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Abstract: This paper proposes a novel approach for living and missing vine identification and vine
characterization in goblet-trained vine plots using aerial images. Given the periodic structure of
goblet vineyards, the RGB color coded parcel image is analyzed using proper processing techniques
in order to determine the locations of living and missing vines. Vine characterization is achieved by
implementing the marker-controlled watershed transform where the centers of the living vines serve
as object markers. As a result, a precise mortality rate is calculated for each parcel. Moreover, all
vines, even the overlapping ones, are fully recognized providing information about their size, shape,
and green color intensity. The presented approach is fully automated and yields accuracy values
exceeding 95% when the obtained results are assessed with ground-truth data. This unsupervised
and automated approach can be applied to any type of plots presenting similar spatial patterns
requiring only the image as input.

Keywords: vine characterization; missing and living vine identification; goblet vineyards; Hough
transform; watershed transform; remote sensing; semantic segmentation.

1. Introduction

The rapid evolution of new technologies in precision viticulture allows better vine-
yard management, monitoring and control of spatio-temporal crop variability; thus helps
increasing their oenological potential [1,2]. Remote sensing data and image processing tech-
niques are used to fully characterize vineyards starting from automatic parcel delimitation
to plant identification.

Missing plant detection has been the subject of many studies. There is a permanent
need to identify vine mortality in a vineyard in order to detect the presence of diseases
causing damage and, more importantly, as a way of estimating productivity and return on
investment (ROI) for each plot. The lower the mortality rate, the higher the ROI. Therefore,
mortality rate can help management take better informed decisions for each plot.

Many researchers worked on introducing smart viticulture practices in order to digitize
and characterize vineyards. For instance, frequency analysis was used to delimitate vine
plots and detect inter-row width and row orientation while providing the possibility of
missing vine detection [3,4]. Another approach uses dynamic segmentation, Hough space
clustering and total least squares techniques to automatically detect vine rows [5]. In [6],
segmenting the vine rows in virtual shapes allowed the detection of individual plants, while
the missing plants are detected by implementing a multi-logistic model. In [7], the use of
morphological operators made dead vine detection possible. In [8], the authors compared
the performance of four classification methods (K-means, artificial neural networks (ANN),
random forest (RForest), and spectral indices (SI)) to detect canopy in a vineyard trained
on vertical shoot position.
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Most of the previous studies concern trellis trained parcels. However, a lot of vine
plots adopt the goblet style where vines are planted according to a regular grid with
constant inter-row and inter-column spacing. Even though it is an old training style for
vineyards, it is still popular in warm and dry regions because it keeps grapes in the shadow,
avoiding sunburn that deteriorates grape quality [9]. Nevertheless, limited research on vine
identification and localization were conducted on goblet parcels. A method for localizing
missing olive and vine plants in squared-grid patterns from remotely sensed imagery is
proposed in [10] by considering the image as a topological graph of vertices. This method
requires the knowledge of the grid orientation angle and the inter-row spacing.

The approach presented in this paper addresses the problem of living and missing
vine identification, as well as vine characterization in goblet trained parcels using high
resolution aerial images. It is an unsupervised and fully automated approach that requires
only the parcel image as input. In the first stage, using the proper image processing
techniques, the location of each living and missing vine is determined. In the second stage,
a marker-controlled watershed segmentation allows to fully characterize living vines by
recognizing their pixels.

Neural networks based methods, more precisely convolutional neural networks
(CNN), are used recently and intensively for image processing tasks. Some of these
tasks include: image classification to recognize the objects in an image [11], object detec-
tion to recognize and locate the objects in an image by using bounding boxes to describe
the target location [12–15], semantic segmentation to classify each pixel in the image by
linking it to a class label [16], instance segmentation that combines object detection and
semantic segmentation in order to localize the instances of objects while delineating each
instance [17]. All the above-described methods fall in the category of supervised learning.
They require learning samples to train the neural network based models. In this study, the
CNN-based semantic segmentation is used for comparison purposes.

As outcomes of the proposed approach, a precise mortality rate can be calculated for
each parcel. Moreover, living vine characteristics in terms of size, shape, and green color
intensity are determined.

2. Materials and Methods
2.1. Study Area and Research Data

The images, provided by Château Kefraya vineyards in Lebanon, were acquired
on 13 June 2017 using a Sensefly eBee fixed-wing UAV at an average flying height of
300 m using a Sony DSC-WX220. The captured raw images have an average ground
sample distance (GSD) of 0.083 m. The camera has a 1/2.3” sensor with a resolution of
4896 × 3672 pixels. The raw images are processed using Pix4Dmapper to generate an
orthophoto with a resolution of 0.083 m. The image of each parcel is clipped from the
original orthophoto using QGIS. The vines are trained in goblet style along an oriented
grid of rows and columns, not necessarily of rectangular shape, with 2.5 m inter-row and
inter-column spacing (see Figure 1). The acquired images are flipped, so that the y-axis
starts at the bottom of the image and runs to the top in order to facilitate the migration
between image coordinates and geographic coordinates. Table 1 shows the list of the
parcels used as research data. It includes the parcel’s ID, its area, and the coordinates of its
center in the UTM 36N coordinate reference system. Parcel 59B (see Figure 1) is used to
illustrate the different steps of the proposed method.
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Table 1. Parcels used for experiments.

Parcel Area X Y

59B 23,849 m2 755,285 m 3,726,712 m
59A 21,061 m2 755,158 m 3,726,796 m
57A 10,155 m2 754,148 m 3,726,945 m
1B 16,651 m2 753,344 m 3,726,512 m

58C 23,225 m2 754,582 m 3,726,680 m
58D 6870 m2 754,678 m 3,726,610 m
60D 33,778 m2 755,904 m 3,726,233 m
60A 25,039 m2 755,523 m 3,726,573 m
61A 21,480 m2 755,471 m 3,726,997 m
10F 7115 m2 753,318 m 3,726,843 m

(a) (b)
Figure 1. Goblet trained parcel. (a): whole image, (b): magnified boxes.

2.2. Proposed Method

The proposed method, illustrated in Figure A1, is composed of two major stages: vine
identification and vine characterization.

The purpose of the vine identification stage is to identify and localize living and
missing plants. First, the RGB image is segmented using K-means clustering then binarized
by setting all pixels representing vines to 1, and all other pixels to 0. Then, the image is
rotated properly to facilitate the localization of vine rows and columns. Using the vine rows
and columns locations, a grid is generated over the image. A grid point may correspond to
a living vine, a missing vine, or a bare point localized outside the plantable area.

The purpose of the vine characterization stage is to identify the pixels of each living
plant. Using the locations of living vines obtained from the previous stage, a marker-
controlled watershed transform is applied on the image in order to detect each plant as a
solitary object even if it overlaps with other plants.

2.2.1. Vine Identification

In order to achieve vine identification; first, the image is segmented then binarized,
and then the binary image is rotated and the locations of vine rows and columns are
calculated. Finally, living and missing plants are identified and localized.

2.2.1.1. Image Segmentation and Binarization

The K-means clustering algorithm [18] is applied on the RGB-coded parcel image
in order to segment it and identify pixels belonging to three categories: vines, soil, and
no-data. The K-means clustering is an unsupervised learning method that is able to operate
on data without prior knowledge of their structure. However, the number of clusters must
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be given a priori. The K-means algorithm is applied on the parcel image with a number of
clusters equal to 3 resulting in allocating the pixels to 3 segments: the vines segment, the
soil segment, and the no-data segment (see Figure 2).

The image binarization is achieved by setting to 1 all pixels belonging to the vine
segment and to 0 all other pixels (see Figure 3). The binary version of the parcel image
is denoted BW. Following observations performed on the images, clusters of less than
0.138 m2 are removed from the binary image for being considered as unwanted data. This
area is equivalent to a number of pixels expressed using the ground sample distance (GSD)
expressed as:

NoiseThreshold (in pixels) =
0.138
GSD2 (1)

Figure 2. Three segments image: vines (green), soil (brown), and no-data (black).

Figure 3. Binary image showing vine pixels with a value of 1 in white.

2.2.1.2. Image Rotation

The Hough transform [19] is used to detect major lines in the image and consequently
detect both grid angles. It is an easy and fast method that yields accurate results.

Let us consider the parametric representation of a line in terms of ρ and θ angle:

ρ = xcosθ + ysinθ (2)

where θ is the angle formed by the line’s normal with the x-axis and ρ its algebraic distance
from the origin (see Figure 4).
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Figure 4. Parametric representation of a line.

If θ angle is restricted to an interval of length π, the normal parameters for a line are
unique. A point in the x–y plane corresponds to a sinusoidal curve in the ρ–θ plane, and
collinear points in the x–y plane correspond to curves intersecting at the same point in the
ρ–θ plane. Such points are called peaks.

The most frequent negative θ angle and the most frequent positive θ angle are de-
termined and denoted θr and θc, respectively. The angle formed by a vine row, and the
x-axis is calculated in Equation (3) and the angle formed by a vine column and the y-axis is
calculated in Equation (4).

αr = 90−
∣∣θr

∣∣ (3)

γc = θc (4)

Consequently, the angle formed by a vine row and a vine column is:

β = π − αr − αc (5)

where αc =
π
2 − γc is the angle formed by a vine column and the x-axis.

Figure 5 illustrates the calculated angles. It should be noted that in all the figures of
this section the y-axis is oriented upwards following the orientation of the image vertical
axis (see Section 2.1).
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Figure 5. Grid rotation angles.
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In order to obtain optimal results when using the Hough transform, clusters represent-
ing overlapping vines in the binary images must be eroded to isolate vines. That is why
morphological erosion [20], with a diamond structuring element of size 2, is performed on
the binary images of all analyzed parcels. The Hough transform is applied on the eroded
binary image by varying the θ angle between −90° and 89° with an increment of 0.5°.

Figure 6 shows the ρ–θ plane where 30 peaks are identified when the Hough transform
is applied on the binary image of Parcel 59B.

-80 -60 -40 -20 0 20 40 60 80

-3000

-2000

-1000
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1000
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Figure 6. 30 Hough peaks corresponding to θr = −34° and θc = 54.5° .

The most frequent negative θ angle is θr = −34° and the most frequent positive θ
angle is θc = 54.5° yielding αr = 56°, αc = 35.5° and γc = 54.5°. αr is the angle by which
the BW image must be rotated clockwise around its center for the rows of vines to be
horizontal. The resulting obtained image is denoted BWr. γc is the angle by which the
BW image must be rotated clockwise around its center for the columns of vines to be
vertical. The obtained image is denoted BWc. Figure 7 shows the binary image of Parcel
59B overlayed with lines relative to θr and θc angles.

Figure 7. Hough lines drawn along some of the vine columns and rows.

2.2.1.3. Living and Missing Vine Identification

Considering the fact that all vines are represented by 1-valued pixels in the binary
images, the vine locations can be easily calculated by summing the columns in the BWc
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image and the rows in the BWr image. The peak locations in the sum of rows signal
constitute a vector pr of length n that indicates the placement of the vine points along the
vertical axis. Similarly, the peak locations in the sum of columns signal constitute a vector
pc of length m that indicates the placement of the vine points along the horizontal axis.
These signals may contain noise as a result of vine overlapping. For this reason, the median
filter (Equation (6)) is applied on both signals in order to smooth them and subsequently
eliminate unnecessary peaks (see Figures 8 and 9).

y(t) = med
(

x(t− k), . . . , x(t), . . . , x(t + k)
)

(6)

where x(t) is the input signal and y(t) is the output signal. Each y(t) is the median of
N = 2k + 1 samples of the input signal centered at t, where N is the filter length set to 5.
The most frequent distances between the peaks of the sum of columns signal and of the
sum of rows signal define the inter-column spacing and the inter-row spacing, respectively.

The presence of weeds between vine rows and vine columns leads to faulty peaks.
To resolve this issue, a minimal distance between peaks is imposed. It is equivalent to 2/3
of the inter-column spacing for the sum of columns signal and 2/3 of the inter-row spacing
in the sum of rows signal.
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Figure 8. Original signal where overlapping peaks may occur.
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Figure 9. Smoothed signal by applying the median filter.

The peak location vectors pr (illustrated in Figure 10), and pc (illustrated in Figure 11)
are used to generate a two-dimensional grid Gcmn of m columns and n rows to be displayed
over the BWc image where the vine columns are vertical (see Figure 11). A grid point is
defined as Gcij

(
pci, pr′j

)
with i ∈ {1, . . . , m} and j ∈ {1, . . . , n}. pr′j is the ordinate of the
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point obtained after rotating the point (x, prj) counter-clockwise by αrc according to the
following equations:

(x′, pr′j) =
(
(x, prj)− C

)
∗ rotM

(
αrc

)
+ C (7)

αrc = 90− β (8)

where x could be any positive value, C(xC, yC) is the center of the image, β is the angle
calculated in Equation (5), and rotM is the rotation matrix defined as:

rotM(a) =
[

cos(a) −sin(a)
sin(a) cos(a)

]
(9)
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Figure 10. Horizontal vine rows.
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Figure 11. Vertical vine columns.

In the case of Parcel 59B, β = 180°− 56°− 35.5° = 88.5° and αrc = 90°− 88.5° = 1.5°.
The grid points displayed over the BWc image represent either a living vine point, a

missing vine point or a bare point. Points having their red, green, and blue components
equal to 0 belong to the no-data segment; they are considered as bare points and, therefore,
discarded. For all remaining points, a rectangle window, centered on the considered point,
is cropped from the BWc image. The length and width of the rectangle are equal to half of
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the inter-column and of the inter-row distances, respectively. Regions of 1-valued pixels
are sought inside this window. If such regions are found, the grid point is classified as a
living vine point and is moved to the center of the closest region which ensures that the
grid point is as close as possible to the vine’s center. Otherwise, the grid point is classified
as a missing vine point since pixels in its neighborhood are 0-valued.

The final grid points to be displayed over the original parcel image are rotated counter-
clockwise by γc calculated as follows:

G fij =
(
Gcij − C

)
∗ rotM

(
γc
)
+ C (10)

Figure 12 shows the parcel image overlayed with the generated grid composed of the
three types of points: missing vine point (x), living vine point (•), and bare point (*).

(a) (b)
Figure 12. Living and missing vine identification. (a): whole image, (b): magnified boxes.

2.2.2. Vine Characterization

The purpose of this part is to characterize each vine by identifying its pixels. Due to
their big size, some vines may overlap and, therefore, may be considered as one object as in
some classical segmentation methods. The watershed transform [21,22] is able to segment
a binary image while identifying contiguous regions as separate objects. It considers the
image to be processed as a topographic surface where a pixel brightness represents its
height. The watershed algorithm simulates a water flooding on this surface starting from
the minima (darkest pixels). It prevents water merging by building dams. At the end of
the flooding process, catchment basins are formed, each related to one minimum. These
basins are separated by watershed lines defined by the dams. Therefore, pixels of the
image are partitioned into catchment basins or watershed lines. The watershed transform
in its primary algorithm may lead to an over-segmentation of the image. For this reason, a
marker-controlled watershed algorithm is proposed [23]. It consists of detecting markers
that constitute the only source of flooding. Two kinds of markers are used: the object
related markers that uniquely define each object and the background related markers that
surround the objects.

In this study, the marker-controlled watershed transform is applied on the gradient of
the grayscale parcel image. First, using the vine clusters identified in the K-means process
(see Section 2.2.1.1), the corresponding red channel pixels are extracted from the RGB
image to create a grayscale image. Then, the gradient of the grayscale image is produced.
The objects or vine related markers are the living vine points detected in Section 2.2.1.3.
The background markers are computed by applying the watershed transform on the
distance transform of the binary image (BW). The distance transform replaces each pixel
in the binary image by its distance to the nearest non-zero pixel. The background related
markers are the 0-valued pixels of the resulting watershed transform. The black dots in
Figure 13 represent the vines, while the black lines represent the background markers.
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The gradient image is modified by morphological reconstruction so that the only regional
minima are the pixels considered as vine and background markers [24]. Figure 14 shows
the parcel image overlayed with the result of the watershed segmentation on the modified
gradient image. It is apparent that the vines, identified with black dots, are well delineated,
even the overlapping ones.

(a) (b)
Figure 13. Vine and background related markers set to regional minima. (a): whole image, (b): mag-
nified boxes.

(a) Whole image. (b) Magnified box.
Figure 14. Parcel image overlayed with vine characterization results.

2.3. Semantic Segmentation

Semantic segmentation is the task of assigning a class to every pixel in the image.
It is used in this study for comparison purposes with K-means segmentation. Many deep
learning algorithms have been proposed recently for semantic segmentation [25,26]. The
model used for semantic segmentation is the Deeplabv3plus [27] based on the pretrained
convolutional neural network ResNet-18. The training of the network is performed using
patches. In total, 591 patches of 224 × 224 pixels (the minimal size required by ResNet-
18) are extracted from the images of the different parcels. Each learning sample consists
of a patch and its corresponding labeled patch, where pixels belong to four classes: the
background class, the soil class, the plant class, and the contour class. Trials with only three
classes (background, soil, and plant) yielded poor results because overlapping vines are
considered as one object. Adding the contour class reduced vine overlapping considerably
by isolating vines that might connect. Figure 15 shows a training sample consisting of a
patch and its labeled version. The optimization algorithm used for training is the stochastic
gradient descent with momentum (SGDM). The maximum number of epochs is set to 40.
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The learning rate uses a piecewise schedule. The initial learning rate is set to 0.0001. The
learning rate is reduced by a factor of 0.3 every 10 epochs [28].

(a) Patch. (b) Labeled patch with 4 classes:
(black is background, red is soil,
green is plant, and blue is contour).

Figure 15. Learning sample.

3. Results

In order to assess the proposed method, recent ground-truth manual counting is
performed on Parcel 59B. Moreover, for all parcels listed in Table 1, a desktop GIS software
is used to manually digitize the vine locations and visually estimate missing vine locations
using row and column intersections. For each digitized point, a row and column number
is assigned while an attribute of 1 is given to represent a vine and 0 a missing vine. In each
case and for each parcel, a matching matrix is computed showing the numbers of truly
identified living vines (TLV) and missing vines (TMV), and the numbers of misidentified
living vines (FLV) and missing vines (FMV). The accuracy of the proposed method is
quantified by calculating the accuracy of missing vines identification (AMV) computed in
Equation (11), the accuracy of living vines identification (ALV) computed in Equation (12),
and the overall accuracy (ACC) computed in Equation (13).

AMV =
TMV

TMV + FLV
(11)

ALV =
TLV

TLV + FMV
(12)

ACC =
TLV + TMV

TLV + TMV + FLV + FMV
(13)

3.1. Assessment of Proposed Method Compared to Ground-Truth Data

Table 2 shows the comparison between the ground-truth data and the results obtained
by applying the proposed method on Parcel 59B. It compares the number of vine rows and
the number of living and missing vines in both cases. It also shows the mortality rate in
both cases calculated as in Equation (14).

MortalityRate =
Nmissing

Nmissing + Nliving
∗ 100 (14)

Figure 16 displays the obtained matching matrix when assessing the proposed method
against Parcel 59B’s ground-truth data. Regarding accuracy computation, the accuracy of
missing vine identification (AMV) is equal to 74.42%, the accuracy of living vine identifica-
tion (ALV) is equal to 99.81% and the overall accuracy (ACC) is equal to 99.51%.
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Table 2. Vine identification (Parcel 59B). Comparison between the obtained results and ground-
truth data.

Obtained Results Ground-Truth Data

No. of vine rows 63 63
No. of living vines 3648 3643

No. of missing vines 46 43
Mortality rate 1.24% 1.17%

Living vines Missing vines

Obtained Results

Living vines

Missing vinesG
ro

u
n

d
-t

ru
th

 D
a

ta

11

7

32

3636

TMV

TLV

FLV

FMV

Figure 16. Matching matrix. Assessing the proposed method with Parcel 59B’s ground-truth data.

3.2. Assessment of Proposed Method Compared to On-Screen Vine Identification

Table 3 shows the values of TLV, TMV, FLV, and FMV. It also shows the accuracy of
living vine identification (ALV) (Equation (12)), the accuracy of missing vine identification
(AMV) (Equation (11)) and the overall accuracy (ACC) (Equation (13)).

Table 3. Living and missing vine identification (Parcel 59B). Comparison between the obtained
results and the on-screen vine identification.

Parcel TLV TMV FLV FMV ALV AMV ACC

59B 3643 37 5 0 100.00% 88.10% 99.86%
59A 2985 212 23 24 99.20% 90.21% 98.55%
57A 1507 44 9 4 99.74% 83.02% 99.17%
1B 2011 406 89 38 98.15% 82.02% 95.01%

58C 2554 851 108 46 98.23% 88.74% 95.67%
58D 736 228 14 25 96.71% 94.21% 96.11%
60D 4911 217 28 8 99.84% 88.57% 99.30%
60A 3581 173 25 23 99.36% 87.37% 98.74%
61A 3161 128 7 1 99.97% 94.81% 99.76%
10F 975 74 24 12 98.78% 75.51% 96.68%

High accuracy values are obtained when comparing the yielded results with ground-
truth data and on-screen vine identification. Accuracy values (ACC) exceed 95% for all
parcels proving that the proposed method succeeds in identifying missing and living vines.
However, the obtained AMV values are lower than the ALV values due to the fact that some
small vines, considered dead with on-screen identification, are classified as living vines.
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Lower accuracy values are obtained when the results are compared with ground-truth
data because the parcel may have witnessed many changes since 2017, when the images
were taken.

Regarding vine characterization, the pixels of each vine are identified (see Section 2.2.2).
Consequently, further inspection on the size, shape, and green color intensity of each vine
can be easily performed. For example, 9.85% of the vines in Parcel 59B have a small size
(less than 0.69 m2) and may require special treatment. Table 4 shows the percentage of vines
having a size less than 0.69 m2, between 0.69 m2 and 1.38 m2, and greater than 1.38 m2 in
each parcel. Parcel 60D has the largest percentage of big vines while Parcel 58C has the
largest percentage of small vines.

Table 4. Percentage of vines according to their size.

Parcel Size < 0.69 m2 0.69 m2 666 Size < 1.38 m2 Size >>> 1.38 m2

59B 9.92% 62.20% 27.88%
59A 5.82% 48.99% 45.19%
57A 9.58% 58.92% 31.51%
1B 16.48% 52.19% 31.33%

58C 28.27% 57.63% 14.10%
58D 18.62% 49.60% 31.78%
60D 1.17% 12.91% 85.92%
60A 3.52% 48.14% 48.34%
61A 10.42% 63.45% 26.14%
10F 11.53% 47.24% 41.22%

3.3. Comparison with Semantic Segmentation

In order to test the trained DeepLab3vplus model (see Section 2.3), the image of Parcel
59B (Figure 1) is presented to the network after resizing it to nRxnC pixels where nR and
nC are the closest multiples of 224 to the number of lines and the number of columns of
the image, respectively. Even if the size of the test image is different than those of the
learning samples, DeepLabv3plus still succeeds in classifying the pixels, as long as the size
of the features (vines) are close to the ones learned by the network. Figure 17 shows the
image of Parcel 59B overlayed with the semantic segmentation results using the trained
Deeplabv3plus model. It is obvious that the pixels of the image are well classified among
four segments: background, soil, plant, and contour.

By setting to one all pixels belonging to the plant segment and to zero all remaining
pixels, a binary image is obtained where most of the vines form solitary objects. By applying
proper image rotation (Section 2.2.1.2) and plant identification (Section 2.2.1.3), the living
and missing vines are identified giving an overall accuracy of ACC = 99.5% (Equation (13))
when these results are assessed with ground-truth data.

Table 5 shows a comparison between the results obtained from the proposed method,
those obtained by applying CNN-based Semantic Segmentation followed by plant identifi-
cation, and those obtained from manual counting on the ground.

Table 5. Vine identification (Parcel 59B). Results from proposed method, semantic segmentation, and
ground-truth data.

Obtained Results Semantic Segmentation Ground-Truth Data

No. of vine rows 63 63 63
No. of living vines 3648 3647 3643

No. of missing vines 46 47 43
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(a) (b)
Figure 17. Semantic Segmentation results on the image of Parcel 59B.

4. Discussion

The proposed method succeeded in identifying the living and missing vines of the
analyzed parcels with high accuracy (exceeding 95%) giving the possibility to calculate a
precise mortality rate. Converting image coordinates to geographical coordinates is possible
since each parcel image is a geoTIFF image, which means it is fully georeferenced. A proper
intervention on the parcels presenting high mortality rate along with the possibility to locate
any missing vine geographically in GIS will increase the parcel’s productivity. Moreover,
identifying the pixels of each vine in the context of vine characterization helps detecting
any disease that might affect the vines by investigating their size, their shape, and the
intensity of their green color. Using CNN-based semantic segmentation instead of K-means
clustering yielded quite similar results in terms of vine identification. However, it is a
supervised method that requires a large number of learning samples to train the network,
whereas the proposed method is unsupervised, requiring only the image as input.

Despite its numerous advantages, this method has some limitations if the vine geo-
metric distribution over the plot grid presents major irregularities. In this case, the sum of
rows and the sum of columns signals will fail in detecting the presence of vine rows and
vine columns. Additionally, it will be difficult to apply a specific rule for the localization
of missing vines. Another limitation may arise from the presence of none-vine plants
between the vines that are more likely to belong to the same vine cluster when K-means
is used for image segmentation. In this case, one might have recourse to convolutional
neural networks based methods that are able to distinguish the vine plants from other
plants if the network is well trained. For example, instance segmentation is a potential
solution. It produces bounding boxes that surround each instance while recognizing its
pixels. Nevertheless, these methods are supervised and need a big number of learning
samples that might be unavailable.

5. Conclusions

In this paper, a complete study is presented for vine identification and characterization
in goblet-trained vine parcels by analyzing their images. In the first stage, the location
of each living and missing plant is depicted. In the second stage, the pixels belonging to
each plant are recognized. The results obtained when applying the proposed method on
10 parcels are encouraging and prove its validity. The accuracy of missing and living plants
identification exceeds 95% when comparing the obtained results with ground-truth and
on-screen vine identification data. Moreover, characterizing each vine helps identifying the
leaf size and color for potential disease detection. Additionally, it is an automated method
that operates on the image without prior training. Replacing K-means segmentation with
CNN-based semantic segmentation yielded good results. However, it is a supervised
method that requires network tuning and training.

Parcels delineation methods proposed in literature may be used to automatically crop
the parcels images in order to provide a complete and automatic solution for the vineyard
digitization and characterization. The success of this method depends on the regular
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geometric distribution of the vines and on the absence of non-vine plants. Otherwise,
supervised methods like instance segmentation might be used for vine identification and
characterization with the condition that a learning dataset is available.
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Abbreviations
The following abbreviations are used in this manuscript:

BW Binary parcel image
BWc Binary parcel image where the vine columns are vertical
BWr Binary parcel image where the vine rows are horizontal
TLV Number of truly identified living vines
TMV Number of truly identified missing vines
FLV Number of misidentified living vines
FMV Number of misidentified missing vines
AMV Missing vine identification accuracy
ALV Living vine identification accuracy
ACC Vine identification accuracy

Appendix A

Figure A1. Proposed method flowchart.
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