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Abstract: Leaf area index (LAI) estimation is very important, and not only for canopy structure
analysis and yield prediction. The unmanned aerial vehicle (UAV) serves as a promising solution
for LAI estimation due to its great applicability and flexibility. At present, vegetation index (VI) is
still the most widely used method in LAI estimation because of its fast speed and simple calculation.
However, VI only reflects the spectral information and ignores the texture information of images, so
it is difficult to adapt to the unique and complex morphological changes of rice in different growth
stages. In this study we put forward a novel method by combining the texture information derived
from the local binary pattern and variance features (LBP and VAR) with the spectral information
based on VI to improve the estimation accuracy of rice LAI throughout the entire growing season.
The multitemporal images of two study areas located in Hainan and Hubei were acquired by a
12-band camera, and the main typical bands for constituting VIs such as green, red, red edge, and
near-infrared were selected to analyze their changes in spectrum and texture during the entire
growing season. After the mathematical combination of plot-level spectrum and texture values, new
indices were constructed to estimate rice LAI. Comparing the corresponding VI, the new indices
were all less sensitive to the appearance of panicles and slightly weakened the saturation issue. The
coefficient of determination (R2) can be improved for all tested VIs throughout the entire growing
season. The results showed that the combination of spectral and texture features exhibited a better
predictive ability than VI for estimating rice LAI. This method only utilized the texture and spectral
information of the UAV image itself, which is fast, easy to operate, does not need manual intervention,
and can be a low-cost method for monitoring crop growth.

Keywords: leaf area index (LAI); unmanned aerial vehicle (UAV); multispectral image; vegetation
index (VI); texture; local binary pattern (LBP); rice

1. Introduction

As one of the world’s three major food crops, rice is the staple food for half of the
global population [1–3]. Its leaves, as the main organ of photosynthesis, have a significant
effect on the overall growth status of the rice. Leaf area index (LAI), a concept first put
forward by Watson [4], is half of the amount of leaf area per unit horizontal ground surface
area [4–6]. It is regarded as a critical vegetation structural variable that characterizes the
geometry of the crop canopy [7,8] and can be used as a predictor in crop biomass and
yield estimation [9–11]. Accurate estimation of LAI is of great significance to paddy field
management and precision agriculture. It is also a key indicator of photosynthesis [12,13]
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and evapotranspiration [14], and therefore plays an essential role in biogeochemical cycles
in ecosystems [15].

With the development of remote sensing technology, the use of remote sensing images
to estimate LAI has become a hot topic [5,6]. Past research has involved a variety of remote
sensing techniques to estimate LAI based on empirical models [8,10,16–19] and physical
models [20–23]. The physical model simulates the radiative transfer of the signal within a
canopy, but it requires many input parameters [20,21,24] and a few studies have shown
that the derived products are less accurate than those of the empirical models [6,25,26].
The other common strategy used to estimate LAI is to establish an empirical relationship
between ground measured LAI and vegetation index (VI) [19,27]. Since Rouse used ratio
vegetation index (RVI) and normalized difference vegetation index (NDVI) to estimate
crop characteristics in the 1970s [28], many VIs based on the combination of reflectance
between different wavelengths have been established to estimate LAI in many vegetation
types. For example, Viña et al. [29] evaluated several VIs calculated by green, red, red edge,
and near-infrared (NIR) bands recorded by radiometers mounted on a ground system
for estimating green LAI of maize and soybean in Lincoln, NE, U.S.A.. Yao et al. [17]
developed a winter wheat LAI model with modified triangular vegetation index (MTVI2)
based on a six-channel narrowband multispectral camera (Mini-MCA6) mounted on un-
manned aerial vehicles (UAV) to increase the sensitivity of the model under various LAI
values. Qiao et al. [8] chose NDVI to obtain the piecewise LAI-VI relationships based on
phenophases of forests, crops, and grasslands using MODIS data. Dong et al. [19] compared
the potential of red edge-based and visible-based reflectance VIs, which were calculated
from multitemporal RapidEye images, for spring wheat and canola LAI estimation. VI
combines the different responses of vegetation under different waveband reflectivity to
distinguish the vegetation foreground from the soil background. The method is simple and
effectively implemented to estimate phenotypic traits. However, there remain problems to
be solved in rice LAI estimation.

The life cycle of rice plants ranges from three to six months from germination to
maturity, depending on the variety and environment [30]. There are three main stages of
the growth period: vegetative (germination to panicle initiation), reproductive (panicle
initiation to heading), and ripening (heading to maturity) [31]. The morphological changes
of rice and other vegetation types in different stages are very different. Rice seeds germinate
and are then transplanted in soil/water. During vegetative and reproductive stages, with
the tillering and jointing of the rice plant, the canopy closes gradually, the leaf area increases
sharply, and the background is increasingly occluded. When 50% of the panicles have
partially exserted from the leaf sheath, the plant enters heading stage [30,31]. The shape
of the rice panicle is thin and long and the surface is rough. From this point on, the
grain increases in size and weight and the plant enters ripening stage. With maturity, the
panicle changes color from green to gold and turns heavy and droopy, which increases the
complexity of the canopy structure. As such, the morphological changes of rice plants at
different growth stages are more complex than those of other types of vegetation. It has been
proven that the canopy light distribution will change dramatically with the emergence of
panicles [32]. The complex changes of rice phenology affect the accuracy of LAI estimation
by remote sensing methods during the rice growth season. Sakamoto et al. [33] investigated
the relationship between visible atmospherically resistant index (VARI) and rice LAI in the
entire growing season. They found that the appearance of yellow panicles in the camera’s
field of view would affect the LAI estimation with VARI [33]. Wang et al. [34] used ten VIs
to estimate rice LAI before and after heading stages, which also proved that the relationship
between LAI and post-heading VIs was weaker than pre-heading VIs.

Some rice LAI estimation experiments used partial samples for prediction before head-
ing, while some made separate predictions of pre- and post-heading stages. Li et al. [35]
applied a normalized texture index based on gray level co-occurrence matrix (GLCM) to
improve the method of using color indices to estimate rice LAI during tillering to booting
stages. Sakamoto et al. [33] established a linear regression model of the relationship be-
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tween VARI and LAI when LAI was greater than 0.4 before heading. Casanova et al. [16]
fitted the rice LAI of the entire growing season with three exponential piecewise functions.
The coefficients of determination (R2) could reach 0.7 during vegetation and reproductive
stages but only 0.25 during the ripening stage [16]. It must be noted that it is not easy to
ascertain the heading date, especially for the experimental fields for breeding. For example,
in the study of Ma et al. [36], six rice fields with multiple cultivars distributed in China were
studied, and more than 1000 rice cultivars were planted in one single field among them. It
is a time-consuming and labor-consuming task for professionals to observe whether these
fields are heading every day. Therefore, even if there are many challenges, it is necessary to
estimate rice LAI in the entire growing season.

In addition to spectral features, remote sensing images also provide more abun-
dant texture information related to vegetation growth [37]. Zhang et al. [38] combined
object-based texture features with a neural network to improve the accuracy of vegetation
mapping. It has also been proven that GLCM features of high-resolution images could
improve LAI and biomass estimation of forests [39,40]. With the improvement of spectral
and spatial resolution of remote sensing images, the potential of texture application is
also increasing. Since local binary pattern (LBP) was proposed by Ojala in 1996 [41], it
has been considered one of the most effective, prominent, and widely studied local de-
scriptors [42,43]. Due to its computational simplicity and tolerance against illumination
changes [44], LBP and its extension have been widely applied in image processing, includ-
ing texture classification [45–47], face recognition [48,49], medical image analysis [50–52],
and archaeological surveying [53]. Compared with the GLCM method, the LBP operator is
better at describing micro texture [54], and its ability to analyze multiple pixels at one time
rather than a single pixel pair may provide some performance headroom on the image with
the noise signal [55]. Considering that variance (VAR) reflects the image contrast, which
is ignored by LBP, local binary pattern combined with variance features (LBP and VAR)
proposed by Ojala in 2010 is not only robust to rotation but also retains the image contrast
information [56,57]. It is easy to calculate and is abundant in information, meaning it has
the potential for application in LAI estimation.

Considering the advantages of high resolution, flexibility, and low cost of UAV [35,37],
it is useful for observing the rice fields and extracting texture information. Based on UAV
images, the main purpose of this study is to explore the effect of introducing LBP and VAR
features in rice LAI estimation throughout the entire growing season.

2. Materials and Methods
2.1. Study Area

Two field experiments planting with various hybrid rice cultivars were conducted at
different experiment sites: Lingshui, Hainan (18◦31′ N and 110◦3′ E, in 2018) and Ezhou,
Hubei (30◦22′ N and 114◦44′ E, in 2019) (Figure 1). The rice cultivars selected in this
study were the representative rice cultivars in the Yangtze River Valley and South China,
such as Liangyou 1318 and Luoyou 9348. The acquisition time of field campaigns for LAI
measurements, UAV images, and days after transplanting (DAT) of the two experiments
were summarized in Table 1. In order to distinguish the different plots in the image,
some whiteboards were erected on the edges of the plots. The field management for
these plots was the same, including fertilizer supply (12 kg/ha) and planting density
(22.5 bundles/m2). The field was managed by professionals with agronomic knowledge
who controlled plant diseases and insect pests immediately.

Experiment 1 was carried out during a single season from February 2018 to April 2018
in Lingshui. Lingshui country is more suitable for planting crops and conducting breeding
experiments from November to May than the mainland of China because of its tropical
monsoon climate and high temperature throughout the year. On 10 December 2017, 42 rice
cultivars were sown and on 8 January 2018 they were transplanted to 42 plots according to
different cultivars (Figure 1a). The plot areas were about 63 m2. Each plot was divided into
a subplot of 7 m × 7 m for non-destructive spectral information extraction and a subplot
of 2 m × 7 m for LAI destructive sampling (around 310 bundles). For each plot 12 rows
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were planted and each row had double lines. The distance between the rows was 33 cm
and 20 cm within the rows.

Figure 1. Study Area. (a) is the study area of Experiment 1 conducted in Hainan in 2018. (b) is the study area of Experiment
2 conducted in Hubei in 2019.

Table 1. Data acquisition time, date of transplanting (DAT), and corresponding growth stages of two experiments.

Growth Stage
Experiment 1: Hainan Experiment 2: Ezhou

UAV Images LAI Sampling DAT UAV Images LAI Sampling DAT

Tillering

- - - 26 June 2019 26 June 2019 17
- - - 2 July 2019 2 July 2019 23

2 February 2018 4 February 2018 27 6 July 2019 6 July 2019 27
- - - 14 July 2019 16 July 2019 37
- - - 22 July 2019 21 July 2019 42

26 February 2018 25 February 2018 48 27 July 2019 26 July 2019 47

Jointing - - - 1 August 2019 1 August 2019 53
11 March 2018 9 March 2018 60 6 August 2019 6 August 2019 58

Booting and heading - - - 11 August 2019 11 August 2019 63
18 March 2018 19 March 2018 70 16 August 2019 17 August 2019 69

Ripening

- - - 22 August 2019 21 August 2019 73
- - - 29 August 2019 26 August 2019 78

1 April 2018 31 March 2018 82 3 September
2019

2 September
2019 85

15 April 2018 17 April 2018 99 - - -

Note: ‘-’ means lack of data corresponding to the other experiment.
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Experiment 2 was conducted for a single season from June 2019 to September 2019 in
Ezhou. Here, the flat terrain, sufficient sunlight and rain, and subtropical monsoon climate
make it suitable for rice growth. On 11 May 2019, 48 rice cultivars were sown and on 9
June 2019 they were transplanted to 48 plots according to different cultivars (Figure 1b).
The plot areas were about 36 m2. Each plot was divided into a subplot of 8 m × 3 m
for non-destructive spectral information extraction and a subplot of 4 m × 3 m for LAI
destructive sampling (around 270 bundles). For each plot, 6 rows were planted and the
distance between and within the rows was the same as in Experiment 1.

2.2. LAI Sampling and Determination of Heading Date

Ground destructive sampling was conducted at key growth stages from tillering to
ripening. To collect LAI, three bundles of rice plants were randomly dug out from the
sampling region of each plot of each campaign. The plants were placed in a bucket full of
water and transported to the laboratory. After removing the roots and silt of the plants, the
leaves and stems were split and the leaves were measured one by one with an LI-3100C
leaf area meter (LI-COR, Lincoln, NE, United States). The relationship between LAI and
the leaf areas of all three bundles of rice was calculated as: LAI = LA

3 × ρ, where ρ was
the planting density (here, 22.5 bundles/m2) and LA represented the leaf areas of all three
bundles of rice. There were 252 and 624 samples collected in Experiment 1 and Experiment
2, respectively.

The heading date was the day that 50% of the panicles have exserted in a plot, which
was manually recorded by observers. In this study, the growing season of each rice cultivar
can be roughly divided by heading date into pre-heading stages (tillering, jointing and
booting stages) and post-heading stages (heading and ripening stages).

2.3. Reflectance and Vegetation Indices from UAV Image

The multispectral images were acquired using an M8 UAV (Beijing TT Aviation Tech-
nology Co., Ltd., Beijing, China), equipped with a customized 12-lens Mini-MCA camera
(Tetracam Inc., Chatsworth, CA, United States) with customer-specified, centered band
pass filters shown in Table 2, covering the main wavelength where plants were sensi-
tive [10,37,58–62]. The UAV flight was performed in clear and cloudless weather between
10 a.m. and 2 p.m. local time at a height of 120 m in Experiment 1 and 100 m in Experiment
2, with a spatial resolution of 6.5 cm/pixel and 5.5 cm/pixel, respectively. The morphology
and characteristics of the rice in the images were similar at these resolutions, so the differ-
ence in resolution can be ignored. This instrument and similar flight heights are widely
used in other forms of rice research, including rice nitrogen concentration estimation [63],
rice biomass estimation [59], rice LAI estimation [37], and rice yield estimation [62].

Table 2. Center wavelength and band width of each spectral band of the customized 12-lens Mini-
MCA camera.

Center Wavelength (nm) Band Width(nm) Center Wavelength (nm) Band Width (nm)

490 10 700 10
520 10 720 10
550 10 800 10
570 10 850 10
670 10 900 20
680 10 950 40

The 12 lenses were co-registered in the laboratory before the flight, and band-to-band
registration for images was performed after the flight so that the corresponding pixels
overlapped spatially on the same focal plane. Next, the radiation correction using the
empirical linear correction method [64–66] was applied to each band through eight blankets
with standard reflectance of 0.03, 0.06, 0.12, 0.24, 0.36, 0.48, 0.56, and 0.80, laid on the edge
of the field in advance. These blankets were measured by an ASD Field Spec 4 spectrometer
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(Analytical Spectral Devices Inc., Boulder, CO, USA) in different experimental areas to
verify constant reflectance.

The reflectance spectra of typical ground objects in the field, that is, soil background
and green leaves before heading and panicles and yellowing leaves after heading, are
shown in Figure 2. The reflectance of each wavelength was locally extracted from the
corresponding object in the image.

Figure 2. Reflectance variation of different objects extracted on the reflectance image. (a) is the reflectance of leaf and soil
before heading. (b) is the reflectance of leaf and panicle after heading.

A rectangular region of interest (ROI) with the same size in each experiment that
maximally fits the plot was determined to extract spectral information for each plot. The
average reflectance of all pixels in the ROI was regarded as the plot-level canopy reflectance.
Since the multispectral image taken on 26 June showed irreparable specular reflection
due to its obvious water background, 24 affected samples were deleted in subsequent
processing on this date. The plot-level vegetation indices were calculated from plot-level
canopy reflectance. Ten VIs were tested in this study (Table 3) and were divided into three
categories according to different calculation methods: ratio indices, normalized indices,
and modified indices.

Table 3. The vegetation indices that were tested in the study.

VI Formula Reference

Ratio
Indices

Green Chlorophyll Index (CIgreen) R800nm/R550nm − 1 [67]
Ratio Vegetation Index (RVI) R800nm/R670nm [28]

Red-edge Chlorophyll Index (CIred edge) R800nm/R720nm − 1 [67]

Normalized
Indices

Green Normalized Difference Vegetation Index (GNDVI) (R800nm − R550nm)/(R800nm + R550nm) [68]
Normalized Difference Vegetation Index (NDVI) (R800nm − R670nm)/(R800nm + R670nm) [69]

Normalized Difference Red-edge Vegetation Index (NDRE) (R800nm − R720nm)/(R800nm + R720nm) [70]

Modified
Indices

MERIS Terrestrial Chlorophyll Index (MTCI) (R800nm − R720nm)/(R720nm − R670nm) [71]
Wide Dynamic Range Vegetation Index (WDRVI) (α× R800nm − R670nm)/(α× R800nm + R670nm), α = 0.2 [72]

Optimized Soil-Adjusted Vegetation Index (OSAVI) (1+0.16)×(R800nm − R720nm)/(R800nm + R720nm + 0.16) [73]
Two-band Enhanced Vegetation Index (EVI2) 2.5× (R800nm − R670nm)/(1 + R800nm + 2.4× R670nm) [74]

2.4. Texture Measurements

In this study, the rice canopy texture model was described by LBP and VAR. LBP and
VAR are very effective features for describing local texture, and they were calculated from
the reflectance images of 550 nm, 670 nm, 720 nm, and 800 nm that constitute VI.
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LBP is a powerful local lighting invariant operator that describes the relationship
between the gray values of the surrounding neighborhood (gi, i = 1, 2, . . . , 8) and the center
pixel (g0) [56]. LBP can be calculated as:

LBP =
8

∑
i=1

s
(
gi − g0

)
2i−1, s(x) =

{
1, x ≥ 0
0, x < 0

(1)

It has been proven that uniform LBP is the basic structure of LBP [56]. The U(LBP)
value of an LBP is defined as the number of spatial transitions (bitwise 0/1 changes)
within that pattern. Moreover, the uniform LBP pattern refers to the uniform appearance
pattern which has limited transitions and discontinuities (U(LBP) ≤ 2) in the circular
binary presentation [57]. Considering the various values obtained from different starting
neighborhoods, the uniform LBP value depends heavily on the direction of the image.
Therefore, the uniform LBP is further simplified for a local rotation-invariant pattern, which
is described as the following:

LBPriu2 =


8
∑

i=1
s
(
gi − g0

)
, if U(LBP) ≤ 2

9, otherwise
(2)

Figure 3 shows nine patterns of LBPriu2 representing different local features. For
example, a value of 0 is a spot feature, while that of 3–5 refers to line or edge and 8 to spot
or flat feature.

Figure 3. LBP patterns representing local features of spot, line, edge, and flat.

LBPriu2 describes the spatial structure but discards the contrast of local texture. Thus, it
complements VAR [56,57,75]. VAR is a rotation invariance measure of local variance which
characterizes the contrast of local image texture. It has been proven that the combination
of LBPriu2 with VAR will enhance the performance of texture [56,57,76]. VAR is calculated
as follows:

VAR =
1
8

8

∑
i=1

(gi − µ)2, µ =
1
8

8

∑
i=1

gi (3)

LBPriu2 and VAR were extracted from the reflectance images. To acquire a more
comprehensive texture feature, the two texture images were multiplied pixel by pixel to
obtain an LBP and VAR texture image, which was recorded as LBPriu2 × VAR. The plot-
level LBPriu2 × VAR value was calculated by the average gray value of the pixels in ROI
of LBPriu2 × VAR. To limit the influence of the panicles, the negative natural logarithm of
LBPriu2 × VAR value was multiplied with the reflectance on the plot level, and the product
was recorded as LV-R. Then the reflectance values in each VI formula were replaced with
LV-Rs to obtain a new index, denoted as LV-VI (Figure 4). The calculated LV-VIs were
evaluated for rice LAI estimation and were further compared with traditional VIs.
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Figure 4. Image processing for calculating LV-VIs. R represents reflectance.

2.5. Algorithm Development for LAI Estimation

The final estimated model of LAI was developed by a k-fold cross-validation pro-
cedure. K-fold cross-validation was a statistical method which was widely applied in a
model establishment [77–79]. In this study, k = 10, which is a common value used in many
studies [77,79,80]. The samples were divided into k parts, k − 1 parts were applied to
establish the model to obtain coefficients (Coefi) and coefficients of determination

(
R2

i

)
,

and the remaining part was regarded as the test set. The above steps were repeated k times,
and the average values of root mean square error (RMSE) and coefficient of variation (CV)
based on test set were calculated as follows [81]:

Coef =
1
k

k

∑
i=1

Coefi; R2 =
1
k

k

∑
i=1

R2
i ; RMSE =

1
k

k

∑
i=1

RMSEi; CV =
1
k

k

∑
i=1

CVi (4)

3. Results
3.1. Relationships of VI vs. Rice LAI throughout the Entire Growing Season

Some studies have proved that the exponential regression model is more suitable for
fitting LAI and VI [34,37,82]. The R2 of the exponential regression model of ten VIs and the
measured LAI throughout the entire growing season are shown in Table 4, of which MTCI was
the lowest and EVI2 was the highest, though their scatter fitting results before heading were
similar with R2 over 0.75 (Figure 5a,h). In addition, the R2 of ratio indices (CIred edge, CIgreen,
and RVI) with similar scatter fitting results before heading were also generally low (R2 < 0.5),
while the normalized indices (NDRE, GNDVI, and NDVI) were slightly higher (R2 > 0.5).
The scattered points before heading and after heading of ratio indices and MTCI were more
severely separated (Figure 5a–d), while those of normalized indices and EVI2 were slightly
weaker (Figure 5e–h). The hysteresis effect could significantly decrease the R2 of LAI vs. VI
fitting throughout the entire growing season.

Table 4. Exponential regression of rice LAI with VIs during the entire growing season.

VI MTCI CIred edge CIgreen RVI NDRE OSAVI GNDVI NDVI WDRVI EVI2

R2 0.385 0.419 0.426 0.43 0.525 0.58 0.606 0.618 0.645 0.704
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Figure 5. The variation of LAI plotted against vegetation indices: (a) CIgreen, (b) RVI, (c) CIred edge, (d) MTCI, (e) GNDVI,
(f) NDVI, (g) NDRE and (h) EVI2 during the entire growing season. Pre-HD and Post-HD denote pre-heading stages and
post-heading stages, respectively. For all tested indices, the samples after heading were deviated from the LAI vs. VI
relationship before heading.

As shown in Figure 5, all indices tended to reach saturation rapidly in moderate-to-
high LAI variation before heading. The phenomenon of ratio indices was not as obvious as
normalized indices. For normalized indices, the saturation of NDRE was not as obvious
as GNDVI and NDVI. Comparing the R2 before heading, it is obvious that the saturation
effect decreased the fitting accuracy of the pre-heading stage.

3.2. Rice LAI Estimation Combined with Texture Features

The changes of rice in different growth stages could be reflected by texture. At the veg-
etative stage, rice was planted in a stripe shape and the width of the stripe becomes wider
as the rice grows [37]. When the leaves occluded most of the background, the wide stripes
combined with each other to form a flat area covering the entire field. As the rice continued
to grow, panicles began to emerge in the canopy, appearing as little dots in the image and
breaking the flat texture. Therefore, the difference and complementarity of spectrum and
texture in different growth stages could be utilized to assist VI in LAI estimation.

3.2.1. Variation of LBP and VAR in Pre-Heading Stages and Post-Heading Stages

The relationships between LAI vs. plot-level reflectance (Figure 6a–d) and LAI vs.
plot-level LBPriu2 × VAR (Figure 6e–h) are shown in Figure 6. Due to the difference in
reflectivity and distribution of various objects shown in Figure 2, the results of texture
varied in different wavebands (Figure 6e–h). The trends of time series changes of scatter
distribution were opposite. In the scatter plot of LAI vs. reflectance, the time series bands
of 550 nm, 670 nm, and 720 nm showed a counterclockwise distribution, while the same
bands presented a clockwise distribution in LAI vs. LBPriu2 × VAR scatter plots. This made
it possible to improve LAI estimation by combining the two indices. At the same time,
with LAI increasing to a medium-high level before heading, the value of LBPriu2 × VAR
was less saturated in the 550 nm and 670 nm bands, which made it beneficial for saturation
reduction to combine the two indices. The relationships between the combined index LV-R
and LAI are shown in Figure 6i–l. The hysteresis effects of LV-R at 550 nm, 670 nm, and
720 nm were obviously weakened, and the saturation effects at 550 nm and 670 nm were
also slightly reduced.
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Figure 6. Rice LAI plotted against the reflectance of (a) 550 nm, (b) 670 nm, (c) 720 nm, (d) 800 nm, the LBPriu2 × VAR
calculated based on the bands of (e) 550 nm, (f) 670 nm, (g) 720 nm, (h) 800 nm, and the LV-R of (i) 550 nm, (j) 670 nm,
(k) 720 nm, (l) 800 nm during the entire growth season. When the horizontal axis of LBPriu2 × VAR was expressed in
exponential form, it was the opposite of the trend of LAI vs. reflectance. The LV-R index combining R and LBPriu2 × VAR
had a smaller separation than R between pre-heading stages (Pre-HD) and post-heading stages (Post-HD).

3.2.2. Rice LAI Estimation Based on Remotely Sensed VI and LV-VI

Figure 7 shows the comparable results of using textures to improve VIs. For all VIs,
the scattered points after heading in LV-VIs were closer to the fitting curve of the whole
growth stage than those in initial VIs, and the saturation effects before heading of all indices
were also weakened. The saturation of the ratio indices was less obviously decreased than
that of the normalized indices.

Figure 7. Two models of VI and LV-VI were tested for rice LAI estimation throughout the entire
growing season on (a) CIred edge, (b) GNDVI, and (c) MTCI.
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To verify the reliability of the model, R2 and RMSE statistics of VI and LV-VI after
10-fold cross-validation are shown in Table 5. All LV-VIs that combined with textures have
improved the effect of using solely VIs to estimate LAI. Moreover, the improvement showed
low dependence on the type of VIs used, including ratio, normalized, and modified indices.
R2 increased by more than 0.13 (CIgreen, CIred edge, NDRE, and MTCI) and RMSE decreased
by more than 0.1 (CIgreen, GNDVI, NDRE, EVI2). The inclusion of LBP and VAR features
significantly improved the accuracy of the model for those containing the index of the
550 nm band (CIgreen and GNDVI), with CV decreased by more than 2.5%. There was also
a notable improvement in the model containing the index of the 720 nm band (CIred edge,
NDRE, MTCI, and OSAVI), with CV decreased more than 1.3% (Figure 8). However, for
the model containing the index of the 670 nm band, the effect of accuracy improvement
was uncertain. CV was decreased more than 3.2% for EVI2, while the improvements of
others (RVI, WDRVI, and NDVI) were restricted.

Table 5. Performance of the VI and LV-VI models based on 10-fold cross-validation.

VI LV-VI

R2 RMSE R2 RMSE

CIgreen 0.400 1.738 0.552 1.633
RVI 0.368 1.804 0.422 1.802

CIred edge 0.394 1.720 0.527 1.648
GNDVI 0.592 1.551 0.644 1.403
NDVI 0.574 1.490 0.633 1.446
NDRE 0.485 1.605 0.617 1.495
MTCI 0.373 1.719 0.539 1.649

WDRVI 0.608 1.504 0.643 1.498
OSAVI 0.553 1.541 0.631 1.485
EVI2 0.675 1.503 0.719 1.367

Figure 8. The coefficients of variance (CV) for LAI estimation using VI and LV-VI, respectively.

The relationships between estimated LAI and measured LAI of some LV-VIs are shown
in Figure 9. Considering the distribution and saturation of scattered points and values of
R2 and RMSE, LV-CIgreen, LV-EVI2, and LV-NDRE were the best estimation models of rice
LAI throughout the entire growing season in green, red, and red edge bands, respectively.
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Figure 9. The relationship between Estimated LAI and Measured LAI based on (a) LV-CIgreen, (b) LV-EVI2, and (c) LV-NDRE.

4. Discussion

In this study, we tested 10 commonly used VIs (CIgreen, RVI, CIred edge, GNDVI,
NDVI, NDRE, MTCI, OSAVI, and EVI2) that had been widely applied in the estimation
of LAI [19,78], biomass [61,83], and yield of crops [60,81]. When LAI reached a moderate-
to-high variation, VIs were rapidly saturated, especially for the normalized VIs such as
GNDVI, NDVI, and NDRE (Figure 5e–g). Considering only the period before heading,
although these VIs were saturated with limited transitional zones, R2 could still reach
above 0.65 (Figure 5). However, when the LAI of rice was estimated for the entire growing
season, R2 was significantly reduced, and the decrease for MTCI was even more than
0.4 (Table 4).

The hysteresis effect after heading is a core issue that affects the accuracy of LAI estima-
tion during the whole growing season of rice. Substantial hysteresis of the reflectance and
canopy chlorophyll content had been discovered between the vegetative and reproductive
stages in maize and soybean [84]. However, unlike the crops above, the hysteresis of rice
was more exaggerated due to the complexity of the canopy structure. Rice leaves are more
bent and crisscross with each other. The panicle is small and slender and varies with the
growing period, so the complexity of the canopy increases [85,86]. The scattered points
after heading in VI vs. LAI were clearly far away from those of the LAI vs. VI relationship
before heading (Figure 5).

It is unrealistic, however, to establish a model before and after heading. The heading
time of rice depends greatly on cultivars and environments, and recording the heading
dates requires significant time and manpower, especially for breeding studies. Therefore, it
is necessary to set an LAI estimation model for the entire growing season.

This study introduced the texture feature LBP and VAR to improve the VI model and
to minimize the effect of saturation and hysteresis over the entire rice growing season. The
spectral curves of typical features are very different before and after heading (Figure 2).
Before heading, the field is mainly composed of leaves and soil background. Taking the
tillering stage as an example, leaves are more reflective than soil in green bands due to the
weak absorption of chlorophyll, while the reflectance of soil is slightly higher in the red
and blue main absorption bands of chlorophyll [24]. As the rice grows, the soil background
is gradually occluded by leaves and the appearance of panicles. At this time, only leaves
and panicles are visible in the image. In the visible light band, panicles absorb less, mainly
because they have a lower chlorophyll content than leaves [32]. In the NIR band, which is
mainly affected by the structure of canopy, the area with the most panicles reflects more
because of its higher canopy thickness [60]. Thus, in the pre-heading reflectance images
in Figure 10 (DAT 23 and 47), the bright lines in the 550 nm, 720 nm, and 800 nm images
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are the leaves, while in 670 nm, the slightly bright lines are the soil background. In the
post-heading reflectance images in Figure 10 (DAT 63 and 85), for the visible light bands
such as 550 nm and 670 nm, the panicles are embedded in the leaves like stars. In the
720 nm and 800 nm reflectance images after heading, the bright lines represent the dense,
thick canopies of panicles, and the dark lines are the thin canopies with leaves.

Figure 10. Cont.
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Figure 10. Image reflectance and texture changes of two plots at (a) 550 nm, (b) 670 nm, (c) 720 nm, and (d) 800 nm on the
23rd, 47th, 63rd, and 85th days after transplanting (DAT). R represents reflectance image. LBPriu2, VAR, LBPriu2 × VAR,
−ln(LBPriu2 × VAR), and LV-R represent the corresponding images calculated by these methods.

Based on the above analysis of the reflectivity and distribution of different objects,
the texture extraction results of different bands are shown in Figure 10 (LBPriu2, VAR,
LBP × VAR, −ln(LBP × VAR)).
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The LBPriu2 and VAR of each individual pixel in the reflectance images were calculated
separately, depicting local texture information (Figure 10). LBPriu2 only gave integer values
between 0 and 9, as shown in Figure 3, which could distinguish bright spot features (with
a value of 0), line or edge features (with values of 3–5), dark spot or flat features (with a
value of 8), and so on. These features were related to the distribution of different objects in
a rice field. As shown in Figure 10, in the first few days after transplanting (DAT 23), lines
could be recognized in LBPriu2 images of any band due to the ridges in the field. As the
rice grew, leaves gradually occluded soil background and continuous edges broke so that
bright spots and flat areas increased simultaneously, and the entire brightness changed
slightly and inconsistently. After rice heading, with panicles exerting, bright spots could be
distinguished and the LBPriu2 image darkened (Figure 10). VAR calculated the variance of
surrounding pixels and provided contrast information. Homogeneous areas have smaller
values. As leaves gradually covered the background before heading, VAR values decreased
and the image turned slightly darker. When panicles exserted after heading, these high
reflected objects decreased the homogeneity and thus the brightness of the VAR images
increased drastically (Figure 10). The edges of objects were usually fuzzy in VAR images,
but these were much clearer under the specific values of LBPriu2.

The combination of LBPriu2 × VAR characteristics continued to follow the trend
of VAR but showed more obvious differences between objects. In particular, the edges
between leaves and soil background were thinned before heading, and the spots of panicles
shrank after heading, both of which better represented the truth on the ground (Figure 10).

In terms of the image, the texture features of −ln(LBPriu2 × VAR) enhanced the
differences in detail between the background and leaves before heading (Figure 10, DAT 23
and 47). At the same time, the gray values of the panicles in these images after heading
were very low. In the LV-R image obtained by multiplying the texture image and the
reflectance image, the influence of panicles was obviously suppressed (Figure 10, DAT
63 and 85) and thus LV-R indices were more suitable for constructing VIs throughout the
entire growing season.

VIs presented the difference in reflectance between visible light and NIR [87]. In the
tillering stage, this difference suddenly widened to a high level (Figure 11a), which led
to saturation in VI vs. LAI (Figure 5). In contrast, the difference narrowed after heading
(Figure 11a) which caused hysteresis (Figure 5). As a result of the time variation of LBPriu2
and VAR, the combination indices decreased slightly before heading and, remarkably,
increased after heading in visible bands (Figure 10). Being unabsorbed by plants, VAR
at 800 nm was not as sensitive to the variation of growth stages as those in visible bands
(Figure 10), and so LBPriu2 × VAR with its negative logarithm changed less at 800 nm,
meaning the difference between the visible and NIR bands narrowed after heading. As
shown in Figure 11b, −ln(LBPriu2 × VAR) displayed the opposite trend to R. The relatively
high value of logarithm index could narrow the difference in reflectance in the tillering
stage, while the low value after heading could widen it and thus reduce the saturation
and hysteresis effects. At the 670 nm band, however, −ln(LBPriu2 × VAR) had a relatively
high value after heading and a weaker counterclockwise trend on the scatter plot with LAI
(Figure 6). LV-VIs with dependence on indices at this band had less of an advantage than
the others.

Comparing the LV-VI model with VI, as displayed in the scatter plot of Figure 7,
reveals that the yellow part (after heading) data after processing are clearly similar to
the green part (before heading) data. The slope of the turning point of the green part
data also slowed down. By introducing texture features, the R2 of all tested VIs increased
significantly, while RMSE and CV decreased significantly (Figure 8, Table 5). The method
developed in our study is very simple for estimating rice LAI. It combines texture infor-
mation with spectral information to effectively reduce saturation and hysteresis which
emerges at certain stages. Compared with the physical model, the proposed model re-
quires fewer parameters, thus avoiding the uncertainty of multiple rice cultivars and LAI
estimation based on assumptions. The algorithms used in this study are exponential
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regressions that work rapidly and efficiently, meaning there was no need for sophisti-
cated algorithms (e.g., machine learning method) requiring large-scale computation. This
method only requires the use of reflectance images to estimate rice LAI during the entire
growing season, and it is not necessary to establish a model before and after heading. Since
VI, LBP, and VAR can be obtained by one UAV platform at a low cost, and can be simply
and rapidly calculated from reflectance images, our method can be widely used in paddy
field management and precision agriculture, especially in fields containing many cultivars
for breeding.

Figure 11. Temporal behaviors of (a) the reflectance ratio of visible and NIR and (b) the −ln(LBPriu2 × VAR) ratio of visible
and NIR during the entire rice growing season. −ln(LBPriu2 × VAR) showed the opposite trend to R. The relatively high
value of the logarithm index could narrow the difference of reflectance in the tillering stage, while the low value after
heading could widen it instead, thus reducing the saturation and hysteresis effects.

5. Conclusions

In our study, we combined LBP and VAR with reflectance to construct new LV-VI
parameters and applied them to LAI estimation. Compared with the corresponding VIs
tested in this study, the fitting accuracy of all LV-VIs has been improved, R2 has been
improved by up to 0.166 (MTCI), and RMSE and CV were 0.147 and 3.5% lower (GNDVI),
respectively. The RMSE and CV of exponential fitting of LV-EVI2 were down to 1.367
and 32.7%, respectively. Considering the revealing effect of texture on different growth
stages, LAI can be estimated more accurately by combining texture with spectrum. The
combination of textural features enhances the contrast between crops and soil background
in the image and weakens it between pixels with and without panicles. Moreover, it further
adjusts the influence of reflectance given by the change of ground feature types in different
growth stages. Therefore, in the LAI vs. VI scatters, the saturation before heading and the
hysteresis effect after heading are obviously weakened. Since the LV-VI can be calculated
simply and rapidly from a UAV reflectance image, our method provides a simple, low-cost
option for crop growth monitoring and the progress of paddy field management, especially
for rice breeding studies in fields containing a variety of cultivars. Future investigations
are necessary to provide comparisons with different methods for estimating rice LAI,
and to consider the underlying mechanisms of different textures throughout the entire
growing season.
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