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Abstract: Biomass estimation of multiple phytoplankton groups from remote sensing reflectance
spectra requires inversion models that go beyond the traditional band-ratio techniques. To achieve
this objective retrieval models are needed that are rooted in radiative transfer (RT) theory and exploit
the full spectral information for the inversion. HydroLight numerical solutions of the radiative
transfer equation are well suited to support this inversion. We present a fast and flexible Python
framework for forward and inverse modelling of multi- and hyperspectral observations, by further
extending the formerly developed HydroLight Optimization (HYDROPT) algorithm. Computation
time of the inversion is greatly reduced using polynomial interpolation of the radiative transfer
solutions, while at the same time maintaining high accuracy. Additional features of HYDROPT are
specification of sensor viewing geometries, solar zenith angle and multiple optical components with
distinct inherent optical properties (IOP). Uncertainty estimates and goodness-of-fit metrics are simul-
taneously derived for the inversion routines. The pursuit to retrieve multiple phytoplankton groups
from remotely sensed observations illustrates the need for such flexible retrieval algorithms that allow
for the configuration of IOP models characteristic for the region of interest. The updated HYDROPT
framework allows for more than three components to be fitted, such as multiple phytoplankton types
with distinct absorption and backscatter characteristics. We showcase our model by evaluating the
performance of retrievals from simulated Rrs spectra to obtain estimates of 3 phytoplankton size
classes in addition to CDOM and detrital matter. Moreover, we demonstrate HYDROPTs capability
for the inter-comparison of retrievals using different sensor band settings including coupling to full
spectral coverage, as would be needed for NASA’s PACE mission. The HYDROPT framework is now
made available as an open-source Python package.

Keywords: HYDROPT; ocean color; radiative transfer; hyperspectral; inversion; phytoplankton size
class; NASA PACE

1. Introduction

Ocean-color remote sensing has opened up the opportunity to monitor the biological
and chemical processes of the ocean on an unprecedented scale. Satellite sensors continue to
provide a synoptic view of ocean biogeochemistry at high spatial and temporal resolution
that would be impossible to acquire through in-situ sampling campaigns [1].

More than four decades ago the first ocean-color instrument, the Coastal Zone Color
Scanner (CZCS; a list of abbreviations is given under section “Abbreviations”) was launched
and for the first time provided a detailed picture of phytoplankton dynamics in the upper
layers of the ocean. The main product derived from CZCS observations were estimates of
the primary pigment found in almost all phytoplankton, chlorophyll-a [1]. The first order
variation in remote sensing reflectance (Rrs) in open ocean waters is due to chlorophyll-a [2]
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characterized by two absorption peaks in the blue and in the red, causing a greening of the
waters with increasing phytoplankton concentrations.

However, chlorophyll-a alone does not give the full picture of phytoplankton diversity [3].
The diversity in phytoplankton is characterized by different physiological and morpho-
logical traits that affect biogeochemical processes and the ecological niches that these
species inhabit [4,5]. In turn, these physiological and morphological differences between
phytoplankton groups affect the optical properties of the water column and in theory could
be detected in the remotely sensed signal. Exploiting this second order variation in the
remotely sensed signal to derive a more detailed description of phytoplankton community
structure has become a top priority in the ocean-color community [3,6].

Many physiological traits of phytoplankton, which in turn affect ecological and bio-
geochemical processes, are correlated with cell size and pigment composition [4,5,7]. The
smallest phytoplankton such as Prochlorococcus and Synechococcus are numerically the most
abundant phytoplankton in the ocean and are important contributors to global primary
production [8]. The largest phytoplankton such as diatoms dominate in cold, nutrient
rich waters and are important contributors to the biological pump through efficient draw
down of carbon to the sea floor [9]. In addition to chlorophyll-a, Prochlorococcus contains
(divinyl) chlorophyll-b, Synechococcus contains a diversity of phycobilin pigments, and
diatoms contain chlorophyll-c and fucoxanthin, with which they exploit different parts of
the light spectrum [7,10].

Cell size and pigment composition affect absorption and backscatter characteristics
of phytoplankton [9–12]. The packaging effect is an important driver of the variability in
phytoplankton absorption which is depended on phytoplankton cell size and intracellular
pigment concentration [10]. Numerous studies have investigated the link between commu-
nity size structure and chlorophyll-a specific absorption: the phytoplankton absorption
normalized to chlorophyll-a concentration derived from HPLC-based measurements. The
chlorophyll-a specific absorption, especially around the blue absorption peak (440–490 nm),
decreases with increasing cell size (Figure 1) [11,13]. Small-celled phytoplankton communi-
ties are characterized by pronounced absorption peaks whereas communities dominated by
larger cells exhibit less pronounced peaks. Brewin et al. [14] empirically derived backscatter
coefficients for phytoplankton communities of different dominating cell sizes. Phytoplank-
ton communities dominated by the largest cells show a low and spectrally flat backscatter,
whereas smaller celled communities exhibit elevated backscatter at shorter wavelengths
and exponentially decreasing scatter with increasing wavelength (Figure 2). The differ-
ences in absorption and backscatter characteristics could in theory be exploited to detect
and discriminate the size structure of phytoplankton groups from the remotely sensed
signal [6].

However, efforts to exploit the full spectral reflectance to obtain phytoplankton com-
munity structure have been challenging and have led to the identification of certain phy-
toplankton groups without estimates of biomass [2,3,15,16]. Most of the semi-analytical
retrieval models only decompose either the retrieved absorption or backscatter coefficients
to obtain information on community structure and ignore the inter-dependency between
the IOPs and measured Rrs signal. The empirical models suffer from noise in the detected
pigment concentrations of representative species and are biased to the data collected. Inver-
sion methods based on radiative transfer principles are needed to accurately separate the
contribution of various phytoplankton groups to Rrs [15,17]. HydroLight [18] is the state-of-
the-art radiative transfer model for ocean-color applications; however, it is computational
costly and can therefore not be used to invert Rrs spectra in near real time.

The HYDROPT model [19] was developed to overcome the time intensive compu-
tations of RT simulations and at the same time sustain highly accurate Rrs calculations
over several wavelengths. HYDROPT is based on HydroLight RT simulations and speed
and accuracy are realized through interpolation of the radiative transfer solutions. The
inversion is achieved by finding the best fit to the measured Rrs by means of nonlinear
optimization techniques. The original HYDROPT algorithm was adapted to coastal and
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inland waters and was only capable of fitting three optical components to a limited set of
9 wavebands from the Medium Resolution Imaging Spectrometer (MERIS). Coastal and
inland waters are characterized by high levels of absorption and scattering by CDOM and
particulate matter, leaving only one component to represent the absorption and scattering
budget of the phytoplankton population. To retrieve multiple phytoplankton groups, HY-
DROPT needs to be updated to accommodate several optical spectral models for different
phytoplankton groups in addition to CDOM and detrital matter. The increasing number
of ocean-observing sensors also necessitate the need for flexible waveband configuration
beyond MERIS band settings. A final impetus to this research has been the publication of
new absorption values of pure water in the 250–550 nm wavelength range [20], a part of
the spectrum important for the discrimination of phytoplankton groups [4,7].

m
2  m

g-1

Figure 1. Chlorophyll-a specific absorption for (a) micro- (b) nano- and (c) pico-phytoplankton. A hundred absorption
spectra are randomly sampled to visualize variability within and across size classes (blue lines). Mean absorption spectra
are used as for the inversion with HYDROPT (red dashed lines). Absorption coefficients and standard errors are obtained
from Uitz et al. [11].
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Figure 2. Chlorophyll-a specific backscatter for (a) micro- (b) nano- and pico-phytoplankton. A hundred backscatter spectra
are randomly sampled to visualize variability within and across size classes (blue lines). Mean backscatter spectra are used
for the inversion with HYDROPT (red dashed lines). Backscatter coefficients and standard errors are obtained from Table
3-database D in Brewin et al. [12].
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The objective of this research is three-fold. First, we present the update to the formerly
developed HYDROPT algorithm [19]. HYDROPT has been completely rewritten in Python
and is made open-source [21]. The most notable update is the coupling to full spectral
coverage as would be needed for hyperspectral missions like NASA’s Plankton, Aerosol,
Cloud, ocean Ecosystem (PACE) mission [22]. HYDROPT is sensor agnostic, allowing
flexible band settings in the 400–710 nm range while accounting for the bidirectional
nature of Rrs [23–25] . Second, we test the feasibility of the framework to retrieve three
phytoplankton size classes in addition to CDOM and detrital matter from simulated Rrs
spectra. The dataset incorporates changes in phytoplankton community structure in
addition to variable mass specific IOPs for phytoplankton, detrital matter and CDOM to
best represent the optical variation encountered in natural water bodies [5,11,26,27]. Third,
we demonstrate the applicability of HYDROPTs flexible waveband settings to both multi-
and hyperspectral sensors and we compare the performance of retrievals for Sea-viewing
Wide Field-of-view Sensor (SeaWiFS), Ocean and Land Color Instrument (OLCI) and the
PACE ocean-color sensor.

2. Materials and Methods
2.1. HydroLight Simulations

HydroLight forward simulation are run to obtain the remote sensing reflectance, Rrs
(units: sr−1), as a function of IOPs, viewing geometry (θv, φv) and solar zenith angle (θs):

Rrs(λ, θv, φv, θs) =
Lw(λ, θv, φv, θs)

Ed(λ)
(1)

where λ is the wavelength, Lw (units: Wm−2sr−1nm−1) the water-leaving radiance and Ed
(units: Wm−2nm−1) the downwelling irradiance just above the water surface. The remote
sensing reflectance is calculated for a viewing geometry consistent with the standard
HydroLight quad layout with a 10° resolution in nadir viewing angle (θv) and 15° resolution
in azimuthal angle (φv). The RT simulations are run at a 5 nm resolution between 400 and
710 nm and for solar zenith angles between 0–80° at a 10° resolution.

For the forward simulations a bio-optical model is chosen that includes the IOP
of water, CDOM, mineral particles and phytoplankton [18]. The goal of the forward
radiative transfer simulations is to obtain Rrs for a realistic set of absorption and backscatter
coefficients. Details on the IOP spectral models, wind and sky conditions can be found in
the supplementary information (Table A1). Fluorescence and Raman scattering are ignored.
A lookup table (LUT) is constructed that contains all permutations of CDOM absorption
at 440 nm (ρCDOM: 0.005–10 m−1) and concentrations of minerals (ρmin: 0.01–100 g m−3)
and phytoplankton (ρchl: 0.01–32 mg m−3). Every component is varied over 10 logarithmic
spaced intervals between their respective minimum and maximum values, yielding a total
of a 1000 simulations per waveband for every viewing geometry.

2.2. Polynomial Forward Model

HYDROPT uses a polynomial function to describe the relationship between Rrs and
the IOPs of the water column, the total absorption (a) and backscatter (bb) coefficients
(units: m−1). Since the last version of the framework [19], the use of the total scattering
coefficient has been replaced by the backscatter coefficient. Through polynomial interpola-
tion of the RT solutions a fast and accurate forward model is constructed that takes into
account the bidirectional nature of Rrs. The rationale behind a polynomial description of
the RT solution space is that it provides an analytical form of the relationship between Rrs
and IOPs, the total spectral absorption and backscatter [19]. Since polynomial expressions
are easily differentiable, they provide a fast way to invert reflectance spectra in conjunction
with gradient-based optimization routines. The following polynomial form is chosen to
relate Rrs to the IOPs:

R′rs(λ) ≈
n

∑
i=0

n

∑
j=0

cij(λ) (a′)i (b′b)
j (2)
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where R′rs is the natural log-transformed reflectance at wavelength λ, n is the degree of
the polynomial expression, cij(λ) is the fitted coefficient of the corresponding polynomial
term and a′ and b′b are the log-transformed absorption and backscatter coefficients. The
powers of the polynomial terms are indicated by i and j. The (log-transformed) reflectance
values, R′rs, together with the absorption and backscatter coefficients, a′ and b′b, are obtained
from HydroLight simulations. It should be noted that Rrs and the coefficients cij are also
dependent on the viewing geometry and sky conditions but are omitted from Equation (2)
for brevity. The polynomial coefficients c are linearly interpolated to obtain Rrs for any
waveband, and viewing geometry.

Using Equation (2) the remote sensing reflectance can now be calculated for any
combination of water constituents given that:

a = aw +
m

∑
i=1

a∗i ρi

bb = bb,w +
m

∑
i=1

b∗b,i ρi

(3)

where a and bb are the total absorption and backscatter coefficients respectively, aw and
bb,w are the absorption and backscatter due to water and a∗i and b∗b,iare the mass specific
absorption and backscatter coefficients for constituent i and ρ is the concentration of the
constituent. Multiple optical constituents (m) can be used to calculate Rrs such as different
phytoplankton groups as long as the total absorption and backscatter values are within the
same range as the IOP values used in the radiative transfer simulations.

Given the matrix C of all coefficients cij and the matrix X of the transformed polyno-
mial terms of a′ and b′b, Equation (2) can be rewritten in vector notation:

R′rs ≈ diag(C · X) (4)

To prevent over-fitting, the degree of the polynomial model, n, is determined through
10-fold cross-validation. Since reflectance values differ in order of magnitude between
wavebands, the root mean squared relative error (RMSRE) is used as a measure of
accuracy [28,29]:

RMSRE =

√√√√1
k

710

∑
λ=400

[Rrs(λ)− R̂rs(λ)

Rrs(λ)

]2
(5)

where k is the number of wavebands (k = 63), Rrs the reflectance given by HydroLight and
R̂rs the reflectance predicted by our forward model (Equations (2) and (4)). The root mean
squared relative error scales the errors across all wavebands. The 1-SE rule is used to select
the most parsimonious model within one standard error of the best model [30].

2.3. Optimization

The estimation of IOPs and concentration of aquatic optical constituents from Rrs relies
on minimizing the difference between the observed (Rrs) and predicted (R̂rs) reflectance
spectra. The loss function to be minimized is therefore expressed as:

χ2 =
k

∑
i=1

[
Rrs(λi)− R̂rs(λi, ρm)

σi

]2

(6)

where ρm is the absorption or concentration of water constituent m (e.g., CDOM, non-algal
particles, chlorophyll), k the number of wavebands and σi the weight assigned to waveband
i. The concentration of constituents that minimize the loss function are assumed to be
the best estimate for that respective reflectance spectrum. Gradient-based optimization
routines, such as Levenberg-Marquardt, use the gradient of the loss function to converge
to a local or global solution. Several Python packages implement these optimization
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routines [31,32] and either approximate the gradient numerically or allow the user to
supply an analytical expression of the gradient. Since numerical approximations are
computationally more costly and time consuming, providing an analytical expression
of the gradient is preferred. Here we derive the gradient of Rrs w.r.t the constituent
concentrations ρ:

∇Rrs(λi, ρm) =

[
∂Rrs(λi)

∂ρ1
, · · · ,

∂Rrs(λi)

∂ρm

]
(7)

where∇Rrsis the gradient for waveband i w.r.t constituents 1 to m and ∂Rrs/∂ρm is the par-
tial derivative of Rrs w.r.t constituent m. The partial derivatives can be further decomposed
as follows:

∂Rrs

∂ρm
=

∂Rrs

∂R′rs

(
∂R′rs
∂a′

∂a′

∂a
∂a
ρm

+
∂R′rs
∂b′b

∂b′b
∂bb

∂bb
ρm

)
(8)

with

∂Rrs

∂R′rs
=

∂Rrs

∂ln(Rrs)
= Rrs (9)

and ∂R′rs/∂a′ and ∂R′rs/∂b′b are the first order derivative of the forward model (Equation (2))
given by:

∂R′rs
∂a′

=
n

∑
j=0

n

∑
i=0

i cij(a′)i−1 (b′b)
j

∂R′rs
∂b′b

=
n

∑
j=0

n

∑
i=0

j cij(b′b)
j−1 (a′)i

(10)

The partial derivatives ∂a′/∂a and ∂b′/∂b are simply:

∂a′

∂a
=

∂ln(a)
∂a

=
1
a

∂b′b
∂bb

=
∂ln(bb)

∂bb
=

1
bb

(11)

The two terms ∂a/∂ρm and ∂bb/∂ρm denote the first order derivative of the absorption
and backscatter model for constituent m. In the case of a linear model as in Equation (3)
the derivatives reduce to a∗m and b∗b,m respectively.

Evaluating the gradient in Equation (7) for every waveband λ and constituent ρ gives
the Jacobian of our forward model to be used in gradient-based optimization routines:

J =

∇Rrs(λ1, ρm)
...

∇Rrs(λn, ρm)

 (12)

The Levenberg-Marquardt implementation also estimates the co-variance matrix
for every retrieval [32]. Given the co-variance matrix C , the relative retrieval error for
constituent i can be approximated as follows:

δi ≈
√

Ci,i

ρ̂i
(13)

where Ci,i is the variance in the estimation of constituent i and ρ̂i is the estimated concen-
tration of constituent i.

2.4. IOCCG Dataset

To test the generalizability of the polynomial forward model we first validate the
model against an independent dataset that assumes different optical conditions under
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which the simulations have been conducted. Here we assess HYDROPT’s capability to ac-
curately predict Rrs with changes in the particle volume scattering function (VSF). The VSF,
and thus the backscatter ratio, is extremely difficult to determine in the field and laboratory.
Most studies have relied on approximations of the VSF by either interpolating the VSF be-
tween angles that can be measured in the field [33] or through theoretical calculations [34].
Because of the uncertainty in the VSF of marine particles, several assumptions are made
when performing in-water radiative transfer calculations. For the HydroLight simulations
in this study we assumed a Fournier–Forand (FF) phase function with a 1.4% backscatter
ratio for phytoplankton as well as for minerals. The well-established IOCCG dataset [27]
comprises forward simulations with different phase functions for phytoplankton and par-
ticulate matter: a FF phase function with a 1% backscatter ratio for phytoplankon and a
Petzold phase function with a 1.8% backscatter ratio for minerals. To establish generaliz-
ability or our forward model, the absorption and backscatter coefficients from the IOCCG
simulations are used as input to the polynomial model to predict Rrs. The predicted Rrs
spectra by HYDROPT are validated against the IOCCG Rrs values.

2.5. Hyperspectral Phytoplankton Size Class Dataset

To establish the potential of HYDROPT to retrieve multiple phytoplankton size classes
from Rrs, we create a hyperspectral dataset containing simulated spectra [35]. The dataset
takes into account the natural variability in chlorophyll-a and mass specific IOPs for three
phytoplankton size classes as well as detritus and CDOM absorption. In addition, the
dataset also incorporates the co-variation between the optical components as would be
encountered in the case-I waters [27].

By combining HPLC samples from open ocean waters and diagnostic pigment analy-
sis, Uitz et al. [11] estimated chlorophyll-a specific absorption spectra for three different
phytoplankton size classes: pico- (<2 µm), nano- (2–20 µm) and micro-phytoplankton
(>20 µm) (Figure 1). One hundred spectra for each size class are sampled from the distri-
bution of absorption coefficients in Uitz et al. [11] (Figure 1). These spectra are randomly
selected and used for forward modelling of our dataset. For the inversion part of the
exercise, we only supply the average chlorophyll-a specific absorption spectra (red dashed
lines in Figure 1) to HYDROPT.

Brewin et al. [12] estimated the chlorophyll-a specific backscatter coefficients for
these three phytoplankton size classes using several in-situ databases that contain HPLC
measurements and particulate backscatter coefficients. By applying diagnostic pigment
analysis to the HPLC measurements, biomass for each size class could be estimated and
subsequently their fractional contribution to the total particulate backscatter [12]. The mass
specific backscatter is described by a power-law according to:

b∗bp(λ) = b∗bp(λ0)
( λ

λ0

)γ1
(14)

where b∗bp (units: m2 mg−1) is the mass specific backscatter coefficient, λ0 is the reference
wavelength at 470 nm and γ1 is the spectral slope. The mass specific backscatter coefficient,
spectral slope and variability in the estimates of these coefficients were determined by non-
linear least squares fitting and bootstrapping. Here, we model phytoplankton backscatter
using the parameters described in Table 3-database D in [12]. The given 95% confidence
intervals are converted to standard errors assuming normally distributed errors, yielding
the hundred spectral backscatter curves in Figure 2. Estimates of spectral backscatter of
pico- and nano-phytoplankton did not yield significantly different spectral backscatter
curves and are therefore grouped together (Figure 2b) [12].

Several studies have derived empirical relationships between the phytoplankton com-
munity size structure and total chlorophyll-a [36,37]. These population models assume
that small-celled phytoplankton dominate at low chlorophyll concentrations and large
cells at high chlorophyll concentrations [38]. A third group, the nano-phytoplankton,
was later added to the population model and shown to dominate at intermediate chloro-
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phyll concentrations [5,11,39]. Here, we parameterize a three-component phytoplank-
ton model according to Brewin et al. [5] (Table 2; parameters below first optical depth,
τ < 0.6). Noise is added to the dataset by transforming the chlorophyll concentrations
associated with the three size classes (ci) to a random variable (Ci) with a log-normal
distribution: log(Ci) = N (log(ci), 1). The chlorophyll concentration ci is varied between
0.01–30 mg m−3.

The absorption of CDOM (acdom) and detrital matter (adm) are modelled as an expo-
nential function:

acdom, dm(λ) = a(λ0) exp
[
− s(λ− λ0)

]
(15)

with reference wavelength λ0 at 440 nm and a spectral slope s was randomly drawn from a
normal distribution N (0.0176, 0.002) for CDOM and N (0.0123, 0.0013) for detrital matter
(Figure A1) [26]. Detrital backscatter is described by a power-law according to:

bb dm(λ) = b̃dm bdm(λ0)
( λ

λ0

)γ2
(16)

For the phase function, indicated by b̃dm, we assume a 1.4% FF phase function and
reference wavelength, λ0, at 550 nm. The spectral slope coefficient, γ2, randomly varies
between −2.2 and 0.2 as a function of the chlorophyll concentration [27]. Higher spectral
slopes are indicative of oligotrophic waters whereas lower slope coefficients are usually
found in more eutrophic areas [40]. Variability in mass specific detrital backscatter is
shown in Figure A2. Hereafter we adopt IOCCG [27] to model the co-variation between
chlorophyll, CDOM and detrital matter. The IOPs are forward modelled to obtain Rrs at
5 nm intervals using our polynomial approximation (Equations (2) and (4)). The hyper-
spectral dataset yields a total of 430 simulated Rrs spectra that are used for the inversion.
Retrievals with a relative error (Equation (13)) higher than 200% are discarded. All ac-
curacy metrics for the successful retrievals are calculated on log10 transformed variables
and mean absolute error (MAE) and bias are backtransformed out of log10 space according
to Seegers et al. [41].

2.6. Ocean-Color Instruments

To demonstrate the flexibility of HYDROPTs waveband settings, we have conducted
an inter-comparison of chlorophyll-a retrievals between three important ocean-color instru-
ments: SeaWiFS, OLCI and PACE. The number of wavebands for these instruments in the
400–710 nm range are 6, 11 and 63 respectively. For the PACE sensor we have assumed
equally spaced wavebands at a 5 nm resolution. Together these instruments cover the
global observations of the oceans since 1997 [1] and for years to come. Of interest is the
variation in retrieval accuracy that can potentially arise from the differences in band setting
between these instruments. However, this exercise is not meant to be a complete analysis
of the differences, since this would involve a perfect error budget of each band for each
instrument (σi in Equation (6)). Even with complete knowledge of instrument measurement
errors, the accuracy of atmospheric correction is instrument-dependent, introducing errors
and bias in the derived Rrs [42].

The retrieval accuracy between sensors for total chlorophyll-a are evaluated using
5 metrics: slope of the linear model, bias, MAE, R2, and fraction of successful retrievals
(f-score; see Table A2). The slope, bias and MAE statistics are projected on a 0-1 scale for
ease of comparison according to:

score = max({0, 1− |x− 1|}) (17)

with x being the metric to be transformed. A value of one indicates a perfect score whereas
a score of zero reflects a deviation of ≥100% from a perfect score.
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3. Results
3.1. Forward Model Validation

The speed and accuracy of HYDROPT are achieved by the adoption of polynomial
approximations to the exact solutions of HydroLight RT simulations. In this section, we
first assess and validate the accuracy of these approximations.

By varying the degree of the polynomial in Equation (2) a measure of accuracy is
obtained as a function of the complexity of the model (Figure 3). The RMSRE accuracy
metric is calculated over the Rrs values of all 63 wavebands with the sun at a zenith angle of
30°. Increasing the model complexity reduces the prediction error in both the validation and
training set up till the 4th degree. Further increasing the polynomial degree increases the
prediction error and the variance, indicating model over-fitting. A 4th degree polynomial
is chosen as the most parsimonious model (Figure 3). The expected average error across all
wavebands is ≈ 1%.

RM
SR

E

Figure 3. Cross-validation of the model in Equation (2) for different polynomial degrees (n). The
model is fitted on Rrs data at nadir with the sun at zenith angle of 30°. The accuracy metric used is
the root mean squared relative error (RMSRE). The blue line and purple line show the validation and
training score respectively. The 68% confidence envelope is shown. The dashed line indicates the
most parsimonious model chosen in this study.

The average error is further decomposed to visualize the variability across wavebands.
Instead of relying on the RMSRE, the relative error is calculated ([R̂rs − Rrs]/Rrs; with R̂rs
the reflectance predicted by HYDROPT and Rrs the simulated reflectance calculated by
HydroLight). The distribution of the relative error for 8 out of a total of 63 wavebands is
visualized in Figure 4. The errors are calculated for a nadir viewing direction and solar
zenith angle of 30°. The relative error per waveband shows a slight variation; however,
most of the errors are well below 1% consistent with Van Der Woerd and Pasterkamp [19].

The polynomial model is validated for all possible viewing geometries. Figure 5 shows
the mean relative error for all HydroLight quads (10 · 24 = 240) at a nominal wavelength of
440 nm. The errors at nadir (see also Figure 4) are consistent with other sensor viewing
angles (Figure 5) with only marginal deviations. Mean relative errors vary between 0.4%
and 0.6% with the lowest values found in a sun-facing direction (φ = 0°), with a slight
increase to 0.6% when the sensor is directed away from the sun (φ = 180°).
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Figure 4. Distribution of the relative error for 8 (out of 63) wavebands in Rrs between the HydroLight
simulations and the predicted values by the 4th degree polynomial model. Validation results are for
a nadir viewing angle and solar zenith angle of 30°.

Figure 5. Mean relative prediction error in percent (%) in Rrs at 440 nm for the 4th degree polynomial
model for different viewing geometries. Nadir angle (θ) and azimuthal angle (φ) follow the default
HydroLight quad layout with 10° resolution in θ and 15° resolution in φ. The sun is positioned at an
azimuthal angle of 0° and zenith angle (θs) of 30°.
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To test the generazibility of our forward model, we tested the predictions of HYDROPT
against the independent IOCCG dataset that contains RT simulations with different phase
functions for both NAP and phytoplankton. The total absorption (a) and backscatter (bb)
coefficients of the IOCCG datasets are used as inputs to the polynomial model to predict
Rrs. Good agreement is reached between Rrs from the IOCCG dataset and the predicted
values from the polynomial model (Figure 6). The MAE indicates a relative average error of
1–2% for the three OLCI bands compared to the IOCCG Rrs (Figure 6a–c). The maximum
deviation in Rrs are 4% for the 442.5 and 560 nm band, and 6% for the 708.75 nm band
(Figure 6d–f). Together with a negligible bias and perfect R2 score these results indicate
robust predictions by the HYDROPT forward model.

sr
 -1

sr
 -1

sr
 -1

sr -1

Figure 6. Validation of Rrs predicted by the polynomial model vs. the IOCCG HydroLight simulations. (a–c) validation
results, (d–f) distribution of the relative error (%). Results are for a nadir viewing angle with solar zenith angle (θs) of 60°.
For statistics refer to Table A2. Number of samples indicated by N. Black dashed line is 1:1 line, red dashed line is the linear
model. Data point density is indicated by color (yellow = high, blue = low).

3.2. Hyperspectral Inversion

HYDROPT can use the full spectral information for the inversion of Rrs to IOPs and
concentrations of optical constituents. The inversion of Rrs to IOPs and the comparison
with the forward modelled spectra are shown in Figure 7. HYDROPT aims to minimize the
difference between the forward- and inverse-modelled Rrs, which results in a near perfect
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fit for the Rrs example spectrum in Figure 7a. Since HYDROPT models Rrs as a function
of the total spectral absorption and backscatter (Equations (1) and (2)–given the viewing
geometry and solar angle) it is not surprising that the total inverse-modelled absorption
and backscatter are in close agreement with the forward modelled spectra (Figure 7b,c).
Figure 7d–f illustrates how HYDROPT further decomposes the total absorption into the
absorption by pico-, nano- and micro-phytoplankton respectively. Of the total absorption
budget (at 440 nm), roughly 50% is accounted for by phytoplankton. Pico-phytoplankton
dominate the phytoplankton absorption, followed by nano- and micro-phytoplankton.
The quality of the match between forward- and inverse-modelled spectra follows the
same order: the retrieved pico-phytoplankton absorption shows the best agreement to the
forward modelled spectrum followed by nano- and micro-phytoplankton (Figure 7d–f).

Similarly, the spectral backscatter of the different optical components can be disentan-
gled from the total backscatter budget. As such, HYDROPT can be used as a diagnostic
tool to investigate the contribution of the individual optical components to Rrs.

sr
 -1

m
-1

m
-1

m
-1

m
-1

m
-1

Figure 7. Comparison between forward- and inverse-modelled hyperspectral data for (a) Rrs (b) total absorption excluding
water (c) total backscatter excluding water (d) absorption by pico-phytoplankton (e) absorption by nano-phytoplankton
(f) absorption by micro-phytoplankton. Red lines/dots indicate results of the inversion and blue lines/dots represent the
forward modelled values.
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3.3. Retrieval of Phytoplankton Size Classes

In the previous section one hyperspectral Rrs spectrum was inverted to illustrate the
decomposition into the spectral absorption by three phytoplankton size classes. Here
we show the retrieval results for all 430 simulated Rrs spectra that cover a diverse range
of optical conditions and phytoplankton community composition. Pico-phytoplankton
concentrations ranged from approximately 4 · 10−3 to 2 mg m−3 (Figure 8a). Of the
430 simulated spectra, HYDROPT was able to successfully invert 78% of the spectra to
chlorophyll-a concentrations contained within the pico-phytoplankton size class. The
average relative error expected for pico-phytoplankton is 120% (MAE = 2.2), taken over the
entire concentration range. These deviations from ground truth values are also reflected in
the negative R2 and bias of 1.81, indicating that on average HYDROPT overestimates the
concentration of pico-phytoplankton by roughly 80%.

mg m-3 mg m-3

m
g 

m
-3

m
g 

m
-3

Figure 8. HYDROPT retrieval of chlorophyll-a concentrations for (a) pico-, (b) nano- and (c) micro-phytoplankton and the
sum of the three size classes (d). For statistics refer to Table A2. The f-score indicates the fraction of reflectance spectra that
could be successfully inverted. Data point density is indicated by color (yellow = high, blue = low).

The concentration in nano-phytoplankton varied between 4 · 10−4 and 8 mg m−3.
Retrieval results for nano-phytoplankton were consistent with the observed concentrations
(Figure 8b). HYDROPT was able to retrieve concentrations for 90% of the spectra with
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an R2 statistic of 0.93 and the MAE indicating an expected relative error of 34% over this
concentration range. An average overestimation is observed of 18%.

Micro-phytoplankton retrievals were highly depended on the concentration (Figure 8c).
At high chlorophyll concentrations (i.e., >10 mg m−3) , retrievals reflected the ground
truth observations more closely. However, with decreasing concentration the accuracy of
the retrievals deteriorated leading HYDROPT to overestimate micro-phytoplankton more
consistently (by 38%, bias = 1.38). Close to 76% of the spectra could be inverted to obtain
estimates of the concentration of micro-phytoplankton with an R2 of 0.82 and MAE of 125%.

The retrievals for total chlorophyll concentration, the sum of chlorophyll contained
in the three size classes, are shown in Figure 8d. The general trend in total chlorophyll is
captured well by HYDROPT with an R2 of 0.97 and MAE of 30%. As with the retrievals for
micro-phytoplankton, estimates of total chlorophyll are closer to the 1:1 line at concentrations
above 10 mg m−3. HYDROPT shows no bias in the retrievals of total chlorophyll-a (bias =
1).

The absorption and backscatter coefficients for detrital matter and CDOM could be
successfully retrieved for most of the spectra (f-score 1 and 0.993 respectively) (Figure 9).
Retrieval of the absorption coefficients for detrital matter showed a relatively large spread
around the 1:1 line, which is reflected in an R2 value of 0.67 and a MAE of 121%. Detrital
backscatter and CDOM absorption both yielded a R2 of 0.98. The MAE for detrital matter
and CDOM were 13% and 23% respectively. Detrital backscatter and CDOM absorption
retrievals were in good agreement with the observed values - only at higher values a slight
but consistent overestimation is observed (bias of 6% and 14% respectively).

m
g 

m
-3

m
g 

m
-3

mg m-3

mg m-3

Figure 9. IOP retrievals for detrital matter and CDOM. (a) Detrital matter absorption at 440 nm and
(b) backscatter at 550 nm. (c) CDOM absorption at 440 nm. For statistics refer to Table A2. The f-score
indicates the fraction of reflectance spectra that could be successfully inverted. Data point density is
indicated by color (yellow = high, blue = low).
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3.4. Comparison of Multi- and Hyperspectral Retrievals

The HYDROPT framework allows for the comparison of retrievals using different
band settings. Here we assess the performance of the inversion using band settings of three
different sensors to retrieve the total chlorophyll-a concentration contained in pico-, nano,
and micro-phytoplankton (Figure 10). The multispectral SeaWifs and OLCI and hyperspec-
tral PACE sensor are compared to emphasize how band placement and number of spectral
bands potentially influence the capability of these sensors to retrieve phytoplankton size
class information. It should be kept in mind that differences in instrument measurement
errors and atmospheric correction are not evaluated.

MB

MAE

Figure 10. Inter-comparison of retrieval statistics for total chlorophyll-a (sum chlorophyll contained
in pico-, nano- and micro-phytoplankton) between sensors. Mean bias (MB), mean absolute error
(MAE) and slope are projected on a [0–1] interval according to Equation (17). A transformed statistic
of 1 indicates a perfect score whereas a score of 0 indicates ≥100% deviation from a perfect score. For
calculation of statistics see Table A2. Three sensors are compared: the hyperspectral PACE sensor
and multispectral OLCI and SeaWiFs sensors.

The hyperspectral PACE instrument outperformed the two other sensors on all the
5 accuracy statistics. Out of the 5 accuracy statistics, MAE shows the largest variation
among the sensors (Figure 10). For the PACE sensor we observe a reduction in MAE
performance of roughly 30% (i.e., an average relative error of 30% compared to ground
truth), followed by 44% for OLCI and 73% for SeaWiFS. Although PACE will operate with
a vastly greater number of wavebands (k ≈ 63), the accuracy for the other 4 metrics (R2,
f-score, slope and mean bias) closely resembles that for the retrievals with band settings
adopted by OLCI (k = 11). This indicates that with a limited number of bands, OLCI (and
heritage sensors) achieves optimal waveband placement to retrieve total chlorophyll-a
from Rrs for water with different phytoplankton community structure. Even with 6 bands
placed at SeaWifs waveband center it is possible to retrieve size class information, albeit
with further reduction in accuracy and in absence of errors in sensor measurements and
atmospheric correction.
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4. Discussion

Previous attempts have been made to derive phytoplankton community structure from
optical measurements, but these approaches either relied on empirical models [2,5,43–46]
or the decomposition of (remotely estimated) aph or bbp [9,13,14,39,47,48]. The advantage
of empirical models are speed and ease of use [49]. In addition, empirical models, such
as abundance-based models, also only require remotely retrieved chlorophyll estimates
to derive functional types [43] and/or size classes [5,46]. Other empirical models directly
derive community structure from Rrs [44,45]. However, empirical models require reparam-
eterization for different biogeographic regions [5,50–52] and are biased toward the training
data used to build the model.

Retrieval models that adopt absorption and scattering-based approaches usually
require less empiricism than the previously discussed models and adopt radiative transfer
principles [3,6]. However, most methods use only part of the spectral information for
the inversion and only exploit knowledge of the relationship between cell size and either
the absorption or backscatter coefficients. The inter-dependency between Rrs and the
absorption and backscatter budget is not fully captured.

One of the few attempts to directly retrieve community composition from Rrs using
radiative transfer principles is Werdell et al. [15]. Werdell et al. [15] used the Gordon ap-
proximation for Rrs for waters with phytoplankton community consisting of two different
species. The IOPs are forward modelled and the best fit to the measured Rrs is determined
through nonlinear optimization (Levenberg-Marquardt). In this case, full spectral informa-
tion is used for the inversion as well as knowledge of both the absorption and backscatter
characteristics of the optical components. However, using their method, Werdell et al. [15]
note that further decomposing the contribution of each phytoplankton group to the total
IOP budget significantly degrades the accuracy of the retrievals. Their effort serves as an
example of the difficulty of directly retrieving multiple phytoplankton groups from Rrs,
without relying on empirical methods.

Here we applied the updated HYDROPT inversion framework to Rrs spectra and
showed that under ideal circumstances it is possible to directly retrieve the concentration of
multiple phytoplankton groups in addition to CDOM and detrital matter (Figures 8 and 9).
Possible explanations for the discrepancy between our results and those of Werdell et al. [15]
are (1) chlorophyll-a specific IOPs used by Werdell et al. [15] are too similar to estimate the
separate contribution of the two phytoplankton groups to the total IOP budget, and/or
(2) in contrast to Werdell et al. [15], we incorporated different backscatter spectra for the
phytoplankton groups (Figure 2). So detailed knowledge of both the absorption and
backscatter spectra could potentially aid in improved retrievals of different phytoplankton
groups from Rrs.

To test the feasibility of HYDROPT to invert multi- and hyperspectral reflectance
measurements to obtain phytoplankton size structure information we created a dataset
with simulated Rrs spectra. In this research we have shown that it is possible to obtain
concentration estimates of the three phytoplankton size classes from reflectance spectra
under ideal conditions (e.g., no sensor noise, perfect atmospheric correction). By supplying
detailed absorption and backscatter spectra of 3 phytoplankton size classes, CDOM and
detrital matter (Figures 1, 2, A1 and A2), HYDROPT can optimize the spectral fit and esti-
mate the contribution of the optical constituents to Rrs. HYDROPT additionally calculates
error statistics for the retrievals. A retrieval was considered valid when the relative error
is within 200%. Nano-phytoplankton could be retrieved for 90% of the spectra, followed
by pico-phytoplankton (78%) and micro-phytoplankton (76%) (Figure 8). Ambiguity in
retrievals could be due to several factors, including chlorophyll biomass [17] but also the
absorption and scattering properties [34]. However, future research on the sensitivity of
Rrs to changes in phytoplankton community composition should elucidate the limits on
the retrieval accuracy using semi-analytical approaches such as HYDROPT.

Many empirical and semi- analytical retrieval algorithms exist [3,6]. However, most
algorithms are configured for specific wavebands making it difficult to apply these algo-
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rithms to different sensors to derive the same bio-optical parameters–hence obstructing
data fusion and inter-comparison experiments [53,54]. The retrieval inter-comparison ex-
periment (Figure 10) shows how HYDROPT can easily be applied to different ocean-color
sensors to invert Rrs to the IOPs and concentration of optical components of interest. The
retrieval performance of OLCI, and to a lesser extent SeaWiFS show that with a limited
number of wavebands and correct band placement total chlorophyll-a and phytoplankton
size structure can be obtained from remotely measured Rrs. However, given the number of
wavebands and thus the available degrees of freedom for the inversion, hyperspectral mea-
surements as would be obtained from PACE allow many more parameters to be estimated
from Rrs (e.g., larger set of phytoplankton groups, aerosols, atmospheric composition
etc. [22]) or target distinct optical characteristics such as absorption features of accessory
pigments to distinguish different phytoplankton taxa [4,7].

For the accurate inversion of Rrs spectra, HYDROPT relies on (1) a forward model
rooted in radiative transfer theory, (2) specification of IOP spectral models for the region of
interest, and (3) fast optimization routines that find the best fit to the measured Rrs spectrum.
We shortly discuss these three characteristic features of the HYDROPT framework below.

In most reflectance models the bidirectional nature of Rrs is accounted for by the
so-called f /Q factor [23,55]. Interestingly, the f /Q factor exhibits spectral dependence due
to the relative importance of molecular scattering over particle scattering and therefore
changes in the total VSF with wavelength [24]. The dependency of the f /Q factor on
wavelength is complex and is further influenced by the effects of CDOM absorption and
number of scattering events in the water column [56,57]. HYDROPT accounts for changes
in the bidirectional effects with wavelength by fitting the forward model on HydroLight
simulations at every 5 nm in the visible domain (400–710 nm). Furthermore, variability in
Rrs due to sensor- and sun position [24,25,58] is resolved by refitting the polynomial model
(Equation (2)) for different sensor viewing geometries and solar zenith angles.

Our validation benchmark shows that HYDROPT accurately predicts Rrs with an
average error of 1% compared to the RT simulations (Figure 3), consistent with Van
Der Woerd and Pasterkamp [19]. The relative errors in Rrs show a weak dependency on
sensor position, ranging between 0.4–0.6% for the 440 nm band (Figure 5). The importance
of the VSF in predicting Rrs has been noted in several studies, especially for phytoplankton
blooms and highly scattering environments [33,56,59]. Validation against the independent
IOCCG dataset shows that HYDROPT is capable of accurately predicting Rrs with a
maximum deviation of 4–6%, even for waters that assume a different VSF (Figure 6).

The validation of HYDROPT shows that the forward calculations can be applied to
waters for a wide range of optical conditions. Inverting Rrs for these waters is achieved
by finding the best spectral fit through nonlinear optimization routines in conjunction
with our forward model. The updated HYDROPT framework allows the configuration
of multiple optical components and various optimization routines to invert Rrs such as
Levenberg-Marquardt (LM) [15,19,60], Nelder–Mead [17] and simulated annealing [61]. In
addition, when signal to noise (SNR) levels are well characterized for the spectral bands,
the importance of the individual bands during the optimization can be accounted for by
assigning appropriate weights to every waveband (σi in Equation (6)) [19].

HYDROPT was originally developed with the aim to retrieve chlorophyll-a concen-
trations from optically complex waters where absorption and scattering by CDOM and
sediment dominate [19]. We like to stress that HYDROPT is now also able to give a more
in-depth analysis of complex coastal waters by including multiple spectral models for
CDOM and sediments originating from different sources. Given the natural variability in
absorption and backscatter characteristics for phytoplankton, CDOM and particulate mat-
ter, potential future improvements could be the addition of Bayesian optimization routines
to the HYDROPT framework [62]. Instead of relying on average spectral IOP models for
the inversion (red lines in Figures 1, 2, A1 and A2) a probabilistic approach would allow to
account for variability in the mass specific IOP reference spectra (blue lines).
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The Rrs predicted by HYDROPT showed a higher relative error for the IOCCG data
(Figure 6) than for our own simulated spectra using HydroLight (Figure 4). Furthermore,
the prediction errors of the IOCCG data are more pronounced at longer wavelengths,
reaching up to +6% at 708 nm (Figure 6). These results indicate that accounting for changes
in the VSF is an important step toward improvement of highly accurate Rrs predictions.
Park and Ruddick [58] included an extra parameter in their forward model to account for
changes in the VSF when transitioning between case-I and case-II waters. In the future,
HYDROPT could be adopted in a similar way. The inclusion of shape details of the VSF
into the forward model [63,64] would be a significant improvement and allow HYDROPT
to accurately predict Rrs for the large optical diversity encountered in the world’s oceans,
coastal waters, rivers and lakes.

5. Conclusions

In this paper, we demonstrated the ability of the HYDROPT framework to retrieve
3 phytoplankton size classes from simulated reflectance spectra using the principles of
radiative transfer theory (Figure 8). Moreover, HYDROPT can decompose the contribution
of all optically active components to Rrs including CDOM and detrital matter (Figure 9).
Our framework exhibits fast and robust prediction of Rrs with an expected average error of
≈1% compared to HydroLight’s radiative transfer solutions (Figure 3) while accounting for
bidirectional effects across wavebands (Figure 4) and different solar-viewing geometries
(Figure 5).

The flexible configuration of wavebands makes it possible to apply the framework to
past, current and future multi- and hyperspectral missions such as PACE (Figure 10). In
addition to satellite measurements, HYDROPT is also able to process in-situ above-water
Rrs. In our simulated hyperspectral Rrs dataset we were not able to account for all the
variability that can be encountered in the real world such as errors in the measurements,
fluorescence, Raman scattering and imperfect atmospheric correction to name a few. We
have made HYDROPT available as an open-source Python package [21] and invite the
aquatic remote sensing community to apply the framework to existing [65,66] and fu-
ture multi- and hyperspectral measurements [22] and benchmark the performance under
various real-world scenarios.
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Abbreviations
The following abbreviations are used in this manuscript:

RT Radiative transfer
HYDROPT HydroLight Optimization
IOP Inherent optical properties
CDOM Colored dissolved organic matter
VSF Volume scattering function
FF Fournier–Forand phase function
PACE Plankton, Aerosol, Cloud, ocean Ecosystem
MERIS MEdium Resolution Imaging Spectrometer
CZCS Coastal Zone Color Scanner
OLCI Ocean Land Color Instrument
SeaWiFS Sea-viewing Wide Field-of-view Sensor
Rrs Observed remote sensing reflectance-either from HydroLight simulations or

synthetic dataset
R̂rs Predicted remote sensing reflectance by the HYDROPT forward model
R′rs Natural log-transformed remote sensing reflectance
a Absorption coefficient
bb Backscatter coefficient
b̃ Backscatter ratio
a∗, b∗b chlorophyll-a- or mass specific absorption and backscatter coefficient
ρi Concentration of constituent i or absorption by CDOM at reference wavelength
ρ̂i Estimated concentration or absorption of optical constituent i
RMSRE Root mean squared relative error
MAE Mean absolute error
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Figure A1. Spectral absorption for CDOM and detrital matter. (a) CDOM absorption. (b) mass
specific detrital absorption. CDOM and detrital matter absorption are shown for a range of realistic
spectral slopes (blue lines) [26]. Red dashed lines indicate averaged spectral absorption used for
the inversion.
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Figure A2. Mass specific detrital backscatter. Spectral slopes varies randomly between −0.2 and
2.2 [27]. Red dashed line indicates spectral backscatter with averaged spectral slope (γ2 = 1) used
for the inversion.

Table A1. HydroLight model parameters.

Parameter Value Units Notes References
Case-II bio-optical model

Sea-water

Absorption - m−1 See references Pope and Fry [67] for >550 nm
Mason et al. [20] <550 nm

Phase function - sr−1 See reference Equation 3.30 in Mobley [68]
Elastic scattering - m−1 See reference Equation. 3.31 in Mobley [68]
Inelastic (Raman) scattering - m−1 No inelastic scattering

Phytoplankton
Absorption - m−1 See reference for spectral absorption Prieur and Sathyendranath [69]
Phase function - sr−1 Fournier-Forand (1.4% backscatter ratio)

Scattering - m−1 Spectral backscatter according to:
bbphyto = 0.00255 ∗ [Chl]0.471

Fluorescence - - No chlorophyll fluorescence
Concentration 0.01–31.62 mg m−3

Colored dissolved organic matter
aCDOM(440) 0.005–1 m−1

Absorption - m−1 See reference for spectral absorption Babin et al. [26]

Slope 0.017 nm−1 Exponential decay function with
reference at 440 nm Babin et al. [26]

Non-algal particles
concentration 0.01–100 g m−3

Absorption - m−1 See reference for spectral absorption Babin et al. [26]

Slope (spectral absorption) 0.0123 nm−1 Exponential decay function with
reference at 443 nm Babin et al. [26]

Phase function - sr−1 Fournier-Forand (1.4% backscatter ratio)
Backscatter - m−1 See reference for spectral backscatter Babin et al. [70]
Slope (spectral backscatter) −1 nm−1 power-law with reference wavelength at 550 nm Babin et al. [70]
Sea-surface boundary model
Wind speed 5 m s−1

Real index of refraction of water 1.34 - Wavelength indepedent
Atmospheric model (RADTRAN-X)
Solar zenith angle 0–80 degrees 10 degree intervals
Cloud cover 0 percent Clear sky
Earth-sun distance - - Yearly average
24-h averaged wind speed 5 m s−1

Horizontal visibility 15 km
Relative humidity 80 percent
Precipitable water content 2.5 cm
Total ozone 300 Dobson units Yearly average
Airmass type 1 - Marine
Bottom reflection model
Depth - m Infinitely deep (no bottom reflection)
Output
Wavebands 400–710 nm 5-nm resolution
Radiance (upwelling) - W sr−1 m−2 nm−1 Radiance distribution for all HydroLight quads
Irradiance (downwelling) - W m−2 nm−1
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Table A2. Definition of retrieval statistics. x are the log10-transformed forward modelled values, y
are the estimated log10-transformed values from the inversion. Total number of successful retrievals
are indicated by n (with δ ≤ 2; see Equation (13)) and total number of Rrs spectra in the dataset by n∗

(=430).

Abbreviation Definition Formula

MAE Mean absolute error 10̂

( n

∑
i=1
|yi − xi|

n

)

MB Mean bias 10̂

( n

∑
i=1

yi − xi

n

)

R2 Coefficient of determination 1−

n

∑
i=1

[
yi − xi

]2

n

∑
i=1

[
xi − x

]2

slope slope of linear regression model

n

∑
i=1

[
xi − x

][
yi − y

]
n

∑
i=1

[
xi − x

]2

f fraction of successful retrievals n/n∗
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