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Abstract: Land surface models (LSMs) simulate water and energy cycles at the atmosphere–soil
interface, however, the physical processes in the subsurface are typically oversimplified and lateral
water movement is neglected. Here, a cross-evaluation of land surface model results (with and
without lateral flow processes), the National Aeronautics and Space Administration (NASA) Soil
Moisture Active/Passive (SMAP) mission soil moisture product, and cosmic-ray neutron sensor
(CRNS) measurements is carried out over a temperate climate region with cropland and forests over
western Germany. Besides a traditional land surface model (the Community Land Model (CLM)
version 3.5), a coupled land surface-subsurface model (CLM-ParFlow) is applied. Compared to CLM
stand-alone simulations, the coupled CLM-ParFlow model considered both vertical and lateral water
movement. In addition to standard validation metrics, a triple collocation (TC) analysis has been
performed to help understanding the random error variances of different soil moisture datasets. In
this study, it is found that the three soil moisture datasets are consistent. The coupled and uncoupled
model simulations were evaluated at CRNS sites and the coupled model simulations showed less
bias than the CLM-standalone model (−0.02 cm3 cm−3 vs. 0.07 cm3 cm−3), similar random errors,
but a slightly smaller correlation with the measurements (0.67 vs. 0.71). The TC-analysis showed
that CLM-ParFlow reproduced better soil moisture dynamics than CLM stand alone and with a
higher signal-to-noise ratio. This suggests that the representation of subsurface physics is of major
importance in land surface modeling and that coupled land surface-subsurface modeling is of
high interest.

Keywords: soil moisture; cosmic-ray neutron sensors (CRNS); SMAP; land surface model; subsurface;
triple collocation (TC)

1. Introduction

Soil moisture exerts an important control on the water and energy cycles in the
atmosphere-land surface-subsurface continuum. Therefore, improving soil moisture esti-
mation is beneficial for understanding the partitioning of water and energy fluxes. Soil
moisture variability in the unsaturated zone is affected by water exchanges between the
unsaturated zone, atmosphere, and groundwater. Studies have been focused on the effects
of groundwater dynamics on land surface processes, showing the role of the ground-
water in the water and energy cycles [1,2]. Results indicate that groundwater has little
impact on soil moisture in deep groundwater regions, however, in districts with shallow
groundwater—such as wetlands and river valleys—groundwater can become a major
source of soil water [3–5]. The groundwater table depths and hydraulic gradients between
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saturated and unsaturated soils can cause capillary rise and make groundwater a constant
water supply, leading to altered runoff and evaporation rates [6,7]. The land surface energy
balance is affected by soil moisture states and land surface temperature [8–10].

Despite the importance of subsurface flow, most current land surface models (LSMs)
neglect the lateral flow between grid cells or at sub-grid scales and only consider the water
exchange in the vertical direction. Such models include the Variable Infiltration Capacity
model (VIC), Interaction Soil Biosphere Atmosphere (ISBA) surface scheme, Noah Land
Surface Model, and Community Land Surface Model (CLM). Recently, some works have
considered the role of lateral subsurface flow and developed three dimensional hydrological
models coupled with LSMs, such as CATHY (CATchment HYdrology), NoahMP [11], VIC-
MD (MODFLOW) [12], and CLM-ParFlow [13]. These models aim at simulating the
subsurface water and energy cycles more realistically than uncoupled models. However,
model predictions are affected by errors given the uncertainty of the many required input
parameters, e.g., atmospheric forcing, soil texture, and vegetation properties [14]. Precise
soil hydraulic parameter data and land cover type information are hard to obtain as most
areas lack sufficient land surveys. Also, the model structure and further assumptions
influence the simulation performance. A large number of parameters used in land surface
models are hard-coded as constants, although they are calculated by linear regression from
preliminary studies using a limited amount of data and known to be uncertain [15].

Soil moisture can be measured via automated techniques such as gravimetric methods,
nuclear techniques (such as neutron scattering, Gamma ray attenuation), electromagnetic
methods (e.g., the time domain reflectometry (TDR) and the frequency domain reflectom-
etry (FDR)), tensiometers and hygrometry [16–18]. However, most sensors monitor soil
moisture at point scales (radius less than 1 m) only. As soil moisture is very heterogeneous
in space and time, one usually needs to collect data from multiple locations in a specific
area [19]. To reduce the scale gap to remote sensing products and modeling results and to
obtain area-averaged soil moisture, a new technology has emerged with the Cosmic Ray
Neutron Sensor (CRNS). It measures neutron count intensity and determines soil moisture
in a non-invasive and continuous way [20]. The omnipresent cosmic radiation produces
neutrons that interact with atmosphere and ground. These secondary neutrons include fast
neutrons, that are generated by collisions between high-energy neutrons and nuclei. Fast
neutrons are easily moderated by hydrogen atoms. As soil is the main source of hydrogen,
thus, the variations of fast neutrons are strongly related to soil moisture changes. The
process of moderation can be captured and counted by cosmic ray neutron sensors [21,22].
The large spatial footprint makes it suitable for agricultural water resources management
and remote sensing product validation [23].

Two innovative satellite missions that include L-band (1200–1400 MHz) passive mi-
crowave systems have already been launched, including SMOS (Soil Moisture and Ocean
Salinity mission, launched in November 2009) [24] and SMAP (Soil Moisture Active Passive
mission, launched in January 2015 and starting operations in April 2015) [25]. Both SMOS
and SMAP aim to measure soil moisture globally. After SMAP radar stopped operation in
July 2015, an enhanced product was developed to give high-resolution observations at 9 km
resolution. This enhanced product was evaluated by comparing it with long-term in situ soil
moisture data [26,27]. It was found that the average ubRMSE (unbiased Root Mean Square Er-
ror) in L2_SM_P_E (Level 2 Enhanced Passive Soil Moisture) product and L3_SM_P_E (Level 3
Enhanced Passive Soil Moisture) product are between−0.040~0.055 cm3 cm−3 [27–29], which
barely meets the accuracy requirements of the SMAP mission. A number of previous studies
have compared SMAP products and/or model simulations with in-situ observations. EI Hajj
et al. [30] evaluated SMAP soil moisture products at sites in Southwestern France and found
that the average bias over stations was about −0.032 cm3 cm−3, indicating SMAP moderately
underestimates the soil moisture compared to in situ observations. Walker et al. [31] compared
SMAP soil moisture with validation sites in the South Fork River watershed in Iowa, U.S.,
and found that the bias could be up to −0.04 cm3 cm−3 in early-spring and late fall and
improve to−0.02 cm3 cm−3 in the summer time. At global scale, a study indicated that SMAP
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shows a dry bias [32]. Recently, a new COSMOS network is developed to provide a unified,
standardized, publicly available, traceable, and objective validation procedure that is opera-
tional in ISMN (https://www.geo.tuwien.ac.at/insitu/data_viewer/ accessed on 1 August
2021) and the QA4SM online validation service for soil moisture products (https://qa4sm.eu/
accessed on 1 August 2021) [33]. Here, soil moisture from ERA5, ERA5-Land, and GLDAS are
provided for validation, but subsurface processes are not considered. As mentioned, SMAP
was only compared to soil moisture simulated by stand-alone land surface models that have
a rather simple subsurface structure and do not consider the role of groundwater and lateral
flows [34–36], which could lead to systematic deviations. Studies show that soil moisture
is overestimated when the model neglects the impact of topography [37,38]. Also, previous
studies focused mostly on large scales and simulations at a coarser spatial resolution [23,39,40].

To find relative error estimates for different products, the Triple Collocation (TC)
method is used, which is an error magnitude estimation approach for intercomparison
among three or more independent observed or modeled datasets [41]. The method was
firstly used for ocean wind studies and then developed and widely used in other areas,
such as land surface hydrology [42–47]. It has been proven to be a useful tool to understand
the random error variances of remote sensing time series. It assumes one of these datasets
as reference to relative rescaling, and further assumes truth-error orthogonality and zero
error cross correlation between datasets to obtain a bias-free TC analysis [46–48]. Here,
we present simulated soil moisture by CLM and the CLM-ParFlow coupled model and
compared it with CRNS observations and SMAP enhanced soil moisture datasets using TA
method. Compared to the CLM model, CLM-ParFlow considers three-dimensional water
flow in the subsurface (soil and aquifer) and a two-dimensional overland flow module.
It is investigated whether a better subsurface representation can improve soil moisture
estimates. The research area has various land use types and various pedological, hydrolog-
ical, and hydrogeological site conditions were observed. These small-scale hydrological
processes can provide insights for large scale modeling. This research aims to understand
the performance and limitations of the subsurface role in land surface model simulations,
which might recall the need to consider hydrogeology (including complex 3D geology and
critical parameters like hydraulic conductivity and storage coefficients) in soil-vegetation-
atmosphere processes, and to obtain finally more accurate soil moisture and groundwater
level data.

2. Materials and Methods
2.1. Study Area

The study area is located in central Europe encompassing parts of North Rhine-Westphalia
and Rhineland-Palatinate in western Germany and parts of Belgium, the Netherlands and
Luxemburg, covering an area of 150 × 150 km (Figure 1). This region has a sub-Atlantic
oceanic climate. Summers are mild, while winters are humid and relatively mild. The average
monthly temperatures are highest in July (18 ◦C) and lowest in January (3 ◦C). There is a
large spatial variability in precipitation due to topography. In the rather flat Lower Rhine
area in the North of the study region, the yearly precipitation is between 600–900 mm [49].
In the southern low mountain ranges the average yearly precipitation is locally 1600 mm in
the Bergisches Land (South East) and 1300 mm in the Eifel (South West) [50]. The rainfall is
frequent and evenly distributed over the seasons. The elevation in this area ranges from the
plains at around 14 m a.s.l. to the mountainous areas at around 735 m.

https://www.geo.tuwien.ac.at/insitu/data_viewer/
https://qa4sm.eu/


Remote Sens. 2021, 13, 3068 4 of 22
Remote Sens. 2021, 13, 3068 4 of 21 
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The land use is a mixture of agriculture area, forests, urban and rural areas, water, 
grassland, industry, and mining [2]. The dominant land use is agriculture, covering more 
than 60% of the area (shown in Figure 2). The major crops are winter wheat, maize, and 
sugar beet. Forests cover nearly 20 % of this area and are mainly located in the south, i.e., 
Eifel, Bergisches Land, and Sauerland. The dominant soil textures are sandy loam, loam, 
and clay loam and our simulations are based on the FAO/UNESCO Soil Map [51]. Sandy 
soils with low water holding capacities are mainly located in the Northwest region. 

 
Figure 2. Map of the North Rhine-Westphalia (NRW) domain for (a) soil type and (b) plant func-
tional types. The soil types are divided into sandy loam (SL), loam (L), clay loam (CL) and clay (C). 
The PFTs are defined as: 1–needleleaf evergreen tree (NET); 2–needleleaf deciduous tree (NDT); 3–
broadleaf evergreen tree (BET); 4–broadleaf deciduous tree (BDT); 5–broadleaf deciduous shrub 
(BDS); 6–grassland (GRASS); 7–crop (CROP), 8–barren soil (BARE). 

This research area has three solid rock areas of regional importance [52]. The largest 
part is Palaeozoic rocks located in the southern part and east of the river Rhine, having 
the dominant aquifer typology ‘schist and shales’ that includes folded and partly meta-
morphosed clastic sedimentary rocks. This part has a low hydraulic conductivity. The 
north-eastern part is mainly occupied by unconsolidated rocks of Cenozoic era, including 
alternating sequences of clastic sedimentary rocks horizontally. The hydraulic conductiv-
ity varies a lot depending on the combination system. In the western part, the dominant 
aquifer rocks are mostly consolidated, weakly permeable material from Mesozoic. 

Soil moisture validation activities have been performed in this area before based on 
in situ and CRNS data [23,53–56] as well as simulation and data assimilation experiments 
[57–60] 

  

Figure 1. The research area and 13 CRNS locations (denoted as black triangles).

The land use is a mixture of agriculture area, forests, urban and rural areas, water,
grassland, industry, and mining [2]. The dominant land use is agriculture, covering more
than 60% of the area (shown in Figure 2). The major crops are winter wheat, maize, and
sugar beet. Forests cover nearly 20 % of this area and are mainly located in the south, i.e.,
Eifel, Bergisches Land, and Sauerland. The dominant soil textures are sandy loam, loam,
and clay loam and our simulations are based on the FAO/UNESCO Soil Map [51]. Sandy
soils with low water holding capacities are mainly located in the Northwest region.
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Figure 2. Map of the North Rhine-Westphalia (NRW) domain for (a) soil type and (b) plant functional
types. The soil types are divided into sandy loam (SL), loam (L), clay loam (CL) and clay (C).
The PFTs are defined as: 1–needleleaf evergreen tree (NET); 2–needleleaf deciduous tree (NDT);
3–broadleaf evergreen tree (BET); 4–broadleaf deciduous tree (BDT); 5–broadleaf deciduous shrub
(BDS); 6–grassland (GRASS); 7–crop (CROP), 8–barren soil (BARE).

This research area has three solid rock areas of regional importance [52]. The largest
part is Palaeozoic rocks located in the southern part and east of the river Rhine, having
the dominant aquifer typology ‘schist and shales’ that includes folded and partly meta-
morphosed clastic sedimentary rocks. This part has a low hydraulic conductivity. The
north-eastern part is mainly occupied by unconsolidated rocks of Cenozoic era, including
alternating sequences of clastic sedimentary rocks horizontally. The hydraulic conductivity
varies a lot depending on the combination system. In the western part, the dominant
aquifer rocks are mostly consolidated, weakly permeable material from Mesozoic.

Soil moisture validation activities have been performed in this area before based on in situ
and CRNS data [23,53–56] as well as simulation and data assimilation experiments [57–60].
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2.2. Data
2.2.1. Land Surface Modeling

Soil moisture was simulated by the land surface model CLM (community land model)
and the coupled land surface–subsurface model CLM–ParFlow. The CLM model was
developed by the National Center for Atmosphere Research (NCAR). In the CLM 3.5
model, the soil is discretized into 10 unevenly distributed soil layers (see Table 1). Soil
hydraulic properties are estimated internally from soil texture (sand fraction and clay
fraction) using pedo-transfer functions according to Clapp and Hornberger [61] and Cosby
et al. [62]. A simplified Richards equation is used in CLM to calculate the vertical water
movement in the unsaturated zone

∂θ

∂t
=

∂

∂z

[
K× ∂(ϕ− z)

∂z

]
+ Q (1)

where ∂θ
∂t is the soil moisture (cm3 cm−3) change over time, K represents the saturated

hydraulic conductivity (m/s), ϕ is the pressure head (unit is defined as length (L)), z as
the vertical coordinate (L) and Q is the source/sink term (i.e., the soil water removed due
to evaporation). A main limitation of CLM 3.5 is that lateral flows are not considered,
and groundwater is not represented, although groundwater can strongly influence soil
moisture conditions.

Table 1. Soil layer depth in CLM model.

Soil Layer 1 2 3 4 5 6 7 8 9 10

Depth (m) 0.010 0.035 0.075 0.135 0.235 0.400 0.650 1.050 1.650 2.500

ParFlow [63] is a numerical, integrated hydrological model that simulates subsurface
groundwater flow and water flow in soils, as well as overland flow. Both retention and
relative permeability curves are represented by the van Genuchten relationships [64].
ParFlow does not include land surface process (e.g., evaporation), nor does it have a
parameterization scheme for frozen soil and ice processes. In addition to the DEM dataset
used in CLM, the topographic slopes need to be specified for ParFlow. When coupled
with CLM, ParFlow replaces the one-dimensional CLM soil moisture characterization by
the three-dimensional approach in CLM-ParFlow, considering the redistribution of soil
moisture, and integrating vertical and lateral flow of groundwater and surface water.

SsSw
∂ϕ

∂t
+ φ

∂Sw(ϕ)

∂t
+ Kkr(ϕ)·∇(ϕ− z) = Q (2)

In this equation, Ss is the specific storage coefficient (L−1), Sw is the relative saturation,
φ is the porosity, kr is the relative permeability. The subsurface is discretized into 30 layers,
with 10 vertically layers near the surface (2–100 cm) and 20 constant levels (135 cm depth)
that reach up to 30 m below the surface. The physically based coupled model (CLM-ParFlow)
can better simulate the role of groundwater in terrestrial systems, and the interaction between
surface water and subsurface [13,63].

To represent the high spatial heterogeneity of the land surface, the simulation domain
was discretized into grid cells of 500 × 500 m. The plant functional types (PFTs) were based
on MODIS land cover data. The hilly areas are mostly covered by broadleaf forest and
needleleaf forest, while the other flat regions are covered by crops and urban areas. Soil
texture information was taken from the FAO/UNESCO Soil Map [51] with the scale of 1:
5,000,000 (see Figure 2). Most of the model domain is dominated by clay-loam (35% clay,
35% sand, 30% silt). Sandy loam (10% clay, 65% sand, 25% silt) and loam (20% clay, 40%
sand, 40% silt) are dominant in the north-western part. Clay (45% clay, 15% sand, 40% silt)
is found in the northwestern corner of the domain. The van Genuchten water retention
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parameters and the hydraulic conductivity used in CLM-ParFlow are calculated by the
Rosetta pedo-transfer function [65], summarized in Table 2.

Table 2. Subsurface hydraulic properties used in CLM-ParFlow simulations.

Soil Type Clay Clay Loam Loam Sandy Loam

K (m hr−1) 0.0062 0.0034 0.0050 0.0158

α (m−1) 2.1 2.1 2.0 2.7

n 2.0 2.0 2.0 2.0

θs
1 0.4701 0.4449 0.4386 0.4071

θr
1 0.21 0.17 0.15 0.1

1 θs saturated water content (cm3 cm−3); θr residual water content (cm3 cm−3).

To drive the model, the high-resolution reanalysis dataset (COSMO-REA6) [66] was
used as meteorological forcing. This dataset covers the period 1995–2020 and is continu-
ously supported by DWD (Deutscher Wetterdienst, German Meteorological Service). It
uses ERA-Interim data as a boundary condition and is generated by assimilating observed
meteorological data into the atmospheric model COSMO (Consortium for Small-scale
Modeling) [67]. The dataset comprises air temperature, precipitation, humidity, incoming
shortwave and longwave radiation. A two-year spin-up period was applied for CLM
and the initial conditions for CLM-ParFlow were taken from previous studies [2,59]. Both
simulations with CLM and CLM-ParFlow started from a near equilibrium condition. Thus,
different spin up treatments do not have influence on results. In total, a period of two years
(2017–2018) was simulated with a time step of 3600 s. In case of convergence issues, the
time steps are reduced until convergence can be achieved.

Simulated soil moisture for the upper 5 cm layer (SM5cm) and the upper 20 cm (SM20cm)
were estimated by linearly combining simulated output for different model layers (H20SOIi,
where i is the index denoting the soil layer).

SM5cm= 0.14×H20SOI1+0.56×H20SOI2 +0.30×H20SOI3 (3)

SM20cm= 0.0165×H20SOI1+0.0651×H20SOI2+0.1451×H20SOI3+0.2770×H20SOI4+0.4963×H20SOI5 (4)

2.2.2. CRNS Observations

The CRNS is an emerging technology to monitor soil moisture at the intermediate
scale [20,22]. The measured neutron count intensity provides an estimate of soil moisture
content for a radius of around 240 m, at sea level and dry bare soil conditions. The radius
is a function of air density, air humidity and vegetation density [68]. The penetration depth
of the CRNS measurements varies from 15 cm (wet soils) to 55 cm (dry soils) [69]. The
neutron count intensity is mainly sensitive to the number of hydrogen atoms in the soil,
but is also influenced by changes in atmospheric pressure, vapor pressure, and incoming
cosmic radiation. These factors are considered in the standard correction process [69,70].

Several studies have been conducted to investigate the accuracy of the CRNS mea-
surements and found that CRNS provides reliable soil moisture estimates when calibrated
properly [71–73]. Bogena [74] found that even for a densely vegetated and wet site, the
RMSE of daily soil moisture estimated by CRNS is only 0.03 cm3 cm−3. In our work,
13 CRNS stations are used to evaluate SMAP and soil moisture model products (see
Figure 1). The datasets are collected in the context of the TERENO project [75] and passed
quality assurance procedures. We acknowledge that the effective depth of CRNS is de-
pendent on soil moisture, and also on the depth of the calibration dataset. Our CRNS
calibration and validation used individual support volumes of samples from 5, 20, and
50 cm based on the gravimetric method. We calculate the penetration depth based on
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previous study [76] and found that the effective penetration depth is mostly between
15–30 cm in our research area and period. The mean and median of penetration depth
are 20.3 cm and 18.6 cm respectively. Hence, we assumed that the CRNS has an effective
penetration depth of 20 cm. Table 3 provides more information about the CRNS stations.

Table 3. Coordinates, altitude (m), average annual precipitation (mm y−1), land use type information [60] for 13 sites,
adapted with permission from ref. [60]. Copyright 2017 by Roland Baa.tz.

Name Latitude Longitude Altitude Precip. Land Use Clay % Sand % Bulk g cm−3

Merzenhausen 50.9303 6.29747 94 825 crop 22 21 1.39
Aachen 50.7986 6.02472 232 952 crop 23 22 1.20

Selhausen 50.8659 6.44719 − − crop 24 16 1.26

Heinsberg 51.0411 6.10424 57 814 grassland,
crop 19 18 1.27

Wüstebach 50.5049 6.33092 605 1401 spruce 23 19 0.83
Gevenich 50.9892 6.32355 108 884 crop 20 22 1.31

Rollesbroich1 50.6219 6.30424 515 1307 grassland 23 22 1.09
Rollesbroich2 50.6242 6.30514 − − grassland - - 1.09

Ruraue 50.8623 6.42734 102 743 grassland 26 19 1.12
Wildenrath 51.1327 6.16918 76 856 needleleaf 12 65 1.15

Kall 50.5013 6.52645 504 935 grassland 22 20 1.31
Schoeneseiffen 50.5149 6.37559 − − grassland 24 16 1.11

Kleinhau 50.7224 6.37204 − − grassland 25 15 1.12

2.2.3. SMAP Enhanced Soil Moisture Product

SMAP provides soil moisture observations of the top 5 cm of the soil and thaw/freeze
states derived from the passive microwave brightness temperature (BT). BT is recorded
by a conically-scanning antenna beam at L-band with a 40◦ incidence angle. This results
in a −3 dB antenna footprint of 40 km. To enhance the resolution of the typically 36 km
SMAP radiometer data posting, the Backus-Gilbert optimal interpolation technique is used
to interpolate the multiple scans of a single location. It makes most use of the available
information and provides a better representation of the original data [26].

In this study the L3_SM_P_E product (version 4) was used, which provides soil
moisture on a 9 km EASE2 (updated Equal-Area Scalable Earth-2) grid (National Snow
and Ice Data Center NSIDC, https://nsidc.org/data/smap/smap-data.html, accessed on
1 August 2021). The soil moisture baseline retrieval algorithm in L3_SM_P_E product is
performed by the vertical polarization single channel algorithm (SCA-V) (https://nsidc.
org/data/smap/technical-references, accessed on 1 August 2021). The L3_SM_P_E product
is provided in the form of global daily datasets, including soil moisture measured for the
6:00 a.m. (descending) and 6:00 p.m. (ascending) orbit. Here, the soil moisture daily value
is calculated by taking the average of the two datasets. To eliminate the non-high-quality
pixels, the surface and quality flags are used (retrieval_qual_flag and surface_flag).

2.3. Methods
2.3.1. Data Processing

Both 2017 (normal year) and 2018 (dry year) were selected to be evaluated for all
datasets. In order to avoid unreliable soil moisture observations during frozen conditions
and snow cover, the winter period (December, January, and February) was excluded.

The model simulations and SMAP product are sampled onto the SMAP grid by nearest
neighbor (NN) search. Compared to area-wide spaceborne observation and model simula-
tion results, the CRNS stations are quite sparse. As the spatial coverage of measurements
by a CRNS is close to the model grid size in this work, CRNS observations are compared to
a complete cell of the CLM, CLM-ParFlow, and SMAP grid containing the coordinates of
the CRNS stations.

https://nsidc.org/data/smap/smap-data.html
https://nsidc.org/data/smap/technical-references
https://nsidc.org/data/smap/technical-references
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The SMAP product and the model grids are at different spatial resolutions (9 km vs.
500 m) and comparison between SMAP soil moisture and modeled soil moisture is made
at both resolutions. The fine resolution (model grid) provides a detailed assessment of the
spatial variability, and the coarse resolution (SMAP grid) gives a smoothed representation
excluding local noise. The comparison at the 9 km resolution is made by taking the
arithmetic average of simulated soil water content data on the 500 m grid to get modeled
values at the 9 km resolution (upscaling). The comparison at the 500 m resolution is made
by downscaling the SMAP data, using the nearest source to destination to remap from 9 km
resolution to 0.5 km resolution. In this case, for each model grid cell, it takes the value from
the nearest SMAP grid cell. This is done by ESMF (Earth System Modeling Framework)
regridding function in NCL (NCAR Command Language).

2.3.2. Standard Evaluation Metrics

Statistical performance was evaluated according to Good Practices Guidelines [19,77],
including bias, Root Mean Square Difference (RMSD), and unbiased Root Mean Square
Error (ubRMSD). The bias is given by

bias =
1
n

n

∑
i=1

(Xi − Xi,re f ) (5)

where Xi represents a simulated or remotely sensed product, and Xi,re f is the referenced
soil moisture dataset. The sample size is n.

The Root Mean Square Deviation (RMSD) is given by

RMSD =

√
1
n

n

∑
i=1

(Xi − Xi,ref)
2 (6)

and the unbiased root mean squared difference (ubRMSD) is

ubRMSD =

√
RMSD2 − bias2 (7)

The correlation between different soil moisture datasets (X and Y) was calculated using
the Pearson correlation coefficient (rX,Y). Here, the focus is on the dynamics of the different
time series rather than absolute soil moisture values, considering the fundamental scale
mismatch between the CRNS, SMAP, and LSM model grid, which cannot be adequately
considered without complex scaling functions. The ubRMSD and rX,Y screen out the
influence of bias between different amplitudes of soil moisture variation [78].

rX,Y =
cov(X, Y)

σXσY
(8)

where cov(X, Y) represents the covariance between two datasets, σX and σY are the standard
deviations for dataset X and Y.

2.3.3. Triple Collocation

The method is based on the assumption that a measurement system can be understood
as being composed of an additive systematic error (αi), multiplicative systematic error (βi),
additive zero-mean random error (εi), and θ (the underlying truth value) [45]

i = αi + βiθ + εi i ∈ [X, Y, Z] (9)

X, Y, and Z denote the time series of soil moisture products to be compared. Here, the
assumption is that the errors are uncorrelated with each other (cov

(
εi, ε j

)
= 0, i 6= j) and

with θ (cov(εi, θ) = 0). It applies for both reference datasets and soil moisture products
to be evaluated. Given that all observation data has errors, in this study, we assumed
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that X is the reliable CRNS dataset which is well calibrated and without multiplicative
(second order) error, Z is the SMAP L3 enhanced product, and Y denotes the soil moisture
in the upper 5 cm of CLM and CLM-ParFlow simulations. The βx is set to 1, and other
scaling factors are calculated according equations 10-12 to eliminate the scale differences of
different products. This assumption was also made in other studies [45,77,79].

βx = 1 (10)

βy =
cov(X, Z)
cov(Y, Z)

(11)

βz =
cov(X, Y)
cov(Z, Y)

(12)

The scaling factor can be regarded as a form of regression, by taking a third variable as
a tool to resolve the relationship between the two variables [80]. It can be used to describe
the soil moisture sensitivities. The unscaled error variances which represent the variance
of the scaled white noise of each product can be solved by

σ2
εX =

∣∣∣∣var(X)− cov(X, Y)cov(X, Z)
cov(Y, Z)

∣∣∣∣ (13)

σ2
εY =

∣∣∣∣var(Y)− cov(Y, X)cov(Y, Z)
cov(X, Z)

∣∣∣∣ (14)

σ2
εZ =

∣∣∣∣var(Z)− cov(Z, Y)cov(Z, X)

cov(Y, X)

∣∣∣∣ (15)

In addition, the signal-to-noise ratio (SNRs) is calculated, which provides a more clear
representation of the ratio between soil moisture and uncertainty magnitude [77]. It is a
combination of several information sources, including the sensitivity of the measurement
system, the variability of the true value (θ2) and the variability of the random error (ε2) [44].
SNRs is not expressed as normalized between 0 and 1, but is often calculated and linearized
by converting into decibel (dB) units

SNRX = −10 log
(∣∣∣∣ var(X)cov(Y, Z)

cov(X, Y)cov(X, Z)
− 1
∣∣∣∣) (16)

SNRY = −10 log
(∣∣∣∣ var(Y)cov(X, Z)

cov(Y, X)cov(Y, Z)
− 1
∣∣∣∣) (17)

SNRZ = −10 log
(∣∣∣∣ var(Z)cov(X, Y)

cov(Z, X)cov(Z, Y)
− 1
∣∣∣∣) (18)

3. Results and Discussions
3.1. Agreement between Spaceborne and In Situ Observations

Table 4 shows that the SMAP L3_SM_P_E product and CRNS observations have in
general a relatively good agreement. The detailed time series of soil moisture from SMAP,
CRNS and LSMs at 13 sites are provided in Appendix A (Figure A1). The SMAP product
and CRNS show on average not large systematic differences, while previous studies [23,39]
found that SMAP tends to underestimate soil moisture compared to CRNS measurements
at most sites. In terms of average r value, the SMAP is relatively well correlated to CRNS,
ranging from 0.653 to 0.825, except for Ruraue station (r = 0.452). The Ruraue station is
located near the Rur river, and part of the closest SMAP pixels contain some amount of
open fresh water. The presence of open water introduces a soil moisture bias due to the
lower brightness temperature for the grid cell. This may partly explain the low r for the
Ruraue station.
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Table 4. Comparison metrics for the SMAP L3_SM_E_P product compared to CRNS.

Name Bias: cm3 cm−3 RMSD: cm3 cm−3 ubRMSD: cm3 cm−3 r

Merzenhausen 0.076 0.096 0.059 0.674
Aachen −0.003 0.049 0.049 0.768

Selhausen 0.031 0.066 0.059 0.653
Heinsberg 0.070 0.091 0.057 0.668
Wüstebach −0.120 0.133 0.057 0.752
Gevenich 0.067 0.088 0.058 0.684

Rollesbroich1 −0.023 0.060 0.055 0.741
Rollesbroich2 −0.053 0.077 0.055 0.708

Ruraue 0.030 0.080 0.075 0.452
Wildenrath 0.133 0.143 0.053 0.654

Kall −0.072 0.086 0.047 0.825
Schoeneseiffen −0.055 0.079 0.056 0.718

Kleinhau −0.018 0.051 0.048 0.789
Average 0.005 0.085 0.056 0.699

However, it should be noted that local differences are large. One reason is that the
CRNS footprint is still much smaller than a 9 km SMAP-pixel. This spatial mismatch
could lead to differing soil hydraulic parameters and land cover between CRNS and SMAP
observations (see Tables 3 and 5) causing lower correlation between the two soil moisture
datasets. It is also important to consider that the satellite observations are negatively
impacted by high vegetation density, topography, frozen soil, snow cover, and volume
scattering effect in case of low soil moisture content. The retrieval under dense forest is
challenging or impossible since the recorded signal (brightness temperature) originates to a
large extend from canopy instead of the soil microwave emissions [81,82]. When vegetation
density increases, the impact of soil moisture on changes in ground emissivity becomes
invisible, hence, the contribution of the ground is less than from the canopy. A large bias
is observed in Wildenrath, where the land cover type is needleleaf (forest). Moreover,
topography as well as surface roughness increases the surface area and alters the total
microwave emission. In addition, it is also found that areas with complex topography are
prone to shadowing and adjacency effects [83,84].

It should be noted that the soil organic matter content is high at the Wüstebach site,
and there is a large difference of the bulk density between ancillary data (1.3 g cm−3) and
actual observed value (0.83 g cm−3). In the single channel algorithm used by SMAP to
retrieve soil moisture, the dielectric mixing model plays an important role in describing the
relationship between soil moisture and microwave emissivity. A recent study has found
that high levels of organic matter decrease the microwave effective dielectric constant and
therefore cause higher brightness temperature for a particular soil moisture content [85].

3.2. Comparison of Model Simulation and CRNS Measurements

The 500 m modeled soil moisture was compared with CRNS measurements, assuming
a measurement depth of 20 cm. Bias, RMSD, ubRMSD, and correlation coefficient were
calculated for 13 stations and over three seasons (see Table 6 and Figure 3). The CLM
simulations tend to overestimate soil moisture with a bias of 0.070 cm3 cm−3 and CLM-
ParFlow has a slight dry bias of −0.021 cm3 cm−3. The large wet bias of the models for
Wildenrath is most likely related to soil texture. Soil moisture decreases faster in sand than
in finer textured soil. The sand content is high (up to 65%), and the models seem to have
a too low hydraulic conductivity for this site. CLM-ParFlow shows a large bias at sites
located at a higher elevation, such as Wüstebach, Rollesbroich, and Schoeneseiffen sites.
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Table 5. Ancillary datasets used in the SMAP soil moisture retrieval algorithm. Notice that altitudes differ from Table 1 for
the sites because here we list the altitudes used by SMAP.

Name DEM (m) IGBP Clay% Sand% Bulk Density (g cm−3)

Merzenhausen 79 12: Croplands 21 39 1.40
Aachen 209 12: Croplands 22 41 1.40

Selhausen 105 13: Urban and
built-up lands 23 37 1.40

Heinsberg 45 13: Urban and
built-up lands 21 39 1.40

Wüstebach 610 1: Evergreen
needleleaf forests 20 42 1.30

Gevenich 99 12: Croplands 22 41 1.40

Rollesbroich1 520
14: Cropland

/natural
vegetation mosaics

20 42 1.30

Rollesbroich2 520
14: Cropland

/natural
vegetation mosaics

20 42 1.30

Ruraue 98 12: Croplands 22 39 1.40
Wildenrath 79 5: Mixed forests 22 41 1.40

Kall 510
14: Cropland

/natural
vegetation mosaics

20 40 1.30

Schoeneseiffen 567 5: Mixed forests 20 42 1.30
Kleinhau 347 5: Mixed forests 20 42 1.30

Table 6. Comparison metrics between model simulations and in-situ observations.

Name

CLM Simulations CLM-ParFlow Simulations

Bias:
cm3 cm−3

RMSD:
cm3 cm−3

ubRMSD:
cm3 cm−3 r Bias:

cm3 cm−3
RMSD:

cm3 cm−3
ubRMSD:
cm3 cm−3 r

Merzenhausen 0.108 0.136 0.050 0.711 0.045 0.105 0.094 0.414
Aachen 0.126 0.058 0.047 0.782 −0.106 0.115 0.045 0.756

Selhausen 0.035 0.127 0.063 0.664 0.131 0.141 0.050 0.725
Heinsberg 0.111 0.088 0.049 0.785 0.005 0.083 0.083 0.365
Wüstebach 0.073 0.079 0.052 0.665 −0.169 0.175 0.047 0.628
Gevenich −0.060 0.160 0.062 0.615 0.002 0.065 0.065 0.574

Rollesbroich1 0.148 0.071 0.062 0.726 −0.091 0.104 0.051 0.766
Rollesbroich2 0.036 0.070 0.068 0.733 −0.112 0.126 0.056 0.751

Ruraue 0.016 0.105 0.054 0.821 0.068 0.087 0.053 0.770
Wildenrath 0.090 0.186 0.039 0.755 0.078 0.083 0.029 0.800

Kall 0.182 0.079 0.079 0.576 0.007 0.075 0.075 0.570
Schoeneseiffen 0.008 0.077 0.070 0.778 −0.088 0.101 0.050 0.805

Kleinhau 0.031 0.103 0.076 0.675 −0.049 0.078 0.061 0.720

Average 0.070 0.103 0.059 0.714 −0.021 0.103 0.058 0.665
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After overlooking systematic bias, ubRMSD for the CLM stand-alone model and
the coupled model are not significantly different and both below 0.06 cm3 cm−3, which
indicates that both simulations could produce reasonable results. The correlation between
CRNS observations and land surface simulations ranges from 0.576 to 0.821 for CLM
stand-alone and 0.365 to 0.805 for CLM-ParFlow. Both CLM and CLM-ParFlow simulations
show a strong correlation with in situ data, suggesting that the soil moisture dynamics at
500 m scale can be relatively well captured by both models.

3.3. Temporal and Spatial Correlation between Model Simulations and the SMAP
L3_SM_P_E Product

Figure 4 shows daily mean soil moisture content in the upper soil layer (5 cm) over
the research area for CLM and CLM-ParFlow simulations compared with the SMAP
L3_SM_P_E product, together with daily precipitation time series. The SMAP product
and model simulations have different soil wetting and drying dynamics after rainfall. The
near-surface soil is sensitive to precipitation because of intensive positive vertical water
gradients, but tends to dry quickly after water infiltration related to evaporation [86].
Although the representation of L-band sensing depth at 5 cm has been using for remote
sensing validations [26,87,88]; however, the L-band sensing depths are affected by soil
moisture, and the penetration depth can be shallower when soil moisture is high [89]. The
penetration depths and vertical soil moisture gradients lead to different drying behavior.
The simulations match soil moisture from SMAP well during most of the year. Generally,
CLM overestimates the soil water content during summer. Compared to SMAP, CLM-
ParFlow simulations show a very small wet bias of only 0.004 cm3/cm3 while CLM has a
larger wet bias of 0.065 cm3 cm−3. The RMSD for CLM and CLM-ParFlow simulations are
0.085 cm3 cm−3 and 0.045 cm3 cm−3 respectively.
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Spatial maps of performance indices are given in Figure 5 and illustrate the differences
between model predictions and observations. For the maps at 500 m resolution, as the
resolution of the simulations is finer than the satellite measurement, large differences
between simulation and measurements occur in valleys and rivers regions because these
areas are not well covered by the coarser resolution of the SMAP satellite.
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Figure 5. Spatial maps of bias (left three columns) and ubRMSD (right three columns) of soil moisture
between SMAP and CLM model (a,c), SMAP and CLM-ParFlow model (b,d) for MAM, JJA and SON
over the investigation area posted at (upper) the resolution of the model grid (250 m) and (lower) at
the resolution of SMAP (9 km).

In most of the area, CLM has a higher soil water content than SMAP. The CLM-ParFlow
model captures the spatial variability of soil water content and shows the influence of the
river network. The soil moisture is close to saturation in the river valley. Meanwhile, the soil
is drier in hilly areas. This is related to the difference in subsurface process representation
between CLM and CLM-ParFlow. In Parflow, the Richards’ equation is used to calculate 3D
subsurface water flow, including both vertical and lateral water movement which includes the
lateral groundwater flow which moves water from the hilly areas towards the river valleys.
In addition, lateral flow by streams and rivers is also modeled. The water flow convergence
process (i.e., the lateral redistribution of water via streams and aquifers from hills to the river
valleys and lowlands) can be better captured by CLM-ParFlow than by CLM, which just
considers vertical water flow. In the northern flat and valley areas, the differences of soil
moisture between CLM and CLM-ParFlow is smaller, where precipitation and infiltration
excess is low, thus the later water flow redistribution processes have smaller impact.
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Further minor discrepancies between CLM and CLM-ParFlow simulations are related
to the different estimation of soil hydraulic parameters (different pedo-transfer functions).
Several areas where CLM shows larger deviations with respect to SMAP soil moisture
coincide with loam regions of the soil texture map, which indicates that for loam texture
CLM is probably too wet, which could be related to the default pedo-transfer function in
CLM, which might underestimate hydraulic conductivity for loamy soil types. The spatial
distribution of both bias and ubRMSD also show clear differences between the northern flat
area (with larger bias) and the southern hilly area (smaller bias). This is probably related to
the fact that precipitation is high in the hills and both CLM and SMAP have soil moisture
values close to field capacity. Concerning CLM-ParFlow, the differences with SMAP are
larger in the Rhine valley, ParFlow overestimates the influence of the river on soil moisture
values in the areas next to the stream. Notice that the CLM-ParFlow model is not calibrated,
and that river-groundwater interaction could be closer to real conditions by adjusting for
example riverbed hydraulic conductivities. Both bias and ubRMSD values show that the
discrepancies between model simulations and SMAP data are smallest in autumn for CLM
simulations and CLM-ParFlow.

3.4. Triple Collocation

In general, the statistics of a time series triple is inherently unique, so that a comparison
of different triples in a collocation analysis is not directly possible. However, the same
SMAP product and CRNS data are used in this study to be compared to two different
simulation results. That provides a large ability for a direct comparison. Table 7 shows the
TC results for model simulations (as Y) and SMAP L3_SM_E_P product (as Z) compared to
reference CRNS datasets (as X). Per definition, the scaling factor βX of the reference dataset
is 1, while the SMAP product and model simulations are scaled to this reference product.
βy and βz values larger than 1 indicate that the dynamic range of the datasets from the
SMAP product and the model simulations is lower than that of CNRS soil moisture time
series, and vice versa. For CLM stand-alone simulation, the average βy is 4.538 and βz
is 1.370. For CLM-ParFlow, βy and βz are quite close (1.453 and 1.242 separately). The
scaling factors larger than 1 indicate that both SMAP L3_SM_P_E and the land surface
model simulations have underestimated the soil moisture dynamics at the CRNS-sites,
and probably in the complete research area. Compared to CLM stand-alone simulations,
the βy of the coupled model is closer to 1, indicating less need to scale. In terms of βz, it
should be noted that the scaling factors for Wüstebach and Wildenrath are lower than for
other stations, indicating that the dynamics range of retrieved soil moisture needs to be
reduced to match the scale of CRNS observations and model simulation time series. For
these two stations, some additional problems (see Section 3.1) seem to influence the soil
moisture retrieval results. Although the soil moisture datasets used in the TC correspond
to different depths (SMAP for the upper 5 cm and the other two datasets for the upper
20 cm), no obvious relationship between the penetration depth differences and soil moisture
dynamics is detected. Table 7 also provides the absolute TC error standard deviation. The
ranges for σεY are 0.010 to 0.026 (CLM) and 0.028 to 0.080 (CLM-ParFlow) respectively. In
general, the SMAP soil moisture product provides similar error standard deviations with
σεZ ≤ 0.060 in both triples.
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Table 7. Triple collocation comparison results for model simulations (as Y) and SMAP L3_SM_E_P product (as Z) compared
to reference CRNS datasets (as X).

Name

Z: CLM Z: CLM-ParFlow

σεX σεY σεZ βY βZ SNRY σεX σεY σεZ βY βZ SNRY

Merzenhausen 0.016 0.024 0.061 3.015 1.285 −1.397 0.021 0.080 0.056 1.134 1.088 −7.456
Aachen 0.020 0.025 0.057 2.610 1.270 1.485 0.023 0.037 0.050 1.199 1.025 6.576

Selhausen 0.017 0.015 0.061 5.669 1.556 −2.082 0.011 0.045 0.059 1.415 1.441 2.622
Heinsberg 0.013 0.026 0.056 2.346 1.391 3.351 0.015 0.060 0.054 1.980 1.283 −11.020
Wüstebach 0.028 0.008 0.055 5.941 0.783 1.330 0.028 0.036 0.055 1.526 0.780 −1.414
Gevenich 0.020 0.024 0.060 3.520 1.376 −3.166 0.040 0.041 0.052 1.257 1.052 4.035

Rollesbroich1 0.023 0.024 0.058 3.698 1.455 −1.250 0.030 0.038 0.050 1.267 1.144 8.143
Rollesbroich2 0.019 0.023 0.059 3.858 1.579 −0.489 0.039 0.038 0.050 1.322 1.192 8.099

Ruraue 0.008 0.019 0.065 2.806 1.691 6.315 0.038 0.058 0.068 1.383 2.164 0.826
Wildenrath 0.018 0.010 0.057 3.689 0.889 4.258 0.021 0.028 0.056 1.072 0.831 7.878

Kall 0.006 0.017 0.049 7.141 1.443 −6.570 0.023 0.058 0.046 1.825 1.337 −4.374
Schoeneseiffen 0.011 0.010 0.061 7.090 1.429 2.879 0.010 0.036 0.060 1.774 1.383 4.907

Kleinhau 0.026 0.014 0.061 7.607 1.664 −2.779 0.023 0.040 0.057 1.730 1.424 3.800
Average 0.017 0.018 0.058 4.538 1.370 0.145 0.025 0.046 0.055 1.453 1.242 1.740

The linearized SNR value gives the ratio relationship between soil moisture and uncer-
tainty magnitude. On average, the SNRY of CLM and CLM-ParFlow are 0.145 and 1.740 dB
respectively. The negative SNRY values demonstrate that the random noise is larger than the
soil moisture signal. In the CLM-ParFlow simulation, most sites show a better performance
than the CLM model. As described before, Ruraue is along the river, where the soil mois-
ture is sensitive to river parameterization in ParFlow. Heinsberg, Kall, and Kleinhau have
large negative values, indicating that both models have large absolute errors. Overall, the
CLM-ParFlow could provide more valuable results than the stand-alone model.

3.5. Effect of Lateral Water Flow on Soil Moisture

Previous research indicated that the lateral flow is important in land surface modeling,
especially when the resolution is fine [90]. The spatial patterns of modeled soil moisture
show that the CLM-ParFlow has wet grid cells at foothills and valleys. The soil moisture
gradient is larger in the wet grid cells and surrounding drier grid cells. By taking account
of lateral flow, soil moisture decreases in these wet areas due to lateral diffusion. Also,
the lateral drainage driven by topographic gradient results in soil moisture redistribution.
In view of previous studies [91], lateral flow is expected for steep hillocks, even if slight
difference in soil texture between adjoining grid cells. Also, the accumulated runoff in
ParFlow, generated by infiltration excess or saturation excess, can route or reinfiltrate, while
some other traditional LSMs can remove excess water from modeled water cycle [92], CLM-
ParFlow maintains high soil moisture in convergence areas. This confirms the importance
of lateral subsurface flow on the hydrological cycle, especially in mountainous areas.

4. Conclusions

This study compared soil moisture data from cosmic ray neutron sensors (CRNS),
passive microwave remote sensing (SMAP L3_SM_E_P product) and land surface model
simulations by the Community Land Model (CLM, version 3.5) and the coupled land
surface-subsurface model CLM-ParFlow over a 150 × 150 km region in western Germany.
CLM-ParFlow can better capture the impact of groundwater on soil moisture than CLM as
it has a more advanced subsurface physical process scheme. With this approach an analysis
of the impact of the representation of subsurface processes in hydrological simulations of
soil moisture was performed. The evaluation results can be summarized as follows:

Over 13 CRNS sites, the SMAP L3_SM_E_P product shows a small bias of 0.005 cm3

cm−3 only compared to the CRNS observations. Nevertheless, local differences can be
large (up to −0.120 cm3 cm−3 for the densely forested Wüstebach site) due to differing
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spatial resolution of the soil moisture products and errors in soil texture and land cover
used to derive soil moisture from brightness temperature in the SMAP L3_SM_E_P product.
Besides, the disturbing role of dense vegetation and complex topographic features influence
the accuracy of the SMAP product. Overall, the unbiased root mean square error (ubRMSE)
is around 0.056 cm3 cm−3, indicating that SMAP L3_SM_E_P product could barely meet
its mission requirement for this very heterogeneous and hilly region.

The comparison between CRNS and land surface simulations show that CLM has
a wet bias (0.070 cm3 cm−3) and CLM-ParFlow has a dry bias (−0.021 cm3 cm−3). Local
biases can be large, which might be related to the uncertainty in soil texture and hydraulic
conductivity, inadequate pedotransfer functions and lack of consideration for soil bulk
density in CLM model. In terms of ubRMSE, both CLM and CLM-ParFlow are below
0.06 cm3/cm3 and compare well to CRNS observation dynamics. The SMAP product and
CLM-ParFlow do not show a systematic difference in soil moisture, which is in contrast to
most land surface models which are wetter than SMAP.

The triple collocation (TC) comparison implies that both CLM and CLM-ParFlow
show similar noise levels with σεZ below 0.058. The scaling factor of CLM-ParFlow is
less than a third of CLM stand-alone, indicating that the coupled model could perform
better with respect to CRNS measurements. This is an important aspect for future data
assimilation studies, as the typical adaptation of the soil moisture climatology of model
and observation becomes less mandatory. The higher SNR (signal-to-noise ratio) value for
the coupled model CLM-ParFlow also indicates it can provide more valuable results than
the CLM stand-alone model.

It should be noted that the direct metrics (e.g., RMSE and r) do not show a clear better
performance of the CLM-ParFlow model compared to the CLM stand-alone model. The TC
method shows that the simulation has been improved when lateral subsurface dynamics is
involved. Unlike typical performance metrics, where the assumption is that the reference
data set is free of (random) errors, TC methods account for sensor and representativeness
errors and can be considered more robust than conventional metrics and close to reality [45].
With conventional evaluation metrics, we focus on the dynamics of the different time series
instead of the absolute soil moisture values, because there can be a systematic bias between
CRNS and SMAP measurements, as well as model simulations, which is related to different
underlying assumptions for the different measurement and simulation methods. This
method is also used because it is standard in the land surface modeling literature and
allows therefore an easier comparison with other papers [36,40,93,94].

In summary, the model structure is important for soil moisture modeling. Compared
to CLM-ParFlow model, the CLM model has a simplified representation of describing
the soil moisture variability while neglecting lateral water flow. The CLM model tends
to overestimate the soil moisture and provided similar soil moisture estimation in grid
cells that have the same soil type and plant functional type. The lateral subsurface process
in CLM-ParFlow lead to soil water redistribution and improvements in prediction. The
coupled model can describe the spatial variability of soil moisture. It is worth to consider
lateral subsurface flow in LSMs to have more accurate soil moisture simulation.

However, some limitations should be noted. First, lateral subsurface flow takes mainly
place in the saturated subsurface. However, there is also evidence for lateral flow in the
top layer of the unsaturated zone for sloping soil due to rainfall dynamics. Nevertheless,
the CRNS measurements provide in the first place only information on soil moisture, and
are less suited to evaluate how well the influence of groundwater is represented by models.
Second, the CRNS measurements might be slightly biased, caused by the limited number of
observation sites, scale mismatches, and imperfect calibration. The bias is simply set-aside
when using the same statistical evaluation methods in order to compare these results with
other remote sensing and land surface modeling studies. Finally, this study only covers
three seasons for the years of 2017 (quite average conditions) and 2018 (very dry). A longer
time may be desirable to better evaluate the relative performance of the model, including
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different weather conditions. Also, a finer soil map resolution and larger study domain
would be desirable in future studies.
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Appendix A

Figure A1. Time series and scatterplots of soil moisture from SMAP (red), CRNS (purple) and LSMs
CLM at 5 cm (green solid) and at 20 cm (green dashed); CLM-ParFlow at 5 cm (blue solid) and at
20 cm (blue dashed) at 13 sites.
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