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Abstract: The Laurentian Great Lakes comprise the largest assemblage of inland waterbodies in
North America, with vast geographic, environmentally complex nearshore benthic substrate and
associated habitat. The Great Lakes Water Quality Agreement, originally signed in 1972, aims to
help restore and protect the basin, and ecosystem monitoring is a primary objective to support
adaptive management, environmental policy, and decision making. Yet, monitoring ecosystem
trends remains challenging, potentially hindering progress in lake management and restoration.
Consistent, high-resolution maps of nearshore substrate and associated habitat are fundamental to
support management needs, and the nexus of high-quality remotely sensed data with improvements
to analytical methods are increasing opportunities for large-scale nearshore benthic mapping at
project-relevant spatial resolutions. This study attempts to advance the integration of high-fidelity
data (airborne imagery and lidar, satellite imagery, in situ observations, etc.) and machine learning
to identify and classify nearshore benthic substrate and associated habitat using a case study in
southwest Lake Michigan along Illinois Beach State Park, Illinois, USA. Data inputs and analytical
methods were evaluated to better understand their implications with respect to the Coastal and
Marine Ecological Classification Standard (CMECS) classification hierarchy, resulting in an approach
that could be easily applied to other shallow coastal environments. Classification of substrate and
biotic components were iteratively classified in two Tiers in which classes with increasing specificity
were identified using different combinations of airborne and satellite data inputs. Classification
accuracy assessments revealed that for the Tier 1 substrate component (3 classes), average overall
accuracy was 90.10 ± 0.60% for 24 airborne data combinations and 89.77 ± 1.02% for 12 satellite
data combinations, whereas the Tier 1 biotic component (2 classes) average overall accuracy was
93.58 ± 0.91% for 24 airborne data combinations and 92.67 ± 0.71% for 11 satellite data combinations.
The Tier 2 result for the substrate component (2 classes) was 93.28% for 2 airborne data combinations
and 95.25% for the biotic component (2 classes). The study builds on foundational efforts to move
towards a more integrated data approach, whereby data strengths and limitations for mapping
nearshore benthic substrate and associated habitat, expressed through classification accuracy, were
evaluated within the context of the CMECS classification hierarchy, and has direct applicability to
critical monitoring needs in the Great Lakes.

Keywords: benthic mapping; machine learning; Coastal and Marine Ecological Classification Stan-
dard (CMECS); airborne hyperspectral imagery; Sentinel-2 imagery; Illinois Beach State Park; south-
west Lake Michigan; Coastal Zone Mapping and Imaging Lidar (CZMIL) System
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1. Introduction

Lake and ocean bottom, or benthic habitats, are critical zones of interface between the
physical processes that shape lake morphology and surface geology and a large number
of species that need specific bottom types for shelter, feeding, and reproduction [1]. The
Laurentian Great Lakes comprise the largest assemblage of inland waterbodies in North
America and are strongly influenced by biological processes associated with the lake floor,
which contribute to whole-lake productivity and biodiversity [2]. Many native fishes and
other aquatic species have strong associations with substrates for spawning and cover.
Simultaneously, the lake bottom is increasingly dominated by benthic invasive species
which have induced dramatic whole-lake phase shifts in food webs, water quality, and
the fisheries economy [3]. Furthermore, impacts from anthropogenic forces (development,
deforestation, shoreline armoring, wetland dewatering, etc.) have resulted in whole-
lake changes, such as to chemical, physical, and biological integrity. As a result, the
Great Lakes Water Quality Agreement was signed in 1972, amended in 1983 and 1987,
and updated again in 2012 to help restore and protect the basin, in which ecosystem
monitoring is a key objective for adaptive management, environmental policy, and decision
making [4]. However, monitoring ecosystem trends over time remains a challenging task,
especially over such a vast geographic, environmentally complex, and dynamic system like
the Great Lakes. Specifically, progress in lake and marine coastal ecosystem restoration,
monitoring, and management continues to be hindered by a lack of consistent, high-
resolution mapping of nearshore substrate and associated habitat, including submerged
aquatic vegetation (SAV).

Historically, nearshore substrate and associated habitats have been mapped in a spa-
tially and temporally piece-meal fashion with varying spatial resolution, coverage, and
accuracy around the Great Lakes [5]. Data sources typically include discrete bottom grab
samples, in situ measurements, and single- and multi-beam depth soundings, while more
recent methods, such as satellite and airborne imagery and light detection and ranging
(lidar) data, offer repeatable and consistent temporal and spatial coverage. Given environ-
mental variability in the basin and limitations associated with each data collection method,
no single solution works well in all areas. Thus, detailed substrate and habitat maps
only exist in scattered, isolated areas where data resolution is sufficient, often supporting
individual restoration project engineering and design, and the only basin-wide information
describing geomorphology, substrate, and habitat is available at a broad scale [6]. Ulti-
mately, this means that data gaps exist, leaving managers without the sufficient spatial,
temporal, or data coverage detail needed to describe substrate and habitat features [5].
In order to work towards a solution to overcome these gaps, it will take a multi-data
fusion approach, capitalizing on the strengths of individual data collection methods and
technologies.

Despite challenges with mapping nearshore benthic substrate and habitat, advance-
ments have been made in the development and application of remote sensing technology
for mapping complex coastal and inland waterbodies [7,8]. The first of these advance-
ments is increased spatial coverage of passive electro-optical multi- and hyperspectral
imagery with increased spatial, spectral, and temporal resolutions in both airborne and
spaceborne platforms. Additionally, there is increased coverage from active sensors, such
as airborne lidar and spaceborne radar, in which sensors emit and measure returned light
or microwave energy, respectively. For example, integrated airborne sensor suites such as
the U.S. Army Corps of Engineers’ (USACE) Coastal Zone Mapping and Imaging Lidar
(CZMIL) System, operated under the National Coastal Mapping Program (NCMP) by
the Joint Airborne Lidar Bathymetry Technical Center of Expertise (JALBTCX), routinely
collects high-resolution imagery (<1 m) and topobathymetric lidar for coastal areas of the
U.S., including the Great Lakes [9]. Additionally, moderate- and high-resolution satellite
multispectral sensors, such as the European Space Agency’s Sentinel-2, offers increased
spatial coverage at relatively high spatial (10–20 m) and spectral resolutions that help to
overcome cloud cover limitations and increased data availability over coastal areas with the
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added benefit of broad, public access [10]. Other examples of higher-resolution commercial
satellite multispectral sensors that can be used for coastal mapping applications include
Maxar WorldView-2 and -3 (~1.2–1.8 m), Airbus Pleiades, and Planet SuperDove satellite
constellations [11]. Together, these data help to address the spatial data coverage and
resolution gaps; yet, challenges with water column optical properties can confound their
use in detailed substrate and habitat mapping [7,12].

The second major advancement in the use of remote sensing for benthic mapping is the
enhancement of system hardware and software, leading to improved analytical methods
for extracting sea- or lake-bed characteristics. The primary limitations for discriminating
different benthic types from imagery is due to the following: spectral heterogeneity of the
bottom, depth and water column properties and associated absorption and scattering of
light, and the radiometric capabilities of the sensor [7,12,13]. For those reasons, the ability
to distinguish benthic types varies across aquatic systems, depths, and water conditions.
Kutser et al. [7] provides an extensive review of the evolution of remote sensing technology
to map shallow water systems (benthic habitat and bathymetry <20 m in depth). They
explain that to help overcome the effect of the water column and obtain information
about benthic characteristics, there are empirical, semi-analytical, and analytical processing
techniques that can be employed [12]. In general, empirical methods can be site-specific
and require appropriately-timed, in situ measurements in the form of ground truth, while
more recent analytical, or physics-based inversion, modeling techniques may be less in
situ data-dependent but are more computationally complex and reliant upon atmospheric
correction of the imagery [7,14]. Inversion-optimization and non-linear optimization
techniques established by Brando et al. [15] and Lee et al. [16] continue to be refined
and improved [17,18] to help separate benthic target signals from the interference with
and optical properties of the water column, especially in complex coastal and inland
waterbodies.

Even more numerous than the approaches to overcome water column complexities
are the methods with which to identify benthic substrate and habitats from input data
(imagery, lidar depth, in situ samples, etc.). The classification of input data can either
be unsupervised (no training or ground truth samples) or supervised (manually or semi-
automated input of training or ground truth samples). Such methods are often used in
remote sensing and can also be directly integrated with empirical, semi-analytical, and
analytical approaches for bathymetry and benthic characterization. In general, there are
a wide variety of supervised classification techniques used to characterize benthic fea-
tures, such as traditional pixel-based classifiers like Maximum Likelihood [19,20], machine
learning algorithms like Support Vector Machine or Random Forest [21,22], Object-Based
Image Analysis (OBIA), a knowledge-based classification approach [23,24], and ensemble
classification approaches [23,25,26]. Often classification techniques make use of multiple
data inputs, fusing various passive (electro-optical imagery) and active (lidar) to help
increase map accuracy and detection capabilities [8,27]. All of these techniques have had
varying degrees of success and accuracy for mapping benthic substrate and habitat with
most applications related to mapping the distribution of coral reef, SAV, and macroal-
gae [7,12]. In the Great Lakes specifically, the use of passive and active remote sensing data
for nearshore benthic mapping applications have focused on such topics as monitoring the
movement of legacy mine tailings and impacts to local fisheries [28], habitat monitoring
around National Lakeshores [29,30], marine sanctuary planning [31], and SAV mapping,
such as nuisance algae Cladophora [32].

While no one data type and analytical approach works well in all areas of the Great
Lakes, the convergence of increasing amounts of remotely sensed data with improvements
to methods is opening opportunities to develop more frequent large-scale nearshore benthic
mapping at project-relevant spatial resolutions. To that end, the current trend is moving
towards integrating various available data, maximizing their individual strengths based on
location and environmental condition, as well as establishing semi-automated or automated
analytical methods that can be consistently applied for more comparable and repeatable
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map results [22]. While the studies referenced thus far have shown success in that direction,
the goal of basin-wide nearshore benthic mapping is still considered premature, with
data and technical approaches requiring refinement and vetting by the user community
(researchers, coastal managers, etc.). In particular, the need to understand the character
of the nearshore benthic environment in the Great Lakes rises from management topics
related to recreation, sport fishing, shoreline erosion, beach maintenance, infrastructure
improvements, ecosystem restoration, and beneficial re-use of dredged material. Decisions
made without adequate inventory or characterization of coastal habitats (terrestrial and
benthic), information about erodibility of the lake-bed substrate, or knowledge of the
interplay between the shoreline and the nearshore benthic environment under different
lake levels and weather scenarios, can negatively impact coastal habitat, shoreline change
rates, lake-bed down cutting, and longshore sediment transport regimes. Decision making
is further confounded by a multitude of private, local, state, and federal jurisdictions.
Methods that enhance or facilitate lake-bed classification, in a consistent manner, and
across the Great Lakes are therefore needed to facilitate cross-jurisdiction collaboration and
problem solving. As such, the goals of this study are to build on existing approaches to:

1. Evaluate the integration and role of high-fidelity data (airborne imagery and lidar,
satellite imagery, in situ observations, etc.) using machine learning (Support Vector
Machine) to identify nearshore benthic substrate and associated habitat and to better
understand their implications with respect to the Coastal and Marine Ecological
Classification Standard (CMECS) classification system hierarchy;

2. Develop a semi-automated, repeatable approach that could be applied in other shal-
low coastal environments using a case study in southwest Lake Michigan, USA.

2. Materials and Methods
2.1. Study Area

For this study, an 11.7 square kilometer area in southwest Lake Michigan along Illinois
Beach State Park, Illinois was selected (Figure 1). It falls within Lake County, just north of
the heavily populated Cook County (Chicago’s North Shore) and just south of the Wiscon-
sin state line. As noted in Mwakanyamale et al. [33] the southwest Lake Michigan shoreline
has experienced periods of erosion due in part to impacts from anthropogenic activity
and development together with recent high lake levels. The study area, while currently in
a more natural, state-owned park setting, historically experienced urban housing devel-
opment and construction of a military base during low lake levels (1915–1975), followed
by severe shoreline erosion during periods of high lake levels, at which point shoreline
armoring and protection structures and infrastructure along the immediate shoreline were
destroyed with remnants currently submerged in the nearshore part of the study area [33].
The area was selected for this study in part because it is the site of on-going shoreline map-
ping to better understand regional sediment transport with coordinated efforts conducted
between the Illinois Coastal Management Program, Illinois State Geological Survey (ISGS),
USACE, the National Oceanic and Atmospheric Administration (NOAA), and other local
partners. As such, it provides an ideal opportunity to maximize a variety of on-going
data collection activities. While the majority of the study area consists of unconsolidated
sand, it is marked by the unique anthropogenic remnants described earlier, patches of
substrate (coarse gravel fields), and biotic (Cladophora sp. macroalgae and quagga mussels
[Dreissena rostriformis bugensis]) features, and sporadic cultural features (shipwrecks).
This is consistent with the nearby Wisconsin—Lake Michigan lake-bed characterization
conducted by NOAA in fulfillment of the proposed sanctuary [31].
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Figure 1. Study area at southwest Lake Michigan, USA.

2.2. Airborne Data Pre-Processing

Airborne hyperspectral imagery (HSI) and topobathymetric lidar data were collected
by the JALBTCX over the study area using the CZMIL system. This system is an integrated
sensor suite that includes a circular scanning lidar system, an Itres Compact Airborne
Spectrographic Imager (CASI)-1500 hyperspectral sensor, and a true-color digital frame
Phase One 150 MP camera with a sensor fusion concept for improved coastal mapping
(benthic classification, water column characterization, etc.) in challenging shallow water
environments that are often turbid or have breaking waves [34,35]. Eight shore-parallel
flights were flown at 400 m altitude on 17 July 2018 on a fixed-wing aircraft. The CASI-1500
was programmed to collect 48 spectral bands (375–1050 nanometers; 14 nanometer band-
width) at 1 m spatial resolution, offering advantages with high spectral resolution (narrow
bands) that have shown utility for seafloor mapping in shallow, turbid waters [8,9,12,19,23].
Topobathymetric lidar data were collected using the Teledyne Optech CZMIL Nova system
including 10 kHz bathymetric full waveform lidar (green laser in the 532 nanometer wave-
length) with the effective rate increased to 70 kHz on land and in optically shallow water
using a segmented detector [34]. The CZMIL collected lidar data with topographic and
shallow channel bathymetric point densities of 2 points per square meter (nominal point
spacing of 0.7 m) and deep channel bathymetric point densities of 0.25 points per square
meter (nominal point spacing of 2 m); in this region, the CZMIL switched from shallow
to deep channel coverage at approximately the 9 m depth mark. Unlike passive sensors,
active sensor technology like lidar measures time of flight from light pulses emitted from
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the sensor to estimate depth using the 532 nanometer (green) wavelength for seafloor
applications [8,9]. Maximum possible depth for this survey occurred at 14 m (±0.5 m).

Both the HSI and topobathymetric lidar data were pre-processed using Teledyne’s
HydroFusion software and the standard National Research Council’s Committee on Data
Management and Computation (CODMAC) levels for HSI and lidar data pre- and post-
processing as well as product generation to prepare data for analysis. For the HSI, HydroFu-
sion standard pre-processing procedures included (1) radiometric calibration (conversion
of digital numbers to at-sensor radiance), (2) geometric correction for distortion removal
using topobathymetric lidar data, (3) water glint and ripple correction, (4) atmospheric
correction to surface reflectance adapted from the Simple Model of the Atmospheric Ra-
diative Transfer of Sunshine (SMARTS) model [36] developed by the National Renewable
Energy Laboratory [37] resulting in a 1 m spatial resolution mosaicked image (personal
communication Joseph H. Harwood, USACE). HydroFusion software was also used to
conduct standard lidar pre-processing in which lidar point clouds were classified and used
to generate seamless topobathymetric first return and bare earth digital elevation model
grids at 1 m spatial resolution. Additional products generated from the standard products
in HydroFusion software included the following: (1) bathymetry grid, (2) water-leaving
hyperspectral reflectance image (atmospherically corrected reflectance; water surface and
water column were not removed) with 29 spectral bands between 375 and 780 nanometers
(spectral subset from the 48 bands), and a (3) fusion image (atmospherically corrected with
sun glint and water ripples, water surface rugosity, removed and scaled and resampled
to match the lidar depth grid) with 48 spectral bands between 380 and 1050 nanometers
(Figure 2, panels a–c). The water-leaving reflectance (WLR) and fusion (FU) images were
further transformed to reduce data dimensionality and noise using the Minimum Noise
Fraction (MNF) transform tool in ENVI v5.5 (L3Harris Geospatial, Boulder, Colorado) soft-
ware. Specifically, this transformation is often applied to hyperspectral imagery to reduce
the number of spectral bands in which two principal components transformations are used
to isolate and reduce noise, likewise reducing computational requirements [38]. Using the
software-recommended number of spectral bands to retain important spectral information,
the reduced images resulted in 23 MNF bands for the WLR image and 10 MNF bands
for the FU image. Lastly, a lidar reflectance image was generated from the bathymetry,
illustrating relative seafloor reflectance at 532 nanometers, following the model developed
in Tuell et al. [39] with improvements specific to CZMIL lidar data (e.g., radiometric cali-
bration and optimized calibration coefficients, implementation of a radiometric balancing
channel to account for inhomogeneity in the return intensity across shallow channels, and
improved color and flight line balancing, Figure 2, panel d). All images and grids were
resampled to 3 m spatial resolution to strike a balance between spatial detail and com-
putational intensity, clipped to the study area, ranging from the high-water line onshore
(176 m contour obtained from the elevation grid) to approximately 10 m depth offshore,
and consolidated in a layer stack for use in image classification analysis.
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2.3. Satellite Data Pre-Processing

The European Space Agency’s Sentinel-2B multispectral imagery was acquired over
the study area on 10 July 2018 (S2B_MSIL1C_20180710T163839_N0206_R126_T16TDN).
This scene was selected as it was the closest in temporal proximity to the airborne lidar
and hyperspectral imagery data collection acquisition. The Level 1C processed product,
top of atmosphere (TOA) reflectance, was downloaded from the Copernicus Open Access
Hub [40] and processed using Version 7.0.0 of Sentinel Application Platform (SNAP)
software [41]. Prior to utilizing the imagery within the Sen2Coral toolbox, the imagery
was processed to the 2A product level, bottom of atmosphere (BOA) reflectance with
terrain and cirrus cloud corrections. While atmospheric correction procedures are an
important aspect of pre-processing and have direct bearing on reflectance products, it
was not our intent to evaluate their influence on benthic mapping, as previously explored
in Wicaksono et al. [22] and Song et al. [42]. In contrast, our aim was to examine the
performance of readily available and open data products and software that can be used
in basin-wide benthic mapping strategies. As a result, the Sen2Cor280 algorithm was
used within the SNAP software to develop BOA reflectance and applied to the imagery.
Upon completion, all bands were resampled to 10 m spatial resolution and subset to the
study area.

The Sen2Coral toolbox v1.1 [43] within SNAP was used to generate both a Depth
Invariant Index (DII) and Empirical Bathymetry, or Satellite-Derived Bathymetry (SDB),
grids for use in the classification. The methodology provided in the Copernicus Research
and User Support for Sentinel Core Products Sen2Coral training [43] was applied to help
with deglinting and masking of land, clouds, and surface waves present in the BOA
reflectance imagery. The DII was derived by using the Lyzenga [44] and Green et al. [45]
methods in which reflectance attenuation is approximately an inverse exponential with
water depth. The SDB was derived by using the Stumpf et al. [13] method in which water
reflectance attenuation varies between different wavelengths captured in the satellite bands
and determining the ratio between the bands with depth to develop relative bathymetry.
Bathymetric points were selected from the airborne lidar point cloud that fell within the
study area in which 935 points were used to train and develop the SDB product. Afterwards,
an additional 2000 randomly sampled points were used to validate the resulting SDB
against the airborne bathymetric lidar point cloud. All satellite products developed for
classification input are shown in Figure 3, panels a–c.
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2.4. Field Data Collection

As part of on-going shoreline mapping in the region, ISGS collected initial ground
truth data at 24 random points within the study area from 11 to 12 July 2018 including
sediment grab samples (with grain size classifications), drop camera photographs (Garmin
Virb XE 1080pHD camera), sidescan sonar (Lowrance HDS7 Carbon sonar), and single-
beam bathymetry (Seafloor Systems Dual Frequency 30/200 kHz single-beam echosounder).
Upon review of the initial ground truth data, subsequent ground truth data were collected
by ISGS in targeted areas to expand coverage of anticipated bottom types during the
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summer and fall of 2019. This included multi-beam bathymetry for qualitative assessment
using a kit with the following specifications:

Applanix-Trimble POS MV V4 kit:
GPS antennae (2): Trimble GPS Zephyr model 2
topside processor: PCS-29 Wavemaster
Inertial Motion Unit: POS MV V4
Reson-Teledyne SeaBat 7125 kit:
Receiver: RESON EM7200–1 7125.7128 200/400 kHz
Projector: RESON TC2181 7125 200 and 400 kHz
RESON SVP 71; 2000 m; EM 7223 sound velocity probe
RESON SeaBat 7125 MBES Processor Unit
SVP-15 sound velocity kit:
SVP-15 Sound velocity probe
RESON SVPD-10 Power and Control Unit
Universal Sonar Mount, standard mount with gear drive
Acquisition software:
QPS Quincy: integration of MBES, GPS, and sound velocity data
Trimble Applsanix GNSS Surfer: for real-time GPS correction
Trimble VRSNow: real-time RTK broadband GPS correction services
Boat: Kann 8.2 m flat bottom work skiff
Subsequent ground truth data collection also included lake-bottom videography along

transects using an AquaVu 1080i Pro camera kit. Lake-bottom videography was collected
using an AquaVu 1080i Pro camera kit. The camera cable was tethered to a steel davit
cable weighted by a 12-pound river anchor with a carabineer to eliminate offset in the
camera location, similar to a down-rigger setup used in salmon fishing on the Great Lakes.
The anchor tether reduced offset (blowback or angle) of the camera relative to the boat
position. The anchor depth was controlled, and the camera depth was independently
controlled below the anchor depth by manually lifting and lowering the camera cable
based on a real-time visual view of camera output. Live video output from the AquaVu
topside monitor was fed to a computer using a HDMI video cable connected to a Magewell
USB Capture 4K Plus device. Topside environmental conditions (e.g., boat motion) and
boat crew narration were captured with a Microsoft HD Cinema Cam connected to the
computer and mounted in an aft ceiling position inside the boat cabin. Boat position,
heading, and water depth were derived from the boat navigation system which included a
Garmin 6212 chartplotter, Garmin GPS 19× HVS GPS antenna, Garmin GSD 22 Remote
Sounder, and Garmin basic dual frequency (50/200 kHz) transducer. GPS and sounder data
were exported from the chartplotter in NMEA 0183 format with a serial cable connected
from the chartplotter to the computer. Franson GPS Gate software enabled a virtual COM
port on the computer for real-time GPS, heading, speed, and time display in ArcGIS 10.5.1
for Desktop with the GPS toolbar. Open Broadcast Studio (OBS) software installed on the
computer collected the AquaVu and web cam video feeds, an ArcGIS data layout window
showed live boat navigation tracks and bathymetry. The OBS software setting saved video
frames at a rate of 30 frames per second. In addition, the NMEA 0183 data strings from
the chartplotter were independently saved with HyperTerminal software in ASCII text
format. The NMEA data strings were post-processed to identify video start, video roll,
and video stop records based on the GPS time stamp identified in the video display and
the matching time stamp in the NMEA 0183 data log. Because the ArcGIS GPS dialogue
window showed GPS location and time, each video frame, or group of a few frames, were
cross-referenced to the boat navigation track. Thus, a coordinate for each video frame
was provided. Because boat heading is recorded, the camera view shed was known at all
times. Video transects consisted of regularly spaced track log locations (points) minimally
0.5 m apart and resulted in approximately 4500 GPS locations of bottom image videos
used to characterize bottom features. Ground truth points from both field campaigns
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were randomly selected and divided approximately in half for image classification and
validation analysis tasks (Figure 4).

Remote Sens. 2021, 13, x FOR PEER REVIEW 11 of 44 
 

 

field campaigns were randomly selected and divided approximately in half for image 
classification and validation analysis tasks (Figure 4). 

 
Figure 4. Field data collected in July 2018 and summer and fall 2019 used for image classification 
and validation. 

2.5. Data Classification and Analysis 
2.5.1. Classification System 

For this study, the Coastal and Marine Ecological Classification Standard (CMECS) 
was used to classify field and remotely sensed data. This system offers an approach for 
classifying estuarine, coastal, and open-ocean environments, including options for classi-
fying one or more components: water column, geoform, substrate, and biotic [46]. It is also 
established as a federal standard compliant with the Federal Geographic Data Commit-
tee’s (FGDC) national standards, and due to its flexible structure, it is well suited for cross-
walking to other classification systems, such as those reviewed in Strong et al. [47]. For 
this study, the substrate and biotic components were selected to illustrate nearshore ben-
thic features and because these two components have hierarchical structures, the level of 

Figure 4. Field data collected in July 2018 and summer and fall 2019 used for image classification
and validation.

2.5. Data Classification and Analysis
2.5.1. Classification System

For this study, the Coastal and Marine Ecological Classification Standard (CMECS)
was used to classify field and remotely sensed data. This system offers an approach
for classifying estuarine, coastal, and open-ocean environments, including options for
classifying one or more components: water column, geoform, substrate, and biotic [46].
It is also established as a federal standard compliant with the Federal Geographic Data
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Committee’s (FGDC) national standards, and due to its flexible structure, it is well suited
for cross-walking to other classification systems, such as those reviewed in Strong et al. [47].
For this study, the substrate and biotic components were selected to illustrate nearshore
benthic features and because these two components have hierarchical structures, the level
of classification specificity can be directly linked to the amount of data detail in which it
is based upon. Additionally, the system allows for the combination of components, such
as co-existing features and modifiers, to increase the level of classification specificity and
accuracy. Figure 5 illustrates the hierarchical structure for both components as well as an
example for each corresponding unit. Due to challenges related to limited occurrences
of certain bottom types or field samples of certain bottom types, thus limited training
samples within the study area, a tiered approach was applied to the CMECS structure to
assist with better understanding the performance of various remote sensing data inputs.
Table 1 lists the hierarchical CMECS components, units, descriptions, classification Tier,
corresponding class value (identified by class tier index number), and whether classes had
corresponding field observations used in this study. The tiered approach allowed for an
iterative examination of remotely sensed data inputs as it related to classification accuracy.
As a result, tiered CMECS classes with corresponding short names and class values (class
tier index numbers) were mapped as follows in Figure 6 with sample underwater photos
for each class depicted in Figures 7 and 8.
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Table 1. CMECS components, units, descriptions, classification tier, corresponding class value (identified by class tier index number), and classes with corresponding field observations used in this
study. Class tier index numbers correspond to short class names in Tables 2 and 3 (# = number).

CMECS Hierarchy CMECS Code CMECS Description Class Tier 1 Index # Class Tier 2 Index # Field
Observation

Substrate Component
Substrate Origin S1 Geologic Substrate — — —
Substrate Class S1.2 Geologic Substrate|Unconsolidated Mineral Substrate 1 X Yes

Substrate Subclass S1.2.1 Geologic Substrate|Unconsolidated Mineral Substrate|Coarse
Unconsolidated Substrate — — —

Substrate Group S1.2.1.1 Geologic Substrate|Unconsolidated Mineral Substrate|Coarse
Unconsolidated Substrate|Gravel Substrate 1 X Yes

Substrate Group S1.2.1.1/S2.5.3.3 Geologic Substrate|Unconsolidated Mineral Substrate|Coarse
Unconsolidated Substrate|Gravel Substrate (COE: Mussell Shell Hash) 1 X Yes

Substrate Subgroup S1.2.1.1.1 Geologic Substrate|Unconsolidated Mineral Substrate|Coarse
Unconsolidated Substrate|Gravel Substrate|Boulder Substrate 1 X Yes

Substrate Subgroup S1.2.1.1.2 Geologic Substrate|Unconsolidated Mineral Substrate|Coarse
Unconsolidated Substrate|Gravel Substrate|Cobble Substrate 1 X Yes

Substrate Subgroup S1.2.1.1.2/S2.5.3.3
Geologic Substrate|Unconsolidated Mineral Substrate|Coarse

Unconsolidated Substrate|Gravel Substrate|Cobble Substratestrate (COE:
Mussel Shell Hash)

1 X Yes

Substrate Group S1.2.1.2 Geologic Substrate|Unconsolidated Mineral Substrate|Coarse
Unconsolidated Substrate|Gravel Mixes Substrate 1 X Yes

Substrate Subgroup S1.2.1.3.2 Geologic Substrate|Unconsolidated Mineral Substrate|Coarse
Unconsolidated Substrate|Gravelly|Gravelly Muddy Sand 1 X Yes

Substrate Subgroup S1.2.1.3.2/S2.5.3.3
Geologic Substrate|Unconsolidated Mineral Substrate|Coarse

Unconsolidated Substrate|Gravelly Substrate|Gravelly Muddy Sand
(COE: Mussel Shell Hash)

1 X Yes

Substrate Subclass S1.2.2 Geologic Substrate|Unconsolidated Mineral Substrate|Fine
Unconsolidated Substrate — — —

Substrate Group S1.2.2.1 Geologic Substrate|Unconsolidated Mineral Substrate|Fine Unconsolidated
Substrate|Slightly Gravelly Substrate — — —

Substrate Subgroup S1.2.2.1.1 Geologic Substrate|Unconsolidated Mineral Substrate|Fine Unconsolidated
Substrate|Slightly Gravelly Substrate|Slightly Gravelly Sand 2 1 Yes

Substrate Subgroup S1.2.2.1.1(SP04)
Geologic Substrate|Unconsolidated Mineral Substrate|Fine Unconsolidated
Substrate|Slightly Gravelly Substrate|Slightly Gravelly Sand (Surf Pattern:

Ripple Surface)
2 2 Yes

Substrate Subgroup S1.2.2.1.1(SP07)[P]
Geologic Substrate|Unconsolidated Mineral Substrate|Fine Unconsolidated
Substrate|Slightly Gravelly Substrate|Slightly Gravelly Sand (Surf Pattern:

Pockmarked Surface Pattern)
2 3 Yes
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Table 1. Cont.

CMECS Hierarchy CMECS Code CMECS Description Class Tier 1 Index # Class Tier 2 Index # Field
Observation

Substrate Subgroup S1.2.2.1.1/S2.3.1.2
Geologic Substrate|Unconsolidated Mineral Substrate|Fine Unconsolidated

Substrate|Slightly Gravelly Substrate|Slightly Gravelly Sand (COE:
Woody Debris)

2 4 Yes

Substrate Subgroup S1.2.2.1.1/S2.3.2
Geologic Substrate|Unconsolidated Mineral Substrate|Fine Unconsolidated
Substrate|Slightly Gravelly Substrate|Slightly Gravelly Sand (COE: Organic

Detritus; Possible INT: Spotted Surface Color)
2 5 Yes

Substrate Subgroup S1.2.2.1.1/S2.5.3.3
Geologic Substrate|Unconsolidated Mineral Substrate|Fine Unconsolidated
Substrate|Slightly Gravelly Substrate|Slightly Gravelly Sand (COE: Mussel

Shell Hash)
2 6 Yes

Substrate Origin S3 Anthropogenic Substrate — — —
Substrate Class S3.1 Anthropogenic Substrate|Anthropogenic Rock Substrate — — —

Substrate Subclass S3.1.2 Anthropogenic Substrate|Anthropogenic Rock Substrate|Anthropogenic
Rock Rubble Substrate 3 X Yes

Substrate Subclass S3.1.2/S2.3.1.2 Anthropogenic Substrate|Anthropogenic Rock Substrate|Anthropogenic
Rock Rubble Substrate (COE: Woody Debris) 3 X Yes

Substrate Subclass S3.2.1 Anthropogenic Substrate|Anthropogenic Wood Substrate|Anthropogenic
Wood Reef Substrate (INT: Shipwreck SC-419) 3 X Yes

Substrate Subclass S3.2.1/S3.4.2
Anthropogenic Substrate|Anthropogenic Wood Substrate|Anthropogenic

Wood Reef Substrate (COE: Sparse Metal Substrate; INT: Shipwreck
Solon H. Johnson)

3 X Yes

Substrate Subclass S3.4.1 Anthropogenic Substrate|Anthropogenic Metal Substrate|Anthropogenic
Metal Reef Substrate 3 X Yes

Substrate Subclass S3.4.1/S3.2.2 Anthropogenic Substrate|Anthropogenic Metal Substrate|Anthropogenic
Metal Reef Substrate (COE: Wood Rubble Substrate) 3 X Yes

Biotic Component
Biotic Setting B2 Benthic/Attached Biota — — —
Biotic Class B2.5 Benthic/Attached Biota|Aquatic Veg Bed — — —

Biotic Subclass B2.5.1 Benthic/Attached Biota|Aquatic Veg Bed|Benthic Macroalgae — — —

Biotic Group B2.5.1.4 Benthic/Attached Biota|Aquatic Veg Bed|Benthic Macroalgae|Filamentous
Algal Bed — — —

Biotic Community B2.5.1.4.4 Benthic/Attached Biota|Aquatic Veg Bed|Benthic Macroalgae|Filamentous
Algal Bed|Cladophora sp 1 1 Yes

Biotic Community B2.5.1.4.4/B2.2.2.21.3[P] Benthic/Attached Biota|Aquatic Veg Bed|Benthic Macroalgae|Filamentous
Algal Bed|Cladophora sp. (COE: Attached Mussels; PCT cover 9–11) 1 2 Yes

Biotic Null No Biota Observed 2 X Yes
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co-existing attached mussels.

In Tier 1, three classes were selected for the substrate component and two classes
were selected for the biotic component based upon benthic variability represented by the
frequency and distribution of ground truth samples within the study area for both the
3 m airborne and 10 m satellite data. More information about the ground truth sample
data is provided in the Field Data Classification Section 2.5.2. More specifically, this
meant that two Tier 1 substrate classes were characterized at the CMECS subclass level
(coarse and fine unconsolidated), while one Tier 1 substrate class was characterized at
the CMECS origin level (anthropogenic); two Tier 2 biotic classes were characterized
at the CMECS group level (aquatic vegetation bed and biotic null). For the substrate
component, only the fine unconsolidated Tier 1 class could be further discriminated into
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detailed Tier 2 classes (CMECS substrate subgroup level), in which the resultant classified
area had ground truth samples with sufficient class variation (six Tier 2 classes possible).
Conversely, the coarse unconsolidated and anthropogenic Tier 1 classes could not be
further discriminated into detailed Tier 2 classes because the ground truth samples in those
resultant classified areas only represented a single class type and lacked additional class
variability for further expansion. For the biotic component, the aquatic vegetation bed Tier
1 class was further discriminated into detailed Tier 2 classes (CMECS biotic community
level) in which there were two Tier 2 classes possible with ground truth samples illustrating
additional class variability. Additionally, only the 3 m airborne data were used to evaluate
Tier 2 classifications since the 10 m satellite did not have sufficient spatial resolution to
resolve more detailed bottom types. More information about the classification methods is
provided in the Remote Sensing Classification Section 2.5.3.

2.5.2. Field Data Classification

Drop camera photos and sediment grain size classifications from the July 2018 survey
and video track log locations from the summer and fall 2019 surveys were used to classify
ground truth points with the appropriate Tier 1 and 2 classification codes (Tables 2 and 3).
The CMECS Coding System Approach and corresponding Code Set [48] was used to apply
the codes to the points. In general, the videos were linked to the point locations using time-
stamp information and then bottom points were attributed based on video reviews and
interpretation with consensus among researchers. Points were separated approximately
in half between samples used in classification versus validation as well as by CMECS
component, substrate versus biotic. The points set aside for classification were used to
create regions of interest (ROIs) or training samples required for supervised classification
techniques. More specifically, ROIs represent the ground truth points in the form of grid
cells corresponding to the pixel size of the 3 m airborne or 10 m satellite classification input
imagery and data. In some cases, more than one ground truth point fell within a 3 m or
10 m grid cell area, and thus, more than one point described an ROI. In those cases, an ROI
cell was attributed with the class code of the majority of points within that cell unless in
special cases where the number and type of points were equally split and best judgment
was used to define classes in those cases. In total, the 2018 and 2019 points were combined
into a comprehensive and classified ground truth ROI dataset for use in image classification
and validation.

Table 2. Number of ground truth points (samples) for classification and validation used for Tier 1 classification of the 3 m
airborne and 10 m satellite data (# = number).

Short Name (Index #) # of Classification
Samples (3 m)

# of Validation
Samples (3 m)

# of Classification
Samples (10 m)

# of Validation
Samples (10 m)

Substrate Component
Coarse Unconsolidated (1) 52 46 19 14

Fine Unconsolidated (2) 540 540 182 178
Anthropogenic (3) 38 34 13 10

TOTAL 630 620 214 202
Biotic Component

Aquatic Vegetation Bed (1) 50 50 19 17
Biotic Null (2) 575 575 190 190

TOTAL 625 625 209 207
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Table 3. Number of ground truth points (samples) for classification and validation used for Tier 2 classification of the 3 m
airborne data (# = number).

Short Name (Index #) # of Classification Samples (3 m) # of Validation Samples (3 m)
Fine Unconsolidated (Substrate Component)

Slightly Gravelly Sand (1) 501 502
Slightly Gravelly Sand/Surf Pattern: Ripple Surface (2) 3 4

Slightly Gravelly Sand/Surf Pattern: Pockmarked
Surface Pattern (3) 17 16

Slightly Gravelly Sand/COE: Woody Debris (4) 1 0
Slightly Gravelly Sand/COE: Organic Detritus;

Possible INT: Spotted Surface Color (5) 10 12

Slightly Gravelly Sand/COE: Mussel Shell Hash (6) 2 2
TOTAL 534 536

Aquatic Vegetation Bed (Biotic Component)
Cladophora sp. (1) 3 5

Cladophora sp./COE: Attached Mussels (2) 15 17
TOTAL 18 22

2.5.3. Remote Sensing Classification

Satellite and airborne data inputs were iteratively classified to examine their impact on
classification accuracy for discriminating CMECS-defined classes. Figure 9 shows the over-
all remote sensing workflow, illustrating the pre-processing, classification inputs, and clas-
sification and analysis approach. Image classification was conducted using the data inputs
described in the Airborne and Satellite Data Pre-processing Sections (Sections 2.2 and 2.3).
Table 4 provides a summary of the satellite and airborne classification inputs. While the
goal of this study was not to conduct a full evaluation of analytical methods, initial investi-
gation of Maximum Likelihood (ML) and Support Vector Machine (SVM) classifiers was
conducted to determine the best approach for the study area as well as could be easily
applied in other coastal environments. Ultimately, ML was not selected for further analysis
because initial results showed consistent over- or under-class estimation, resulting in major
errors despite attempts to adjust settings, ROIs, etc. This is consistent with similar stud-
ies [22], which explain that there are limitations associated with ML when the distribution
of the spectral response is not normal (typically the case for benthic environments). Thus,
machine learning techniques, such as SVM, which are not based on distribution assump-
tions, can help overcome those limitations and have shown success in benthic mapping
applications [21–23,49]. As with Wicaksono et al. [22], a pixel-based classification approach
was selected over OBIA to take advantage of higher spatial resolution data and unique
spectral characteristics associated with the airborne and satellite data used as input for
identifying detailed benthic features.

Table 4. Summary of satellite and airborne classification inputs.

Classification Inputs Collection Date Spatial Resolution (m)

Satellite (S2)
S2 Multispectral (MS) [Bands 2–5, 8] 10 July 2018 10

Depth Invariant Index (DII) 10 July 2018 10
Satellite-Derived Bathymetry (SDB) 10 July 2018 10

Airborne (AB)
CASI (CA) Minimum Noise Fraction (MNF) Fusion (FU) [Bands 1–10] 17 July 2018 3

CA MNF Water-Leaving Reflectance (WLR) [Bands 1–23] 17 July 2018 3
AB Lidar Bathymetry [Depth] (DE) 17 July 2018 3

AB Lidar Relative Bathymetric Reflectance (RF) 17 July 2018 3
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Figure 9. Remote sensing workflow illustrating pre-processing, classification inputs, and classifi-
cation and analysis approach (HSI = hyperspectral; SMARTS = Simple Model of the Atmospheric
Radiative Transfer of Sunshine; DEM = digital elevation model; WLR = water-leaving reflectance;
FU = fusion; MNF = Minimum Noise Transform; CA = CASI; DE = lidar depth; RF = bathymetric
reflectance; S2 MS = Sentinel-2B Multispectral; DII = Depth Invariant Index; SDB = Satellite-Derived
Bathymetry; SVM = Support Vector Machine; and ROIs = regions of interest).

Classification training samples or ROIs (Section 2.5.2. Field Data Classification) were
designated in the SVM classifier using ENVI v5.5 software (Kernel Type: Radial Basis
Function, Gamma in Kernel Function: 0.029, and Penalty Parameter 100) to identify the
Tier 1 biotic and substrate classes (Table 2) applied to different combinations of airborne
and satellite data inputs. An accuracy assessment was conducted using an error matrix
method comparing resultant classifications with the corresponding 3 and 10 m validation
sample datasets (Section 2.5.2. Field Data Classification) to produce overall accuracy, Kappa
Coefficient (KC), and producer and user accuracies per class [50]. Upon reviewing initial
results, some misclassifications were observed in areas with limited ground truth data, such
as areas immediately adjacent to the shoreline (i.e., overclassification of aquatic vegetation
bed). Therefore, additional ROIs were manually delineated in misclassified areas using
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local knowledge and applied to input data combinations with the highest overall classi-
fication accuracies. More specifically, for the Tier 1 classification of the biotic component
using airborne data, the following ROIs were added: 10 biotic null (concentrated along the
shoreline and some offshore areas) and 11 aquatic vegetation bed (near existing ground
truth, but not overlapping with validation data). While multiple attempts at additional
ROIs in the classification of the biotic component using satellite data were made, none
were successful in resolving misclassifications and were ultimately not used. For the Tier 1
classification of the substrate component using airborne data, the following ROIs were
added: 4 coarse unconsolidated (near existing ground truth, but not overlapping with vali-
dation data), 21 fine unconsolidated (concentrated along the shoreline and some offshore
areas), and 17 anthropogenic (near existing ground truth or known anthropogenic features
that lacked ground truth, such as a submerged breakwater). For the Tier 1 classification of
the substrate component using satellite data, the following ROIs were added: 14 coarse
unconsolidated (near existing ground truth, but not overlapping with validation data)
and 7 fine unconsolidated (concentrated along the shore and some offshore areas). No
additional ROIs were added to the anthropogenic class in the satellite data classification
because the inputs were insufficient for discriminating those features.

The result from the best-performing 3 m airborne Tier 1 classification was used to mask
the input data for the Tier 2 classifications of the fine unconsolidated (substrate) and aquatic
vegetation bed (biotic) classes. More specifically, the three airborne data combinations
with the highest overall accuracy achieved in Tier 1 were evaluated in the SVM classifier
for Tier 2 using training samples or ROIs designated in Table 3 (Section 2.5.2. Field Data
Classification). No additional ROIs were required in the Tier 2 classification. As with the
Tier 1 results, an accuracy assessment was conducted for Tier 2. Satellite data inputs were
not able to be further classified in Tier 2 due to spatial resolution limitations associated
with the satellite imagery. After accuracy assessments were completed, classification
performance (overall and producer accuracies) was evaluated by comparing results to
better understand the impact of satellite and airborne data inputs on classification accuracy
as related to CMECS class detail.

3. Results
3.1. Classification Performance Analysis
3.1.1. Substrate Component Classification Results

Tier 1 Substrate
For the Tier 1 substrate component, there were a total of 24 airborne data combi-

nations with an average overall accuracy of 90.10 ± 0.60%, while there were a total of
12 satellite data combinations with an average overall accuracy of 89.77 ± 1.02% (including
data combinations with additional ROIs). In comparison, KCs were more moderate to
low, averaging 0.47 (±0.08) for airborne data combinations and 0.30 (±0.03) for satellite
data combinations. Table A1 (Appendix A) lists the percent overall accuracy and KC, as
well as the percent area and producer and user accuracies for the three classes (coarse
unconsolidated, fine unconsolidated, and anthropogenic) using airborne and satellite data
combinations. The Index field in Table A1 (Appendix A) is a numerical value that is
referenced in Figures 10–12 in which classification performance is plotted (percent overall
accuracy compared to percent producer accuracy) to help illustrate patterns with respect
to unique data combinations. Comparison of classification results is presented for each
component by data type in the following sections.
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Figure 12. Tier 1 plot of anthropogenic substrate classification performance, comparing percent
overall accuracy and percent producer accuracy for airborne only data combinations. Number
labels refer to unique classification input data combinations identified in the Index field in Table A1,
Appendix A. Note that satellite classification of anthropogenic substrates is not included because the
satellite inputs were insufficient for discriminating those features.

In general, the classifications showed that the majority of the area had fine unconsoli-
dated substrate with airborne data combinations estimating 92.51% (±1.91%) and satellite
data combinations estimating a higher coverage amount of 98.35% (±1.02%). While the
southern part of the study area consisted mostly of fine unconsolidated substrate, pockets
of coarse unconsolidated substrate were observed primarily in the northern part of the
study area, generally ranging from 0.3 to 0.7 km offshore (airborne data combinations
estimated 4.69 ± 0.56% versus satellite data combinations, which estimated approximately
half that amount, 2.20 ± 0.26%). Anthropogenic substrate was also found in central and
northern parts of the study area, such as a nearshore breakwater, remnant road beds, struc-
tures, and debris (ranging from 0.1 to 0.2 km offshore), an intake pipeline (extending 0.9
km in length), a power plant water intake structure (0.75 km offshore), and two shipwrecks
(south of the central intake pipeline), with an overall total estimated cover of 3% (±1.04%)
from airborne data combinations only. Satellite data were insufficient for classification of
anthropogenic substrate (Figure 13; Table A1, Appendix A).
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Figure 13. Tier 1 substrate component classification results using airborne data combinations for the north-central section of
the study area: (a) CA MNF FU, (b) CA MNF FU with additional ROIs, (c) CA MNF FU + CA MNF WLR, (d) CA MNF FU +
CA MNF WLR with additional ROIs, (e) CA MNF WLR + CA MNF FU + AB DE, and (f) CA MNF WLR + CA MNF FU +
AB DE with additional ROIs.

The three airborne data combinations with the highest overall classification accuracies
included the following (highest to lowest): (1) CA MNF FU, (2) CA MNF FU + CA MNF
WLR (and reverse order), and (3) CA MNF WLR + CA MNF FU + AB DE (and reverse
order). In general, for most of the top-performing airborne data combinations, data
input order did not affect classification accuracy, and thus, combinations with the same
data inputs performed the same regardless of order. The top three data combinations
with the additional ROIs were also evaluated for accuracy performance, and in cases
where data combinations using the same data inputs resulted in redundant classification
accuracies (e.g., varying only by data input order), only one of the data combinations
was evaluated (i.e., CA MNF FU + CA MNF WLR and CA MNF WLR + CA MNF FU
+ AB DE). Figure 13 illustrates the classification results of the top three performing data
combinations with and without additional ROIs for the north-central section of the study
area. The southern section is not shown since it is mostly fine unconsolidated substrate.
Two data combinations with additional ROIs (Figure 13, panels b and d) experienced
a slight decrease in overall accuracy percent by 0.16% and 1.29%, respectively, while
one remained unchanged (Figure 13, panel f), as a result of a lack of validation ground
truth data in misclassified areas. However, the amount of area originally misclassified
as coarse unconsolidated and anthropogenic in the nearshore (Figure 13, panels a, c
and e) decreased, resulting in increased area correctly classified as fine unconsolidated
(Table A1, Appendix A). As a result, the producer accuracy for the fine unconsolidated
class increased, and although it decreased for the coarse unconsolidated and anthropogenic
classes, the user accuracies for those two classes increased (Figures 10–12). Despite the lack
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of validation ground truth data in areas that experienced misclassification, upon confirming
with local experts from ISGS and NOAA, the results with the additional ROIs visually
appeared to be most accurate and thus, the additional ROIs helped account for misclassified
areas both in the nearshore and in cases of confusion between coarse unconsolidated and
anthropogenic classes. However, the CA MNF FU with additional ROIs yielded an increase
in pixels classified as fine unconsolidated in offshore areas following the flight line pattern
(Figure 13, panel b), suggesting that the single data input was not sufficient for overcoming
misclassifications even with additional training data. In general, classifications combining
three or more of the airborne data inputs (except for CA MNF FU and CA MNF FU + CA
MNF WLR) performed consistently and had overall accuracies of 90% or higher (KCs >
0.49). In addition, the use of spectral data inputs, CA MNF FU and WLR, was especially
important for producing higher overall accuracies for the substrate component with 13 out
of 15 data combinations including both spectral data inputs for combinations with overall
accuracies of 90% or higher.

Classification results from the satellite data combinations generally showed the same
substrate patterns as the airborne data combinations, except that anthropogenic features
could not be resolved (Figure 14). The satellite data combinations with the highest overall
classification accuracy included ones in which all three data inputs were used and in
which either S2 MS or S2 DII was first in the data order. They included the following: S2
MS + S2 DII + S2 SDB (and two additional combinations using the same data but in a
different order, S2 MS + S2 SDB + S2 DII and S2 DII + S2 SDB + S2 MS). Only one of the
top-performing data combinations was further evaluated with additional ROIs since all had
the same overall accuracy. Figure 14 illustrates the two Tier 1 substrate classification results
without and with additional ROIs (panels a and b, respectively). Overall and class-specific
accuracies remained unchanged due to a lack of ground truth available for validation in
select areas (Table A1, Appendix A), yet the addition of ROIs helped to visibly reduce the
misclassification of coarse unconsolidated substrate in the northeast offshore part of the
study area and discriminate coarse unconsolidated substrate that was missed just south
of the intake pipeline. Similar to Wicaksono et al. [22], the classification results using DII
tended to be highest. Data order was generally not a factor; however, when S2 SDB was
input first with S2 DII + S2 MS, it resulted in a slight decrease in overall accuracy and KC,
which may suggest that the S2 SDB input data, the algorithms used to derive it, and the
resulting outputs should warrant further investigation and evaluation, especially when
used as input into benthic classifications or models (see Discussion Section 4 for additional
evaluation of the S2 SDB product).
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inate more detailed (Tier 2) class types within that area. Although six sand classes with 
varying patterns (ripple and pockmarked surface patterns) and co-existing materials 
(woody debris, organic detritus, and mussel shell hash) were attempted with the SVM 
classifier, only two were able to be identified: (1) sand, and (2) sand with ripple surface 
pattern, with the majority of the sand with ripple surface pattern area located in the off-
shore, northeast part of the study area (Figure 15). Given a KC of 0 and no ground truth 
available for validation in that area, the reliability of the resultant classification is very low 
with this same classification result possible by chance. It is also worth mentioning that this 
location is in the same area where CA MNF FU with additional ROIs follows the flight 
line pattern (Figure 13, panel b). Thus, more detailed ground truth and data inputs would 
likely be needed to reliably classify the Tier 2 classes identified in this study, including the 
characterization of modifiers such as surface patterns or co-existing materials. Yet, it is 

Figure 14. Tier 1 substrate component classification results using satellite data combinations for the
north-central section of the study area: (a) S2 MS + S2 DII + S2 SDB and (b) S2 MS + S2 DII + S2 SDB
with additional ROIs.

Tier 2 Substrate
For the Tier 2 fine unconsolidated (substrate) classification, overall accuracy (airborne

only) was 93.28% for the two data combinations evaluated, while the KC was 0. The
CA MNF FU data combination with additional ROIs, though considered one of the top-
performing results, was unable to resolve any of the Tier 2 substrate classes. Therefore, the
remaining top two data combinations were evaluated: (1) CA MNF WLR + CA MNF FU +
AB DE with additional ROIs and (2) CA MNF FU + CA MNF WLR with additional ROIs.
Since the CA MNF WLR + CA MNF FU + AB DE with additional ROIs data combination
had the higher overall accuracy and KC of the two from Tier 1, the fine unconsolidated
substrate area from that classification result was used as a mask to further discriminate
more detailed (Tier 2) class types within that area. Although six sand classes with varying
patterns (ripple and pockmarked surface patterns) and co-existing materials (woody debris,
organic detritus, and mussel shell hash) were attempted with the SVM classifier, only two
were able to be identified: (1) sand, and (2) sand with ripple surface pattern, with the
majority of the sand with ripple surface pattern area located in the offshore, northeast
part of the study area (Figure 15). Given a KC of 0 and no ground truth available for
validation in that area, the reliability of the resultant classification is very low with this
same classification result possible by chance. It is also worth mentioning that this location
is in the same area where CA MNF FU with additional ROIs follows the flight line pattern
(Figure 13, panel b). Thus, more detailed ground truth and data inputs would likely
be needed to reliably classify the Tier 2 classes identified in this study, including the
characterization of modifiers such as surface patterns or co-existing materials. Yet, it is
worth noting that the classes listed in Tier 2 reflect the highest level of detail (subgroup
level) within the substrate component of the CMECS hierarchy.
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Figure 15. Tier 2 fine unconsolidated (substrate) classification results using airborne data combina-
tions for the north-central section of the study area: CA MNF WLR + CA MNF FU + AB DE and CA
MNF FU + CA MNF WLR.

3.1.2. Biotic Component Classification Results

Tier 1 Biotic
For the biotic component, average overall accuracy for the 24 airborne data combi-

nations was 93.58 ± 0.91% (including data combinations with additional ROIs), while for
the 11 satellite data combinations it was 92.67 ± 0.71% (data combinations with additional
ROIs were not included). Similar to the results for the substrate component, KCs were more
moderate to low, averaging 0.38 (±0.14) for airborne data combinations and 0.31 (±0.07)
for satellite data combinations. Table A2 (Appendix A) lists the percent overall accuracy
and KC, as well as the percent area and producer and user accuracies for the two classes
(aquatic vegetation bed and biotic null) using airborne and satellite data combinations. As
with the substrate component, the Index field in Table A2 (Appendix A) is a numerical
value that is referenced in Figures 16 and 17 in which classification performance is plotted
(percent overall accuracy compared to percent producer accuracy) to help illustrate patterns
with respect to unique data combinations. Generally, the classifications showed that the
majority of the area fell into the biotic null class with airborne data combinations estimating
97.42% (±1.26%) and satellite data combinations estimating a higher coverage amount of
98.33% (±1.13%). However, pockets of the aquatic vegetation bed class occurred largely
coincident with the coarse unconsolidated substrate class in the central and northern parts
of the study area with airborne data combinations estimating 2.58% (±1.26%) and satellite
data combinations estimating a little less, 2.3% (±0.43) (Figure 18; Table A2, Appendix A).
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ROIs were added, the classification errors were corrected and likewise resulted in in-
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Figure 17. Tier 1 plot of biotic null classification performance, comparing percent overall accuracy
and percent producer accuracy for airborne and satellite data combinations. Number labels refer to
unique classification input data combinations identified in the Index field in Table A2, Appendix A.

The three airborne data combinations with the highest overall classification accuracies
included the following (highest to lowest): (1) AB DE + CA MNF FU + CA MNF WLR, (2)
CA MNF FU + CA MNF WLR, and (3) AB RF + AB DE + CA MNF FU + CA MNF WLR.
These top three data combinations with additional ROIs were also evaluated for accuracy
performance. Figure 18 illustrates the six top results for the Tier 1 biotic component. All
three classification results using original ROIs tended to misclassify the aquatic vegetation
bed class along the immediate shoreline (Figure 18, panels a, c and e). This was likely due
to a lack of ground truth available in that part of the study area, and thus, when additional
ROIs were added, the classification errors were corrected and likewise resulted in increased
aquatic vegetation bed in areas coinciding with coarse unconsolidated substrate where it is
known to occur (Figure 18, panels b, d and f). In fact, all classification results using original
ROIs generally tended to underestimate the overall amount of the aquatic vegetation
bed class in the study area (despite the overclassification along the immediate shoreline),
averaging approximately 2.26% (±1.03%) as opposed to 4.53% (±0.33%) with additional
ROIs. As with the substrate component, the spectral data inputs played an important
role in the classification of the biotic component. However, the data combination with
the highest overall accuracy and KC had AB DE as first in combination with spectral data
inputs, suggesting that for aquatic vegetation bed discrimination that depth (fused with
spectral data) could be more influential than one data type alone [51]. In contrast, when
AB RF was added to the combination, while still among the top performers when used
in combination with the other data inputs and used first, the overall accuracy and KC
decreased (−0.8%, −0.08, respectively). Unlike the substrate component, there was not
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an evident grouping of data combinations that performed as consistently for the biotic
component, and KCs fell below 0.48 beyond the top four data combinations (Figure 16;
Table A2, Appendix A).

Remote Sens. 2021, 13, x FOR PEER REVIEW 30 of 44 
 

 

an evident grouping of data combinations that performed as consistently for the biotic 
component, and KCs fell below 0.48 beyond the top four data combinations (Figure 16; 
Table A2, Appendix A). 

 
Figure 18. Tier 1 biotic component classification results using airborne data combinations for the north-central section of 
the study area: (a) AB DE + CA MNF FU + CA MNF WLR, (b) AB DE + CA MNF FU + CA MNF WLR with additional 
ROIs, (c) CA MNF FU + CA MNF WLR, (d) CA MNF FU + CA MNF WLR with additional ROIs, (e) AB RF + AB DE + CA 
MNF FU + CA MNF WLR, and (f) AB RF + AB DE + CA MNF FU + CA MNF WLR with additional ROIs. 

Classification results from the satellite data combinations generally showed the same 
biotic component Tier 1 class patterns; however, obvious misclassifications were observed 
especially in the offshore, northeast section of the study area (Figure 19). The satellite data 
combinations with the highest overall classification accuracy included the following 
(highest to lowest): (1) S2 MS + S2 DII + S2 SDB, (2) S2 MS + S2 DII (and reverse order), 
and (3) S2 SDB + S2 DII + S2 MS (and one additional combination using the same data but 
in a different order, S2 DII + S2 SDB + S2 MS). No performance accuracies were evaluated 
with additional ROIs since attempted additions were unsuccessful in resolving misclassi-
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ential role in the discrimination of classes in the biotic component (Figure 16). For exam-
ple, when either S2 SDB or S2 DII was input ahead of S2 MS, overall accuracy and KC 
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SDB following S2 MS likewise impacted results and reduced overall accuracy and KC by 
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rected, and as with the substrate component, the classification results using DII tended to 
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Figure 18. Tier 1 biotic component classification results using airborne data combinations for the north-central section of the
study area: (a) AB DE + CA MNF FU + CA MNF WLR, (b) AB DE + CA MNF FU + CA MNF WLR with additional ROIs,
(c) CA MNF FU + CA MNF WLR, (d) CA MNF FU + CA MNF WLR with additional ROIs, (e) AB RF + AB DE + CA MNF
FU + CA MNF WLR, and (f) AB RF + AB DE + CA MNF FU + CA MNF WLR with additional ROIs.

Classification results from the satellite data combinations generally showed the same
biotic component Tier 1 class patterns; however, obvious misclassifications were observed
especially in the offshore, northeast section of the study area (Figure 19). The satellite
data combinations with the highest overall classification accuracy included the following
(highest to lowest): (1) S2 MS + S2 DII + S2 SDB, (2) S2 MS + S2 DII (and reverse order), and
(3) S2 SDB + S2 DII + S2 MS (and one additional combination using the same data but in a
different order, S2 DII + S2 SDB + S2 MS). No performance accuracies were evaluated with
additional ROIs since attempted additions were unsuccessful in resolving misclassifications.
Figure 19 illustrates the top three Tier 1 results for the biotic component using satellite data
combinations. As with the substrate component, the top-performing data combination
was S2 MS + S2 DII + S2 SDB; however, data order suggested a more influential role in the
discrimination of classes in the biotic component (Figure 16). For example, when either
S2 SDB or S2 DII was input ahead of S2 MS, overall accuracy and KC slightly decreased
(−0.48%, −0.07, respectively). Additionally, the order of S2 DII and S2 SDB following S2
MS likewise impacted results and reduced overall accuracy and KC by −1.45% and 0.17,
respectively. Regardless, obvious misclassifications could not be corrected, and as with the
substrate component, the classification results using DII tended to be highest.
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Figure 19. Tier 1 biotic component classification results using satellite data combinations for the north-central section of the
study area: (a) S2 MS + S2 DII + S2 SDB, (b) S2 MS + S2 DII, and (c) S2 SDB + S2 DII + S2 MS.

Tier 2 Biotic
For the Tier 2 aquatic vegetation bed (biotic) classification, overall accuracy (airborne

only) was 95.25% for the three data combinations evaluated and the KC was 0.86. The top
three data combinations were evaluated: (1) AB DE + CA MNF FU + CA MNF WLR with
additional ROIs, (2) CA MNF FU + CA MNF WLR with additional ROIs, and (3) AB RF + AB
DE + CA MNF FU + CA MNF WLR with additional ROIs. Since the AB DE + CA MNF FU
+ CA MNF WLR with additional ROIs data combination had the highest overall accuracy
and KC of the three from Tier 1, the aquatic vegetation bed area from that classification
result was used as a mask to further discriminate more detailed (Tier 2) class types within
that area. Two classes were identified: (1) Cladophora sp. and (2) Cladophora sp. with
co-existing attached mussels (Figure 20). Unlike the Tier 2 fine unconsolidated (substrate)
classification, the Tier 2 aquatic vegetation bed (biotic) classification performed very well
with a strong KC, suggesting that for this study, the airborne data inputs were reliable
enough to discriminate the most detailed biotic communities in the CMECs hierarchy,
including co-existing attached mussels.
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Figure 20. Tier 2 aquatic vegetation bed (biotic) classification results using airborne data combinations
for the north-central section of the study area: (a) AB DE + CA MNF FU + CA MNF WLR, CA MNF
FU + CA MNF WLR, and AB RF + AB DE + CA MNF FU + CA MNF WLR) and (b) inset panel
corresponding to box in panel (a).

3.2. Component Classification Comparison

In addition to comparisons made between data types and tiered classes within compo-
nents, comparisons were also possible between the components themselves. This provides a
better understanding of the potential strengths and weaknesses of classification approaches
and data types related to the substrate and biotic components. Such a comparison further
illustrates which components may better lend themselves to classification depending upon
the data types used in the analysis as well as provide insight into the methods that work
best for each one or where improvement and further investigation may be needed.

In general, overall classification accuracies were higher for the biotic component than
for the substrate component, regardless of data type (airborne vs. satellite) (Figure 21;
Tables A1 and A2). More specifically, the biotic component classifications had higher aver-
age overall accuracies of 3.48% for airborne data combinations and 2.9% for satellite data
combinations. This may be due in part to the additional class complexity involved with the
Tier 1 substrate component which had three classes, including coarse unconsolidated and
anthropogenic classes that could have spectrally similar materials (i.e., concrete) and lead
to potential classification confusion. In contrast, the biotic component had lower average
KCs by 0.09 for airborne data combinations, while they remained approximately the same
between components for satellite data combinations. Yet, for airborne data combinations,
the biotic component had greater variability among KCs (±0.14) as opposed to the substrate
component (±0.08), while the top-performing airborne data combinations for the biotic
component had KCs on par with the top-performing satellite data combinations for the
substrate component (~0.55).
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study area.

Regarding data types, the satellite data combinations with the highest accuracies were
somewhat consistent between components, and the best results for substrate and biotic
classifications included all three three data types: S2 MS + S2 DII + S2 SDB. However,
there were some small variations between components, reflecting the impact of changes
in data input order. For example, the substrate component appeared to be less influenced
by the data input order, whereby S2 MS + S2 SDB + S2 DII and S2 DII + S2 SDB + S2 MS
resulted in the same accuracies as the top performer. It was only when S2 SDB was used
first in the data order that it resulted in a slight accuracy decrease. In contrast, the biotic
component appeared a little more sensitive to data input order in which S2 SDB + S2 DII +
S2 MS and S2 DII + S2 SDB + S2 MS experienced a slight decrease in accuracy compared
to the top performer, while S2 MS + S2 SDB + S2 DII experienced an additional accuracy
decrease. Thus, S2 DII may play an important role for the biotic component relative to
the other data inputs. A similar finding was also present in Wicaksono et al. [22] in which
two out of three machine learning approaches evaluated performed best when DII was
used in the classification and was especially helpful for separating biotic coral reef and
seagrass classes.

For the airborne data combinations, there was less consistency between components in
terms of data inputs, but both components had top performers with the data combination:
CA MNF FU + CA MNF WLR. This speaks to the dominant role of spectral information
from the hyperspectral imagery and is consistent with similar approaches [23]; however,
what is less clear, and not evaluated as part of this study, is the impact of dimensionality
reduction techniques applied to the hyperspectral imagery (such as MNF or principal
component analysis), which has had mixed results in terms of classification accuracy in
other studies [22]. Additionally, out of the top five performing airborne data combinations
for the substrate component, two included depth with spectral data inputs, though the
inclusion of depth resulted in a slight accuracy decrease. In contrast, depth and bathymetric
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reflectance data inputs were present in the top-performing data combinations for the biotic
component, such as AB DE + CA MNF FU + CA MNF WLR and AB RF + AB DE + CA
MNF FU + CA MNF WLR. This suggests an important role for the addition of Lidar-based
data inputs for the classification of biotic classes, although this is somewhat mixed for
other studies [22,23,52], and yet [22] acknowledges that the quality of the bathymetry data
is likely the limiting factor. The CMECS structure used herein allowed for a more thorough
review of the influence upon classification accuracy with respect to the component, whereas
other studies tend to develop an inclusive classification system in which substrate classes
(i.e., rock, sand, etc.) and biotic classes (i.e., seagrass, algae, etc.) are analyzed simultane-
ously. As a result, inclusive classification systems can make it difficult to understand the
influence of data type on classification accuracy.

4. Discussion

The overall goal of this effort was to better understand airborne and satellite data
inputs for identifying and classifying nearshore benthic substrate and associated habitat
using a machine learning approach that could be easily repeated and applied in other
shallow coastal environments. The study builds on foundational efforts to move towards
a more integrated data approach, whereby data strengths and limitations for mapping
nearshore benthic substrate and associated habitat, expressed through classification accu-
racy, were evaluated within the context of the CMECS classification hierarchy. The tiered
approach allowed for iterative classification into higher levels of CMECS class detail in
order to establish a “point of no return” or classification limit for data inputs, revealing
which datasets are best suited for detecting substrate and biotic features at varying levels of
specificity. This is important as we learn how to best piece different types of data together
to create a regional picture at project-relevant resolutions, making sure to place them where
they fit best and thus, matching end-goals or requirements with suitable data inputs in
a strategic way. In that sense, various data inputs can be integrated in a complemen-
tary way to address a range of management or restoration needs, which is similar to a
multi-sensor approach for restoration monitoring recommended for terrestrial applications
suggested in Reif and Theel [53]. Yet, benthic mapping poses additional challenges that
makes basin-wide or regional mapping more difficult than in terrestrial applications.

One of these challenges is the lack of a consistent classification system for benthic
mapping applications, making it difficult to compare results from existing studies, and
thus leading to further difficulties with advancing associated technical methods. Wicak-
sono et al. [22] touches on this issue explaining that there was difficulty comparing their
results to others due to the uniqueness of the employed classification systems. Regardless,
attempts to compare results in a general sense were made, and for this study, although the
system used in Wicaksono et al. [22] had 13 classes combining substrate and biotic features
using SVM applied to high-resolution satellite imagery, our overall accuracy was higher (by
as much as 15% for substrate and 19% for biotic components), which is not surprising given
the fewer number of classes in our study. Other machine learning techniques evaluated
in Zhang et al. [23] with hyperspectral data fusion using OBIA and resulting in uniquely
developed 3- and 9-class habitat maps had overall accuracies that were closer to the ones
achieved in our study, 88.5% and 83.25%, respectively, though their KCs tended to be higher
compared to our Tier 1 values, averaging 0.75 and 0.72, respectively. Alternatively, Mar-
cello et al. [49] applied SVM (among other approaches) to airborne hyperspectral imagery
as well as high-resolution satellite imagery in combination with in situ measurements from
ship-based transects to identify 3 classes (2 substrate and 1 biotic) in a shallow coastal
environment and, similar to our study, found that SVM applied to airborne hyperspectral
imagery resulted in the highest overall accuracy; however, their range in overall accuracy
using airborne data inputs was greater (73.33–97.36%, averaging 88.69%) and as much as
~2% higher than our highest overall accuracy.

Despite generalized comparisons, without a consistent, standard classification system,
such as in wetland and other habitats, evaluation and establishment of best practices with
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respect to data collection, processing, and analysis are hampered. The dissimilarity between
benthic environments is noted in Wicaksono et al. [22] and thus, specific or complex
classification systems cannot be applied to other areas. Furthermore, Kutser et al. [7] states
that coastal variability precludes a consistent system, especially given that most systems
are driven by optical signatures which often do not align with classes requested by coastal
managers. However, CMECS may overcome these issues and offers a flexible solution
that would not only increase opportunities for comparative studies, but also, expand
exploration of methodological portability, which is one of the primary needs for advancing
the state-of-the-science surrounding benthic mapping. Furthermore, CMECS’ hierarchical
structure ensures a level of flexibility and customization that likewise satisfies wide-ranging
coastal management needs while striking a balance with ease of application—another point
raised in Wicaksono et al. [22]. Another benefit of a standardized, hierarchical system
is that it is data type- and sensor-agnostic meaning that it can be applied to any data,
including from field observations as well as active or passive remote sensing. Additionally,
while this study explores the implications for data types to resolve various levels within
the CMECS hierarchy, such seamless system implementation would be a big step forward
in benthic mapping research and toward the overall goal for basin-wide mapping.

Another challenge in nearshore coastal benthic mapping includes the need for more
frequent, high-resolution bathymetry data, and thus, there is an increased opportunity for
modeled data such as SDB to supplement airborne and vessel-based data collection. The
Sentinel-2 satellite specifically offers advantages for deriving SDB and benthic habitat classi-
fication, owing to the 10–20 m spatial resolution, 5-day revisit cycle allowing rapid response
mapping, coastal aerosol band, and free, open data access [10,54]. While there is increased
use of SDB in benthic mapping applications, the implications of the data usage to coastal
zone management and decision making remains unclear, especially considering varying
spatial scales of projects. Recent evaluations of SDB algorithms (e.g., Lyzenga, Stumpf,
Traganos, and Dierssen) using Sentinel-2 imagery within Google Earth Engine showed a
wide range of root mean square error (RMSE) when modeled data were compared to in
situ measurements from a single-beam echosounder with the highest accuracy resulting in
an RMSE of 1.67 m, explaining 90% of the variation in the validation dataset [55]. A similar
validation assessment was conducted in our study area in which bathymetry points from
the airborne bathymetric lidar point cloud (30 cm vertical accuracy) were used to validate
the modeled SDB, resulting in an RMSE of 1.02 m, explaining 76% of the variation in the
validation dataset (Figure 22). The map in Figure 23 illustrates the tendency for the SDB
to overestimate depths offshore (making it appear deeper) as opposed to underestimate
depths nearshore (making it appear shallower). This trend also happens to coincide with
areas that were prone to misclassification, such as the northeast section of the study area
with optically deeper water and may exacerbate or confound classification issues associ-
ated with particular features or in certain areas. While this study utilized the algorithms
associated with Sen2Coral process, it is understood that there are additional SDB inputs
and algorithms available that could be evaluated and may provide better results; however,
the comparison of these methods was not the focus of this study. Thus, it’s important to
understand how these data can impact not only the products resulting from their analyt-
ical use, but also the use of those resultant products in decision making, such as better
understanding habitat changes pre- and post-placement of in-water shoreline protection
structures, impacts to known fish spawning grounds (e.g., littoral sedimentation at Buffalo
Reef in Lake Superior [28]), and the relationship between invasive species and changes
to the benthic community at Sleeping Bear Dunes in Lake Michigan. Supplemental or
tangential analyses such as the one presented in Figures 22 and 23, comparing SDB to
high-fidelity in situ measurements or high-accuracy bathymetric lidar data, helps to better
understand SDB accuracy in conjunction with benthic classification outputs and in relation
to locally specific coastal management activities.



Remote Sens. 2021, 13, 3026 35 of 43Remote Sens. 2021, 13, x FOR PEER REVIEW 36 of 44 
 

 

 
Figure 22. Plot comparison of SDB generated from Sentinel-2 imagery to airborne bathymetric lidar 
point cloud (30 cm vertical accuracy). 

 
Figure 23. Map comparison of SDB generated from Sentinel-2 imagery to airborne bathymetric lidar 
point cloud (30 cm vertical accuracy), highlighting the tendency for the SDB to overestimate depths 

Figure 22. Plot comparison of SDB generated from Sentinel-2 imagery to airborne bathymetric lidar
point cloud (30 cm vertical accuracy).

Other challenges specific to the progress in benthic mapping stem from the variety and
increasing amounts of in situ observations, yet this also poses a tremendous opportunity,
especially for moving towards semi-automation and machine learning approaches that
rely on extensive ground verification data. To that end, the use of machine learning
techniques for benthic mapping is a growing area of study with many documented benefits
despite the tradeoffs associated with computation time and added ground validation
requirements [7,21–23,56]. Ultimately, a compromise is needed to balance the desire for
basin-wide, regionally consistent map products and the requirement for improved and
increasing amounts of ground validation or ground truth data to satisfy machine learning
and more automated approaches. In this study, the partnership with local experts was
critical for gaining a priori knowledge to improve classification results. For example,
without the cultural context of the shoreline impacts specific to the study area (Figure 24),
which were provided in the ground validation data and captured within the CMECS
hierarchy, the anthropogenic features identified offshore could have easily been identified
as geologic coarse substrate given the spectrally similarity and shape of the materials.
Figure 24 offers a historical perspective of changes in this highly dynamic area further
illustrating how the data used in this study in combination with high-quality ground
truth data and local knowledge can be used to monitor specific changes that have direct
implications for natural resource policy-making and to inform restoration practices. Thus, it
is important to think about strategic integration and application of the increasing amounts
of field observations made by academia, state, local, and federal agencies, as well as many
stakeholder and partner organizations to improve basin-wide mapping approaches. This
ties back to the need for more consistent or standardized classification systems, in which
CMECS may offer a consistent and flexible way for the application of field observation data.
Wicaksono et al. [22] posits that in situ training or ground data are no longer necessary,
which may be true in large homogeneous environments or areas with common benthic
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features. However, in the case of the Great Lakes, there is a wide variety in nearshore
substrate and biotic compositions in which the incorporation of field observations is
essential for the development of accurate and reliable benthic habitat information and
mapping products to support coastal and natural resources management.
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Figure 23. Map comparison of SDB generated from Sentinel-2 imagery to airborne bathymetric lidar
point cloud (30 cm vertical accuracy), highlighting the tendency for the SDB to overestimate depths
offshore (red sites, making it appear deeper) as opposed to underestimate depths nearshore (blue
sites, making it appear shallower). Note that validation points within the RMSE range of ±1.02 m
were removed from the map graphic.
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Figure 24. Shoreline changes and destruction of infrastructure illustrated in the central part of
the study area as a result of lake level changes between 1960 and 2020: (a) 1960 topographic map
obtained from the U.S. Geological Survey [57] showing homes and roads along the shoreline with the
superimposed 2020 shoreline (digitized from RGB aerial imagery collected by the JALBTCX in 2020),
(b) Tier 1 substrate classification result using airborne data inputs from 17 July 2018, highlighting
remnants of various infrastructure found offshore (1973 structures digitized from historic topographic
maps, [58]) and classified as anthropogenic substrate (in red), (c) airborne fusion image from 17 July
2018 also illustrating offshore benthic environment, and (d) 1973 photograph showing destruction of
a home impacted by the shoreline erosion [59].

5. Conclusions

The approach described in this study, in which airborne and satellite data were
evaluated for the classification of benthic substrate and biotic components reveals the
potential strengths and weaknesses of those datasets for use in basin-wide mapping.
Furthermore, it shows how these different approaches can be complementary, revealing
levels of certainty when used in tandem or if fused or integrated more directly. This
integrative aspect is important as regional initiatives such as the Great Lakes Water Quality
Agreement strive to find ways to better protect and restore aquatic resources, in which
monitoring and adaptive management are key objectives, setting the stage for critical
regional activities and policies [4]. For example, the products generated from this study
could be used to better understand the benthic substrate and associated habitat prior
to shoreline protection project implementation (pre- and post-placement of shoreline
protection structures) funded by the Great Lakes Restoration Initiative.

Future steps should include not only evaluating the portability of the approach devel-
oped in this study to other areas in the Great Lakes, but also further integrating additional
data types, such as vessel-based measurements, at larger spatial extents. Scaling analytical
efforts up will increase the class diversity and complexity as well as require bringing even
more disparate data types together, a challenging endeavor. Yet, no single data type or
platform can accomplish the goal of basin-wide nearshore benthic mapping, and given the
high variability of the nearshore environment within the Great Lakes, a multi-sensor data
integration approach is warranted. A large piece of the regional puzzle will include the in-
tegration of airborne and satellite data, and many of the previous hurdles surrounding their
use continue to improve—higher spatial, spectral, and temporal resolutions, better data
quality, enhanced water column correction techniques, more advanced analytical methods,
such as machine learning, as well as free, open data policies. Coastal and nearshore map-
ping programs and initiatives including the USACE NCMP, Seabed 2030, and Lakebed
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2030, to name only a few of the efforts underway, are working to increase the temporal
and spatial resolution of available data. It will be important to scale the benthic mapping
work accordingly to take advantage of these new data streams and create meaningful,
accurate, and reliable benthic data products that support the coastal and natural resources
management professionals. The nexus of these technical improvements, along with a
flexible classification system that meets management needs while being widely applicable
(e.g., CMECS), and cross-jurisdictional partnerships for leveraging data, expertise, and re-
sources will ultimately help overcome the challenges associated with basin-wide nearshore
benthic mapping.
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Appendix A. Tier 1 Substrate and Biotic Component Classification Accuracy

Table A1. Tier 1 substrate component overall and class-specific classification accuracies for airborne and satellite data
combinations. Index = unique numerical value; OA% = percent overall accuracy; KC = Kappa Coefficient; Area% = percent
area; PA% = percent producer accuracy; UA% = percent user accuracy. Data combinations are ranked by overall accuracy,
highest to lowest, and grouped in which overall accuracy and Kappa Coefficient values are the same (alternating groups of
white, light grey and dark grey blocks); there is no particular order of importance within those groups. * Denotes the data
combination used for the Tier 2 analysis mask.

Coarse Unconsolidated Fine Unconsolidated Anthropogenic
Index Data Type OA% KC Area% PA% UA% Area% PA% UA% Area% PA% UA%

Airborne Data Combinations

1 CA MNF FU 90.81 0.54 5.32 50 69.7 91.45 97.22 92.59 3.23 44.12 75
2 CA MNF FU + CA MNF WLR 90.81 0.56 5.65 54.35 71.43 90.16 96.48 93.2 4.19 50 65.38
3 CA MNF WLR + CA MNF FU 90.81 0.56 5.65 54.35 71.43 90.16 96.48 93.2 4.19 50 65.38

4 CA MNF WLR + CA MNF FU
+ AB DE 90.65 0.55 5.65 54.35 71.43 90 96.3 93.19 4.35 50 62.96

5 AB DE + CA MNF FU + CA
MNF WLR 90.65 0.55 5.65 54.35 71.43 90 96.3 93.19 4.35 50 62.96

6 CA MNF FU + CA MNF WLR
+ AB RF 90.32 0.50 4.52 45.65 75 91.94 97.22 92.11 3.55 41.18 63.64
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Table A1. Cont.

Coarse Unconsolidated Fine Unconsolidated Anthropogenic
Index Data Type OA% KC Area% PA% UA% Area% PA% UA% Area% PA% UA%

7 CA MNF WLR + CA MNF FU
+ AB RF 90.32 0.50 4.52 45.65 75 91.94 97.22 92.11 3.55 41.18 63.64

8 CA MNF FU + AB RF + CA
MNF WLR 90.32 0.50 4.52 45.65 75 91.94 97.22 92.11 3.55 41.18 63.64

9 AB RF + CA MNF FU + CA
MNF WLR 90.16 0.48 4.19 41.3 73.08 92.74 97.59 91.65 3.06 38.24 68.42

10 AB RF + AB DE + CA MNF FU +
CA MNF WLR 90.16 0.48 4.19 41.3 73.08 92.74 97.59 91.65 3.06 38.24 68.42

11 CA MNF FU + CA MNF WLR +
AB DE + AB RF 90.00 0.49 4.68 45.65 72.41 91.61 96.85 92.08 3.71 41.18 60.87

12 CA MNF WLR + CA MNF FU +
AB DE + AB RF 90.00 0.49 4.68 45.65 72.41 91.61 96.85 92.08 3.71 41.18 60.87

13 AB DE + AB RF + CA MNF FU +
CA MNF WLR 90.00 0.49 4.68 45.65 72.41 91.61 96.85 92.08 3.71 41.18 60.87

14 CA MNF FU + AB RF + AB DE +
CA MNF WLR 90.00 0.49 4.68 45.65 72.41 91.61 96.85 92.08 3.71 41.18 60.87

15 CA MNF FU + AB DE + AB RF 90.00 0.49 4.84 47.83 73.33 91.61 96.85 92.08 3.55 38.24 59.09
16 CA MNF FU + AB RF 90.00 0.48 5 47.83 70.97 92.26 97.22 91.78 2.74 32.35 64.71
17 AB RF + AB DE + CA MNF FU 89.84 0.44 4.19 41.3 73.08 93.39 97.78 91.19 2.42 29.41 66.67
18 AB RF + CA MNF FU 89.68 0.43 4.19 41.3 73.08 93.55 97.78 91.03 2.23 26.47 64.29
19 AB DE + AB RF 89.52 0.42 4.52 43.48 71.43 93.39 97.59 91.02 2.1 23.53 61.54
20 AB RF + AB DE 89.52 0.41 3.87 41.3 79.17 94.03 97.96 90.74 2.1 20.59 53.85
21 CA MNF WLR 88.06 0.16 0 0 0 98.39 99.63 88.2 1.61 23.53 80

Airborne Data Combinations
with Additional ROIs

22 CA MNF FU 90.65 0.45 4.19 45.65 80.77 94.84 99.07 90.99 0.97 17.65 100

23 CA MNF WLR + CA MNF FU +
AB DE * 90.65 0.44 3.87 43.48 83.33 95.16 99.26 90.85 0.97 17.65 100

24 CA MNF FU + CA MNF WLR 89.52 0.41 4.52 45.65 75 94.03 97.96 90.74 1.45 14.71 55.56
Satellite Data Combinations

25 S2 MS + S2 DII + S2 SDB 90.59 0.32 2.48 35.71 100 97.52 100 90.36 n/a n/a n/a
26 S2 MS + S2 SDB + S2 DII 90.59 0.32 2.48 35.71 100 97.52 100 90.36 n/a n/a n/a
27 S2 DII + S2 SDB + S2 MS 90.59 0.32 2.48 35.71 100 97.52 100 90.36 n/a n/a n/a
28 S2 MS + S2 DII 90.10 0.27 1.98 28.57 100 98.02 100 89.9 n/a n/a n/a
29 S2 DII + S2 MS 90.10 0.27 1.98 28.57 100 98.02 100 89.9 n/a n/a n/a
30 S2 SDB + S2 DII + S2 MS 90.10 0.27 1.98 28.57 100 98.02 100 89.9 n/a n/a n/a
31 S2 DII + S2 SDB 90.10 0.27 1.98 28.57 100 98.02 100 89.9 n/a n/a n/a
32 S2 SDB + S2 DII 90.10 0.27 1.98 28.57 100 98.02 100 89.9 n/a n/a n/a
33 S2 MS 88.12 0 0 0 0 100 100 88.12 n/a n/a n/a
34 S2 MS + S2 SDB 88.12 0 0 0 0 100 100 88.12 n/a n/a n/a
35 S2 SDB + S2 MS 88.12 0 0 0 0 100 100 88.12 n/a n/a n/a

Satellite Data Combinations with
Additional ROIs

36 S2 MS + S2 DII + S2 SDB 90.59 0.32 2.48 35.71 100 97.52 100 90.36 n/a n/a n/a
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Table A2. Tier 1 biotic component overall and class-specific classification accuracies for airborne and satellite data com-
binations. Index = unique numerical value; OA% = percent overall accuracy; KC = Kappa Coefficient; Area% = percent
area; PA% = percent producer accuracy; UA% = percent user accuracy. Data combinations are ranked by overall accuracy,
highest to lowest, and grouped in which overall accuracy and Kappa Coefficient values are the same (alternating groups of
white, light grey and dark grey blocks); there is no particular order of importance within those groups. * Denotes the data
combination used for the Tier 2 analysis mask.

Aquatic Vegetation Bed Biotic Null
Index Data Type OA% KC Area% PA% UA% Area% PA% UA%

Airborne Data Combinations

1 AB DE + CA MNF FU + CA MNF WLR 95.2 0.56 3.52 42 95.45 96.48 99.83 95.19
2 CA MNF FU + CA MNF WLR 94.72 0.50 3.04 36 94.72 96.96 99.83 94.72

3 AB RF + AB DE + CA MNF FU + CA
MNF WLR 94.4 0.48 3.36 36 85.71 96.64 99.48 94.7

4 AB RF + CA MNF FU + CA MNF WLR 94.4 0.48 3.36 36 85.74 96.64 99.48 94.7
5 CA MNF WLR + CA MNF FU 94.08 0.39 2.08 26 100 97.92 100 93.95
6 CA MNF WLR + CA MNF FU + AB DE 94.08 0.42 2.72 30 88.24 97.28 99.65 94.24

7 CA MNF WLR + CA MNF FU + AB DE
+ AB RF 93.76 0.38 2.4 26 86.67 97.6 99.65 93.93

8 CA MNF FU + CA MNF WLR + AB DE
+ AB RF 93.76 0.38 2.4 26 86.67 97.6 99.65 93.93

9 AB DE + AB RF + CA MNF FU + CA
MNF WLR 93.76 0.38 2.4 26 86.67 97.6 99.65 93.93

10 CA MNF FU + AB RF + AB DE + CA
MNF WLR 93.76 0.38 2.4 26 86.67 97.6 99.65 93.93

11 CA MNF FU + AB DE + AB RF 93.76 0.38 2.4 26 86.67 97.6 99.65 93.93
12 AB DE + AB RF 93.76 0.45 4 36 72 96 98.78 94.67
13 CA MNF WLR + CA MNF FU + AB RF 93.44 0.29 1.44 18 100 98.56 100 93.34
14 CA MNF FU + CA MNF WLR + AB RF 93.44 0.29 1.44 18 100 98.56 100 93.34
15 CA MNF FU + AB RF + CA MNF WLR 93.44 0.29 1.44 18 100 98.56 100 93.34
16 CA MNF FU 92.64 0.21 1.6 14 70 98.4 99.48 93.01
17 AB RF + AB DE + CA MNF FU 92.32 0.07 0.32 4 100 99.68 100 92.3
18 AB RF + AB DE 92.32 0.07 0.32 4 100 99.68 100 92.3
19 CA MNF WLR 92 0.00 0 0 0 100 100 92
20 CA MNF FU + AB RF 92 0.00 0 0 0 100 100 92
21 AB RF + CA MNF FU 92 0.00 0 0 0 100 100 92

Airborne Data Combinations with
Additional ROIs

22 AB DE + CA MNF FU + CA MNF WLR * 94.4 0.53 4.64 44 75.86 95.36 98.78 95.3

23 AB RF + AB DE + CA MNF FU +
CA MNF WLR 94.24 0.50 4.16 40 76.92 95.84 98.96 94.99

24 CA MNF FU + CA MNF WLR 94.24 0.52 4.8 44 73.33 95.2 98.61 95.29
Satellite Data Combinations

25 S2 MS + S2 DII + S2 SDB 93.72 0.41 2.9 29.41 83.33 97.1 99.47 94.03
26 S2 MS + S2 DII 93.24 0.34 2.42 23.53 80 97.58 99.47 93.56
27 S2 DII + S2 MS 93.24 0.34 2.42 23.53 80 97.58 99.47 93.56
28 S2 SDB + S2 DII + S2 MS 93.24 0.34 2.42 23.53 80 97.58 99.47 93.56
29 S2 DII + S2 SDB + S2 MS 93.24 0.34 2.42 23.53 80 97.58 99.47 93.56
30 S2 DII + S2 SDB 92.75 0.26 1.93 17.65 75 98.07 99.47 93.1
31 S2 MS + S2 SDB + S2 DII 92.27 0.24 2.42 17.65 60 97.58 98.95 93.07
32 S2 SDB + S2 DII 92.27 0.18 1.45 11.76 66.67 98.55 99.47 92.65
33 S2 MS 91.79 0 0 0 0 100 100 91.79
34 S2 MS + S2 SDB 91.79 0 0 0 0 100 100 91.79
35 S2 SDB + S2 MS 91.79 0 0 0 0 100 100 91.79
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