoder network and uses an upsampling
architecture such as FCN as a decoder network with additional pooling indices. U-Net
consists of a contracting path to obtain context using convolutional and pooling layers and
an expanding path for accurate localization of features. In addition, it uses the concept of
skip connections [12] to concatenate the feature maps of deep layers with those of shallow
layers. DeepLab-v3+ [13] was proposed based on the use of atrous separable convolution,
which is a combination of depthwise separable convolution and atrous convolution. A
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fully convolutional densely connected convolutional network (FC-DenseNet) has been
applied for segmentation based on the DenseNet [14] structure, using the entire feature
map from the previous layer [15].

Recently, various deep learning architectures based on the addition of self-attention
gates have been proposed to improve the performance of networks on computer vision
tasks such as classification, object detection, and segmentation [16–18]. Wang et al. [16] pro-
posed a residual attention network for obtaining attention-aware features by stacking the
proposed network in multiple layers. Lim et al. [17] proposed object detection algorithms
with an attention mechanism to focus on the objects in an image while including contextual
information from the target layer. Fu et al. [18] proposed a dual attention network (DANet)
by appending two types of attention modules corresponding to the spatial and channel
dimensions on top of a dilated FCN.

The traditional method for extracting buildings in image processing is to apply spatial
and texture filters in order to directly extract various features, such as color [19], texture [20],
shape [21], edge [22], and shadow [23] features. However, the accuracy of traditional image
processing depends on the image quality and characteristics, such as the level of illumi-
nation, the shapes of buildings, and textures. In recent years, various building extraction
techniques using deep learning have been studied. In DR-Net, a densely connected convo-
lutional neural network (DCNN) and a ResNet structure based on a DeepLab-v3+ network
are combined to mix features with high spatial resolution in the decoder module to compen-
sate for the loss of detailed regional information of building boundaries due to the stride of
the convolution operation [24]. Wagner et al. [25] proposed the U-Net-Id structure, which
includes three parallel paths corresponding to three adjacent networks with individual
U-Net structures by using three labeled masks consisting of a building mask, a border
mask, and an inner segmentation mask. Ma et al. [26] developed a global and multiscale
encoder-decoder network to learn global and regional features for explaining the shapes
of buildings and learning multisize information. Guo et al. [27] proposed a multiloss
neural network based on U-Net to improve the model sensitivity by means of an attention
block and suppressing the background influence of irrelevant feature areas. In addition,
this model was trained with multiple losses, including a cross-entropy loss, a Dice loss,
a pixel-based loss and a Jaccard loss. Shao et al. [28] proposed BRRNet, consisting of a
prediction module and a residual refinement module. The prediction module, based on an
encoder–decoder structure, uses an atrous convolution block to extract more global features
by increasing the receptive field during feature extraction. For the residual refinement
module, the output of the prediction module is used as an input to improve the accuracy of
building boundaries. Zhang et al. [29] proposed an improved boundary-aware perceptual
(BP) loss, which consists of a loss network and transfer loss functions. Yi et al. [30] proposed
DeepResUnet by changing the convolutional layers of the U-Net architecture to ResBlocks
with skip connections, thereby adopting the deep residual learning approach to facilitate
training in order to alleviate the degradation problem that often occurs in the model train-
ing process. Liu et al. [31] proposed De-Net, which consists of four modules, namely, an
inception-style downsampling module, an encoding module comprising six linear residual
blocks with a scaled exponential linear unit (SELU) activation function, a compression
module to reduce the number of feature channels, and a dense upsampling module that
enables the network to encode spatial information within the feature maps. Wang et al. [32]
proposed an efficient nonlocal residual U-shaped network (ENRU-Net) to overcome the
limitation on the performance improvement of building extraction due to a lack of global
contextual information and careless upsampling. Li et al. [33] confirmed the possibility
of building extraction using the SpaceNet building datasets and geographic information
system (GIS) data through modifications to U-Net. Zhang et al. [34] improved mask R-
CNN through the fusion of a CNN with an edge detection algorithm. Through the CNN,
approximate location and pixel classification are conducted, and then, semantic segmen-
tation is performed using the Sobel edge detection algorithm. Since many deep learning
models focus on increasing accuracy by means of an excessive number of parameters and
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complex structural design, they incur large computational costs and run at low speeds. To
solve these problems, various CNN-based architectures have been proposed. Liu et al. [35]
proposed ARC-Net, including residual blocks with asymmetric convolution (RBACs), to
reduce the computational cost and the model size. In addition, Jin et al. [36] studied a
boundary-aware refined network consisting of a gated-attention refined fusion unit, a
denser atrous spatial pyramid pooling module, and a boundary-aware loss to address the
challenge of unstable multisize sets due to insufficient combinations of multisize features
and a lack of segmentation boundaries. Wu et al. [37] proposed an improved anchor-free
instance segmentation method based on a center mask with spatial and channel attention-
guided mechanisms. Yang et al. [38] proposed a dense-attention network (DAN) by using
a lightweight DenseNet and a spatial attention fusion module. This network effectively ex-
ploits high-level feature information to suppress low-level features and noise. Ye et al. [39]
showed that the direct reuse of features through skip connections without processing can
cause performance degradation, and to solve this problem, RFU-Net with attention-based
reweighting was proposed. Deng et al. [40] proposed a model for progressively and effec-
tively extracting and restoring features by combining a stable encoder–decoder architecture
with a grid-based attention gate and an atrous pyramid pooling module. He et al. [41]
introduced spatial variation fusion (SVF) to establish interactions between the two tasks
of building extraction and boundary detection and strengthen the network by adopting
a convolutional block attention module (CBAM) during training on these two tasks si-
multaneously. Moreover, research using generative adversarial networks (GANs) has
also been developed. Sun et al. [42] proposed two adversarial networks that individually
generate background and target information to reduce the differences between classes in
order to maintain generality. Abdollahi et al. [43] improved model performance in the
presence of complex backgrounds and barriers through adversarial training methods using
bidirectional convolutional long short-term memory (BiConvLSTM) and SegNet models.

In state-of-the-art deep learning architectures for building extraction, various convolu-
tional layers have been used to optimize the model performance and extraction accuracy.
However, since the same objects with various shapes, textures, and sizes exist in high-
resolution satellite images, an optimized deep learning model that can be effectively applied
to the remote sensing field is needed. For example, some large buildings and building roofs
have colors similar to those of impervious areas, such as roads and asphalt. In addition,
during the training process, buildings larger than the image patch size may not be de-
tected properly. To solve these problems, we attempted to improve the model performance
by adding attention gates to HRNet-v2, which was a representative semantic segmenta-
tion technique. By adding channel-spatial attention gate (csAG) modules to individual
stages and modules of HRNet-v2, the detection accuracy for complex buildings and large
buildings with characteristics similar to those of surrounding areas was increased. This
manuscript is organized as follows: The proposed methodology is described in Section 2.
Section 3 presents the datasets used to train and test the deep learning network, the ex-
perimental evaluation metrics, and the experimental results. Finally, Section 4 presents a
discussion of the proposed model, and Section 5 presents a summary and conclusion.

2. Methodology

In this study, we modified the HRNet-v2 model by using csAG modules to improve
the accuracy of building extraction in very high resolution (VHR) imagery. Through the
addition of csAG modules in accordance with the network structure, the information of
each feature map was consolidated.

2.1. HRNet-v2

The HRNet-v2 model was developed to estimate human poses in high-resolution
images [44]. Most deep learning networks for semantic segmentation include a process of
spatial downsampling for the extraction of features from an image, followed by a restoration
process to recover the original spatial resolution [9–15]. In contrast, HRNet-v2 consists of
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subnetworks based on images decomposed into multiple spatial resolutions in parallel,
and the feature maps are constructed by repeatedly using modules to fuse the outputs
of the subnetworks [44,45]. As shown in Figure 1, HRNet-v2 is composed of transition
and fusion modules based on subnetworks formed of residual blocks. In the transition
process, to learn and extract more comprehensive features, a subnetwork in which the
number of channels is doubled but the resolution of the feature map is halved is added
on the basis of the subnetwork with the smallest spatial resolution. In each subnetwork, a
ResNet structure composed of a 3 × 3 convolutional layer, batch normalization, rectified
linear unit (ReLU) activation, and a skip connection is applied. A fusion module is then
applied to exchange the information among the multiresolution layers generated by the
transition module. The features of each subnetwork are fused by adjusting the spatial
resolution and the number of channels to those of the standard subnetwork [44]. Finally,
the multiresolution layers of the final fusion module are concatenated, and then the output
is determined by a convolutional layer.

Figure 1. Architecture of the HRNet-v2 model.

2.2. csAG Module

The structure of the csAG module is composed of a channel attention gate and a spatial
attention gate. Generally, attention gates generate a context vector that assigns weights to
the input data. Therefore, they highlight the features of interest and suppresses irrelevant
areas [11]. A channel attention gate selects a representative value for each channel using
global pooling and dense layers. In this manuscript, we modify the channel attention gate
proposed by Khanh et al. [46]. Figure 2 presents the structure of the channel attention gate
used in our algorithm. Through global max pooling and average pooling layers, input
with dimensions of H × W × C is reshaped to feature maps with dimensions of 1 × 1 × C
to aggregate the spatial information of the input. The average-pooled and max-pooled
features are condensed by a multilayer perceptron based on a reduction ratio r, and then
each feature map is merged using elementwise summation. Finally, the feature map of
the channel attention gate is determined using a multilayer perceptron and the sigmoid
function. Each value of the channel attention-gated layer represents the weight of a channel
for feature extraction. Meanwhile, a spatial attention gate selects representative values
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for all channels located in the corresponding pixel. As shown in Figure 3, through the
concatenation of feature maps from two pixelwise pooling and 1 × 1 convolutional layers,
input with dimensions of H × W × C is reshaped to a feature map with dimensions of
H × W × 3 to highlight the information-containing regions in the feature map. The final
output of the spatial attention-gated layer is generated by a 3 × 3 convolutional layer and
the sigmoid function. The csAG module focuses on highlighting the channels and locations
of the important information in the feature map. The csAG module is constructed with
a sequential arrangement, as shown in Figure 4. In particular, the csAG module uses a
residual structure, and the values from the channel and spatial attention gates are applied
to the feature map through elementwise multiplication.

Figure 2. Channel attention gate.

Figure 3. Spatial attention gate.

Figure 4. Structure of the csAG module.

2.3. csAG-HRNet

HRNet-v2 learns features through the fusion of parallel subnetworks with multiple
resolutions. However, in HRNet-v2, inaccurate data might be added or important features
might be lost when a subnetwork of a low resolution is fused with a subnetwork of a
high resolution. To solve this problem, the csAG module is inserted into the HRNet-v2
network in two ways. The csAG module is used to extract the most important features
during the learning process. As shown in Figure 5, the proposed csAG-HRNet model has a
structure similar to that of HRNet-v2. However, we insert the csAG module into the basic
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block of HRNET-v2, the subnetworks of multiple resolutions in the fusion process, and the
convolutional layer for the concatenation of the multiresolution subnetworks.

Figure 5. Architecture of the csAG-HRNet model.

First, to reduce the overall network size, a 3 × 3 convolutional layer of stride 2 is
repeated twice to reduce the spatial resolution to one quarter that of the input image. Then,
features are extracted using a bottleneck block. Bottleneck block uses a 1 × 1 convolution
layer to use more layers with lower computing resources. In addition, more activation
functions were included in the bottleneck block in order to apply more nonlinearities
to learn features [47]. Subnetworks corresponding to each stage are created through a
transition module, and features are extracted in each subnetwork through a csAG block. In
the csAG block, after a set consisting of batch normalization, ReLU, and 3× 3 convolutional
layers is repeated twice, the csAG module is applied. The feature map output by the csAG
module is added to the input features, which are passed through by a skip connection.
By applying the csAG module, more important information is effectively learned and
extracted. This block structure is applied twice in each subnetwork for each stage. After
feature extraction in each subnetwork through the csAG block, the information from each
subnetwork is fused using the csAG fusion structure. The spatial resolution and number
of channels of the feature map of each subnetwork are adjusted in accordance with the
spatial resolution and number of channels corresponding to the standard subnetwork for
the fusion process. In the case of a feature map with a smaller resolution relative to the
multiresolution feature maps created in the transition module, the number of channels is
adjusted using a 1 × 1 convolutional layer, and the spatial resolution is adjusted using an
upsampling layer. In contrast, for a feature map with a relatively high resolution in the
transition module, the number of channels and the spatial resolution are adjusted by a
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convolutional layer of stride 2. Then, the csAG module is applied to the adjusted feature
map from each subnetwork. To fuse the multiresolution feature maps, each feature map
from the csAG module is added to all the others. After all three stages, including the stage
and fusion modules based on the csAG module, all features are collected using a single
csAG fusion process. In this final csAG fusion process, each feature map output by the
csAG module is integrated and then a 3 × 3 transpose layer of stride 2 is repeated twice to
restore the spatial resolution of the input image.

3. Experiments and Results
3.1. Datasets and Settings
3.1.1. South Korea Building Dataset Including Orthophoto and Vector Data

We constructed the training and test datasets using the national geospatial data
provided by the National Geographic Information Institute (NGII) of South Korea. First,
vector data including each building boundary polygon at a scale of 1:5000 and orthophotos
of three bands (RGB) with a 0.25 m spatial resolution and 8-bit radiometric resolution were
used to generate the training and test datasets. The regions covered by the dataset are
located in Ansan and Siheung, Korea, where houses, apartments, and factories all exist.
The middle part of the image of site 1, consisting of 9122 × 8892 pixels, was used as the
training dataset, as shown in Figure 6. Testing was conducted using the parts of the image
above and below the training data, consisting of 9122 × 1000 pixels, and the orthophoto of
site 2, consisting of 8890 × 11,126 pixels. For the ground-truth data for testing, the building
layer of the digital topographic map provided by the NGII was used. We generated 5712
training patches and 1428 validation patches of 512 × 512 pixels in size.

Figure 6. Aerial images from Ansan and Siheung, South Korea.
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3.1.2. WHU Building Dataset

The WHU building dataset is composed of polygon data corresponding to individual
building boundaries and aerial images (RGB bands) with a 0.3 m spatial resolution and
8-bit radiometric resolution collected by Land Information New Zealand (LINZ) [48]. It
consists of more than 220,000 buildings extracted from aerial images with a 0.075 m spatial
resolution covering a 450 km2 area in Christchurch, New Zealand [48]. The dataset is
downsampled to a 0.3 m spatial resolution. It provides a total of 8189 patches of 512 × 512
pixels in size and consists of a training set of 4736 patches with 130,500 buildings, a
validation set of 1036 patches with 14,500 buildings, and a test set of 2416 patches with
42,000 buildings, as shown in Figure 7. The ground-truth data were constructed through
manual editing of Christchurch’s building vector data.

Figure 7. WHU dataset (blue box: training area, green box: validation area, red boxes: test areas).

3.1.3. Experimental Settings

In this study, the proposed deep learning model was implemented in TensorFlow
(version 2.2.0) on an NVIDIA RTX Titan GPU × 2 platform. During training, the Adam
optimizer with a 0.001 learning rate was used. In addition, a binary cross-entropy function
was used as the loss function for training. The batch size was set to 30 for images with
dimensions of 512 × 512, and training was conducted for a total of 60 epochs. We performed
comparisons and evaluations using SegNet [9], U-Net [10], FC-DenseNet [15], and the
original HRNet-v2 [44], which are representative deep learning networks for semantic
segmentation, including building extraction applications. Trained models were applied to
test datasets with 512 × 512 pixel size in the case of the WHU dataset. However, for the
Korean building datasets (Site 1 and Site 2), we extracted building objects over the entire
area using overlap (172 pixels) between 512 × 512 tiles.

3.2. Accuracy Assessment
3.2.1. Evaluation Metrics

To evaluate the performance of the proposed algorithm, we estimated the accuracy of
the building extraction results based on the confusion matrix. The form of the confusion
matrix is shown in Table 1. In the confusion matrix, the true positive (TP) entry refers to the
number of positives that are predicted to be positive, the false positive (FP) entry indicates
the number of negatives that are predicted to be positive, the true negative (TN) entry is
the number of negatives that are predicted to be negative, and the false negative (FN) entry
gives the number of positives that are predicted to be negative.
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Table 1. Confusion matrix.

Predicted Label

True False

Ground-truth data
True TP

(True Positive)
FN

(False Negative)

False FP
(False Positive)

TN
(True Negative)

Based on the confusion matrix, we adopted four evaluation metrics to measure the
performance of the proposed csAG-HRNet: overall accuracy, precision, recall, and F1-score.
The overall accuracy is evaluated by matching all pixels 1:1. It is difficult to determine the
accuracy when the data are concentrated in one category. The overall accuracy is calculated
as shown in Equation (1).

Overall accuracy =
TP + TN

TP + TN + FP + FN
(1)

The precision is the ratio of the true positives to all positives predicted by the model.
The calculation of the precision is shown in Equation (2). The recall is the proportion of
true positives among the actually positive data, as shown in Equation (3). The F1-score is
the harmonic average of the precision and recall, as shown in Equation (4).

Precision =
TP

TP + FP
(2)

Recall =
TP

TP + FN
(3)

F1 − score =
2 × Precision × Recall

Precision + Recall
(4)

3.2.2. Evaluation Results for the South Korea Building Dataset
Residential Area of Site 1

The apartments and houses area of site 1 is adjacent to the area used for the generation
of the training dataset. Thus, it has characteristics similar to those of the training dataset.
As shown in Figure 8c–g, some construction sites in the upper center were falsely detected
as buildings. The upper right area includes many containers or small buildings, which
are difficult to distinguish. However, compared to the other deep learning methods, the
proposed method detected fewer nonbuilding areas, as highlighted in red. In particular, the
false detection area of the proposed method was smaller than that of HRNet-v2. Figure 9
shows detailed results for the apartments and houses area of site 1. As shown in Figure 9c,d,
SegNet and U-Net falsely detected pixels corresponding to the vacant lot next to a building
as building pixels. Additionally, the unusual surface at the bottom of the image could not
be detected as part of the building. As shown in Figure 9e, FC-DenseNet could not detect
some building pixels and falsely detected shadow pixels as building pixels. HRNet-v2 also
falsely detected some shadow pixels between buildings as building pixels, as shown in
Figure 9f. In contrast, with the csAG-HRNet method proposed in this manuscript, false
detection and non-detection were less common than with the other deep learning networks.

Table 2 shows the evaluation metrics for the residential area of site 1. The overall
accuracy and F1-score of csAG-HRNet are the highest among the deep learning models, as
shown in Table 2. FC-DenseNet has the highest precision value of 0.9344, indicating that
it generates fewer false positives than the other networks. This is because the results of
FC-DenseNet include few false positives for buildings under construction in the center of
the image, for containers in the upper right corner of the image, and for small buildings.
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Moreover, the F1-score is highest for csAG-HRNet, with a value of 0.9123, while HRNet-v2
has the highest recall value of 0.9062.

Figure 8. Building extraction results for site 1 (residential area) according to each deep learning model. The red and cyan
regions indicate false positives and false negatives, respectively. (a) Original image. (b) Ground-truth labels. (c) Results of
SegNet. (d) Results of U-Net. (e) Results of FC-DenseNet. (f) Results of HRNet-v2. (g) Results of csAG-HRNet.
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Figure 9. Detailed results for site 1 (residential area) according to each deep learning model. Red indicates false positives,
and cyan indicates false negatives. (a) Original image. (b) Ground-truth labels. (c) Results of SegNet. (d) Results of U-Net.
(e) Results of FC-DenseNet. (f) Results of HRNet-v2. (g) Results of csAG-HRNet.

Table 2. Quantitative building extraction results for site 1 (residential area) according to each deep
learning model.

Accuracy Precision Recall F1-Score

SegNet 0.9640 0.8737 0.9008 0.8871

U-Net 0.9665 0.9078 0.8754 0.8913

FC-DenseNet 0.9690 0.9344 0.8632 0.8974

HRNetV2 0.9700 0.9030 0.9062 0.9046

csAG-HRNet 0.9728 0.9256 0.8994 0.9123

Industrial Area of Site 1

The industrial area of site 1 is also adjacent to the training dataset. Figure 10 shows the
results predicted for site 1 by each deep learning model, including the proposed algorithm.
Many parking lot pixels between buildings in the bottom center area are falsely detected
as building pixels in the cases of SegNet, U-Net, FC-DenseNet and HRNet-v2. Figure 11
shows detailed results for the industrial area of site 1. There was a case of misrecognizing
a location for the storage of materials such as cut timber as a building, except for csAG-
HRNet, as shown in Figure 11c–f. Among the networks, csAG-HRNet generated the fewest
false positives. Table 3 shows the evaluation metrics for the industrial area of site 1. The
overall accuracy and F1-score are the highest for csAG-HRNet, with values of 0.9561 and
0.9547, respectively, and the precision is also the highest at 0.9667. This means that csAG-
HRNet exhibits the best performance for building extraction among the compared deep
learning models.

Site 2

The test dataset of site 2 is taken from a different area than the training dataset, and
the composition and characteristics of the buildings are different. Figure 12 shows the
results predicted for site 2 by each deep learning model, including the proposed algorithm.
By most deep learning models, except for csAG-HRNet, the railroad in the central area was
falsely detected as a building. The results of SegNet include many undetected regions in
the industrial area. In contrast, HRNet-v2 and csAG-HRNet showed a tendency to detect
building regions well, and csAG-HRNet falsely detected fewer railroad pixels as building
pixels than HRNet-v2. Table 4 shows the evaluation metrics for site 2. The overall accuracy
is the highest for csAG-HRNet, with a value of 0.9417, and the precision and F1-score
of the results produced by csAG-HRNet are also the highest. This is because there are
fewer false positive detections of railroad track pixels as building pixels than with the other
networks, as shown in Figure 12g. Therefore, from the experiments based on this building
dataset including orthophoto and vector data from South Korea, we can conclude that our
proposed csAG-HRNet can efficiently extract building regions compared to existing deep
learning models. In addition, we could successfully modify the original HRNet-v2 using
our csAG module.
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Figure 10. Building extraction results for test dataset 2 (industrial area) according to each deep learning model. The red
and cyan regions indicate false positives and false negatives, respectively. (a) Original image. (b) Ground-truth labels.
(c) Results of SegNet. (d) Results of U-Net. (e) Results of FC-DenseNet. (f) Results of HRNet-v2. (g) Results of csAG-HRNet.

Figure 11. Detailed results for site 1 (industrial area) according to each deep learning model. Red indicates false positives,
and cyan indicates false negatives. (a) Original image. (b) Ground-truth labels. (c) Results of SegNet. (d) Results of U-Net.
(e) Results of FC-DenseNet. (f) Results of HRNet-v2. (g) Results of csAG-HRNet.
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Figure 12. Building extraction results for site 2 according to each deep learning model. The red and cyan regions indicate
false positives and false negatives, respectively. (a) Original image. (b) Ground-truth labels. (c) Results of SegNet. (d)
Results of U-Net. (e) Results of FC-DenseNet. (f) Results of HRNet-v2. (g) Results of csAG-HRNet.
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Table 3. Quantitative building extraction results for site 1 (industrial area) according to each deep
learning model.

Accuracy Precision Recall F1-Score

SegNet 0.9294 0.9358 0.9189 0.9273

U-Net 0.9450 0.9583 0.9281 0.9429

FC-DenseNet 0.9473 0.9472 0.9451 0.9461

HRNetV2 0.9510 0.9584 0.9409 0.9496

csAG-HRNet 0.9568 0.9666 0.9445 0.9554

Table 4. Quantitative building extraction results for site 2 according to each deep learning model.

Accuracy Precision Recall F1-Score

SegNet 0.9187 0.9392 0.7179 0.8138

U-Net 0.9224 0.9128 0.7588 0.8287

FC-DenseNet 0.9208 0.8584 0.8142 0.8357

HRNetV2 0.9387 0.9370 0.8064 0.8668

csAG-HRNet 0.9417 0.9448 0.8117 0.8732

3.2.3. WHU Dataset Results

An additional evaluation was also conducted using the test set provided in the WHU
building dataset. Figure 13 and Table 5 represent the prediction results for the entire test set
of the WHU building dataset. The evaluation metrics are reported as the average values of
the results obtained on the test set. Figure 13 visually shows the prediction results for the
WHU building dataset. With most of the networks, large buildings such as factories were
partially undetected, as shown in Figure 13c–f. However, our csAG-HRNet could better
detect large building regions than the existing deep learning models. Table 5 shows the
evaluation metrics for the WHU building dataset. The overall accuracy is the highest for
csAG-HRNet, with a value of 0.9780, and the precision is also the highest at 0.9842. Similar
to the other tests, csAG-HRNet has an F1-score of 0.9855.

Table 5. Evaluation metrics for each model (WHU dataset).

Accuracy Precision Recall F1-Score

SegNet 0.9762 0.9819 0.9869 0.9842

U-Net 0.9771 0.9816 0.9886 0.9849

FC-DenseNet 0.9765 0.9784 0.9911 0.9844

HRNetV2 0.9771 0.9829 0.9873 0.9849

csAG-HRNet 0.9780 0.9842 0.9870 0.9855
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Figure 13. Building extraction results for the WHU dataset according to each deep learning model. The red and cyan
regions indicate false positives and false negatives, respectively. (a) Original image. (b) Ground-truth labels. (c) Results of
SegNet. (d) Results of U-Net. (e) Results of FC-DenseNet. (f) Results of HRNet-v2. (g) Results of csAG-HRNet.

4. Discussion

We have proposed a deep learning structure with the addition of csAG modules based
on HRNet-v2, named csAG-HRNet, for extracting buildings from high-resolution remote
sensing imagery. In order to test the efficiency of the proposed deep learning model, a
number of parameters of deep learning models were analyzed. The number of parameters
means the total number of variables to each layer inside the deep learning model. The
proposed network not only offers improved performance for building extraction but also
has a slightly reduced number of parameters compared to the original HRNet-v2 model
(HRNet-v2 (baseline): 24,283,778, csAG-HRNet (ours): 24,264,745).

In addition, the proposed structure uses channel and spatial attention gates for learn-
ing based on the relative importance of different channels and pixels. Features are extracted
using subnetworks with a multiresolution layer structure and skip connections. The fea-
tures that can be extracted by each subnetwork are different because the size of the feature
map that is input into each subnetwork is different, and when fusion is performed between
subnetworks, features may be lost or noise may be added. The proposed network uses
a csAG module to transmit important information more efficiently when subnetworks
are fused. To verify the efficiency of the csAG module, we separately analyzed its effect
on each process in HRNet. Table 6 presents the building extraction results depending on
the locations of the csAG modules in each process of HRNet-v2. As shown in Table 6,
the results obtained through the addition of the csAG module to the basic block of each
stage module, the fusion module, and the final fusion process show the highest building
detection accuracy. Thus, it is confirmed that including the csAG mechanism in all convolu-
tional layer processes of the HRNet-v2 model enables the effective extraction of meaningful
information about buildings and minimizes false positives.
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Table 6. Building extraction results depending on the locations of the csAG modules in each process of HRNet-v2.

Dataset Locations of csAG Modules Accuracy Precision Recall F1-Score

Site 1
(apartments and houses)

Block 0.9721 0.9145 0.9070 0.9107

Fusion 0.9694 0.9044 0.9001 0.9023

LastLayer 0.9704 0.9085 0.9025 0.9055

Block + Fusion 0.9718 0.9184 0.9003 0.9093

Block + LastLayer 0.9702 0.9095 0.8999 0.9047

Fusion + LastLayer 0.9708 0.9206 0.8908 0.9055

Block + Fusion + LastLayer 0.9728 0.9256 0.8994 0.9123

Site 1 (factories)

Block 0.9520 0.9649 0.9360 0.9502

Fusion 0.9487 0.9619 0.9321 0.9468

LastLayer 0.9505 0.9643 0.9335 0.9486

Block + Fusion 0.9468 0.9580 0.9323 0.9450

Block + LastLayer 0.9476 0.9582 0.9337 0.9458

Fusion + LastLayer 0.9485 0.9618 0.9319 0.9466

Block + Fusion + LastLayer 0.9568 0.9666 0.9445 0.9554

Site 2

Block 0.9370 0.9455 0.7912 0.8615

Fusion 0.9380 0.9331 0.8072 0.8656

LastLayer 0.9418 0.9474 0.8098 0.8732

Block+Fusion 0.9416 0.9462 0.8100 0.8729

Block + LastLayer 0.9375 0.9428 0.7955 0.8629

Fusion + LastLayer 0.9307 0.9555 0.7552 0.8436

Block + Fusion + LastLayer 0.9417 0.9448 0.8117 0.8732

5. Conclusions

In this manuscript, we have proposed a deep learning structure named csAG-HRNet
by introducing a csAG mechanism into HRNet-v2. Specifically, the csAG module used
in our proposed algorithm allows features to be efficiently learned by considering the
relative importance of channels and pixels. The channel attention gate focuses on the
importance of different channels, while the spatial attention gate determines weights in
accordance with the importance of different pixel positions in the input data. The proposed
csAG-HRNet model is constructed by adding a csAG module to each subnetwork of the
HRNet-v2 network. In experiments, it was confirmed that the proposed network is less
affected by large buildings or shadows cast by unusually shaped buildings. In addition,
the number of false positives for buildings, such as various small nonbuilding objects, is
reduced. Moreover, compared to HRNet-v2, there is no difference in network complexity in
terms of efficiency, and it has been confirmed that adding the csAG module to all processes
in HRNet-v2 results in optimal performance. Therefore, the proposed csAG-HRNet is more
effective in detecting buildings than existing deep learning models.
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