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Abstract: Hydro-climatic resilience is an essential element of food security. The miombo ecosys-
tem in Southern Africa supports varied land uses for a growing population. Albedo, Leaf Area
Index (LAI), Fractional Vegetation Cover (FVC), Solar-Induced chlorophyll Fluorescence (SIF), and
precipitation remote-sensing data for current climate were jointly analyzed to explore vegetation
dynamics and water availability feedbacks. Changes in the surface energy balance tied to vege-
tation status were examined in the light of an hourly albedo product with improved atmospheric
correction derived for this study. Phase-space analysis shows that the albedo’s seasonality tracks
the landscape-scale functional stability of miombo and woody savanna with respect to precipitation
variations. Miombo exhibits the best adaptive traits to water stress which highlights synergies among
root-system water uptake capacity, vegetation architecture, and landscape hydro-geomorphology.
This explains why efforts to conserve the spatial structure of the miombo forest in sustainable farming
of seasonal wetlands have led to significant crop yield increases. Grass savanna’s high vulnerability
to water stress is illustrative of potential run-away impacts of miombo deforestation. This study
suggests that phase-space analysis of albedo, SIF, and FVC can be used as operational diagnostics of
ecosystem health.

Keywords: surface albedo; land use and land cover change; spectral reflectance; Upper Zambezi
River Basin

1. Introduction

Global warming due to anthropogenic causes such as greenhouse gas emissions
impacts the interconnected climate, hydrological, environmental/ecological, and social
systems, that is the Earth system [1,2]. Land-use and land cover dynamics are crucial for
modeling climate change impacts, particularly in areas with intensive agricultural practices
and population growth. Agricultural lands cover approximately 40% of the land surface
of the Earth, and population increases worldwide present challenges for sustainable food
production and water resource management [3,4]. One of the main issues hindering African
development is drought, making up fewer than 20% of natural disasters in Sub-Saharan
Africa but more than 80% of the population affected by natural disasters in this region [5,6].
For example, drought can intensify in dry areas resulting from increased evaporation
and enhanced atmospheric moisture holding capacity caused by warming [1]. Projected
increases in water scarcity in combination with restricted access to groundwater can in
turn lead to increased risk of heat waves and wildfires with devastating impacts on African
communities dependent on rainwater as a primary water source [1,2,7–9].

In Southern Africa, rainfed agriculture dominates 95% of the agricultural sector, leav-
ing the region particularly susceptible to precipitation changes resulting from a warming
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climate [5,10–13]. Among many other climate hazard impacts, agricultural yields have been
influenced by natural land cover change, drought, fires, altered crop nutrient content, plant
infections, and more [1,14–16]. Regional projections in Southern Africa estimate a 15% to
50% decrease in agricultural productivity from climate change [10]. The miombo ecosystem,
located in the transition area from the rainforests near the equator to the semi-arid wood-
lands of Southern Africa, supports commercial farming, wildlife conservation, tourism,
and small-scale agriculture that tens of millions of people rely on. These diverse land uses,
along with the wide areal extent and prevalence of woodlands throughout the miombo,
give the region significant potential as either a global carbon source or a sink, which is
contingent upon how land-use management strategies are implemented [17–21]. In south
central Africa, human populations are growing faster than the supporting economy [18].
Coupled with a lack of resources for agricultural intensification in the region, croplands are
expanding to accommodate the increase in food demand, mostly at the expense of existing
miombo woodlands [18,22]. Previous studies show that, with management strategies such
as community-based forest management [23,24], improvements in miombo density and
biomass hold potential as mitigation strategies for climate change. However, the long-term
interactions between land-use/land cover and climate change in this ecosystem are not
well quantified due to their complex, nonlinear nature and modeling uncertainties, as well
as a lack of studies assessing vegetation change over long periods of time [17,25,26]. While
many studies focus on greenhouse gas emissions in describing climate impacts on the
miombo ecosystem, biophysical impacts, such as the link among rain, radiative forcing,
and vegetation should also be further investigated [21,27,28]. As such, a dynamic systems
approach focusing on the underlying processes of land–atmosphere interactions in the
miombo needs to be developed [17].

Models of future precipitation and agricultural productivity rely heavily on moisture
and heat exchange between the atmosphere and land surface. In water-limited ecosystems
with discontinuous distributions of vegetation [29–32], soil moisture integrates the effects of
vegetation, soil, and climate on the dynamics. Previous studies suggest a positive feedback
between vegetation and soil moisture, since subcanopy soils are often moister than patches
between canopies [32–41]. In terms of surface energy fluxes, the portion of total solar
radiation that is reflected by Earth’s surface, or surface albedo, is a critical parameter for
determining radiative energy fluxes on land. Decreased albedo generally corresponds to
increased vegetation, which tends to be darker than bare soil [42]. Persistent increases
in albedo in natural systems in the tropics are associated with decreases in vegetation
cover [42–44]. Decreases in vegetation cover result in decreases in evapotranspiration and
decreases in near surface soil moisture due to loss of canopy shade as well as inhibition of
biophysical pumping of deep water by active root systems. In areas with dense vegetation,
over 70% of average net radiation is transferred to latent heat flux, while under 30% is
converted to sensible heat flux [44]. In dry areas with bare soil, evaporation rates are
very low, so a large portion of net radiation is converted to sensible heat flux. This in
turn leads to decreases in moist static energy in the planetary boundary layer (PBL) and
suppression of moist convection (e.g., [44–46]). Spatial and temporal variability of radiative
properties such as surface albedo (∼20%) and emissivity (∼2%) have significant impacts on
the diurnal cycle of the land-surface energy budget with up to 10–20% changes in sensible
and latent heat fluxes [47].

Since albedo calculations present a major radiative uncertainty in climate modeling,
high-resolution remotely sensed aerosol optical depths and Ross-Thick Li-Sparse Reciprocal
(RTLS) kernel parameters were obtained to estimate the albedo at the surface. These data
were developed with the Multi-Angle Implementation of Atmospheric Correction (MAIAC)
algorithm, which uses the time series of measurements from the Moderate Resolution
Imaging Spectroradiometer (MODIS) to collect aerosol optical thickness and surface Bi-
directional Reflectance Distribution Function (BRDF) retrievals simultaneously [48,49].
Along with MODIS land surface temperature data, Global 30 Arc-Second Elevation (GTOPO30)
digital elevation data, Famine Early Warning Systems Network (FEWS NET) Land Data
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Assimilation System (FLDAS) surface pressure products, aerosol optical depths, and RTLS
kernel parameters were used to calculate hourly spectral narrowband and shortwave
broadband albedo datasets over the span of 10 years (2009–2018).

In addition to estimating albedo to improve radiative uncertainty and examine surface
energy changes, vegetation parameters were retrieved to map plant dynamics in response
to different hydrometeorological conditions from year to year. Data such as the Leaf Area
Index (LAI) and Fractional Vegetation Cover (FVC) facilitate the tracking and evaluation
of changes in the biophysical properties and photosynthetic rates of canopy and other
plant cover [50,51]. LAI and FVC are based on remotely sensed spectral signatures, and
Solar-Induced chlorophyll Fluorescence (SIF) provides a more direct approach for pre-
dicting changes in photosynthetic efficiency that are not easily detected by changes in
reflectance [51]. Depending on canopy condition that is measured by LAI, increases in
vegetation cover increase shade effectively leading to lower temperatures near the ground.
Phase-space analyses were conducted with albedo, SIF, LAI, and FVC to understand the
vegetation life cycle and diurnal land–atmosphere dynamics of the miombo ecosystem.
Joint, spatial analyses of these multi-sensor data with precipitation at different nominal spa-
tial resolutions enabled intercomparisons to examine the consistency of the representation
of spatial heterogeneity across the different sensors.

The main objectives of this study were: (1) to illustrate the utility of remote sens-
ing data for capturing feedbacks between precipitation variations, vegetation dynamics,
and water availability; (2) to provide a quantitative understanding of natural ecosystem
resilience in the region to water stress and changes in climate and its potential agricul-
tural applications through remotely-sensed land surface monitoring. Section 2 covers
the materials and methods, namely the study area’s topography and climatology and
data processing methodology for precipitation data, vegetation parameters, land cover
mapping, albedo, SIF analysis, and joint data analyses. Section 3 covers the main results
and discussion regarding the spatiotemporal variability of rainfall, spatial variability of
vegetation data, SIF analysis, spatiotemporal variability of albedo, phase-space analysis,
seasonal and interannual variability of albedo and vegetation, data anomalies, uncertainty,
and future directions. Section 4 contains the main conclusions regarding the interactions
among rainfall variability, soil moisture availability, and root water uptake demonstrated
by analysis of remotely sensed land-surface properties and the functional behaviors of
different land cover types as illustrated by phase-space analysis. The interplay between the
hydrologic behavior of dambos (e.g., seasonal wetlands in the headwaters) and the miombo
trees is further discussed in the light of potential implications for long-term, sustainable
agriculture.

2. Materials and Methods
2.1. Study Area

The Upper Zambezi River Basin’s (UZRB) ecosystem consists of miombo, tree savanna,
grasslands, and wetlands in an arid to semi-arid transition zone between the Kalahari
Desert to the south and the tropical rainforest of the Congo to the north [52]. Figure 1 shows
a digital elevation map of the UZRB. In arid ecosystems, productivity is driven primarily
by soil water content, and the seasonal cycle of productivity is driven by soil moisture in
larger part than by vapor pressure deficit [53]. The climate of this area is characterized by
complex rainfall gradients driven by the movement of the Inter-Tropical Convergence Zone
(ITCZ), a narrow, clearly defined band of clouds that stretches around the globe parallel
to the equator [54,55]. The ITCZ moves northward during the cooler, dry season (May to
October), generating an average accumulated precipitation of less than 100 mm. During
the warmer, rainy season (November to April), the ITCZ moves southward, resulting
in an average accumulated precipitation between 700–1000 mm [52] (see Table S1 in the
Supplementary Materials for average accumulated seasonal rainfall values).
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Figure 1. Digital elevation map of (a) Africa and (b) the Upper Zambezi River Basin (UZRB) with the UZRB outlined in
black. MSL, Mean Sea Level. Note the different elevation scales on the left (0 to 1550 m MSL) and on the right (650 to
1550 m MSL).

2.2. Data, Processing, and Calculations

Table 1 summarizes the data products used for this project. The UZRB spans two tiles
in sinusoidal projection used in the canonical MODIS products. All MODIS data used in
this study were stitched and re-projected to UTM 34S projection using the HDF-EOS to
GeoTIFF (HEG) Conversion Tool [56]. Since the ITCZ over this region often results in cloud-
contaminated pixels, a software package called TIMESAT performed adaptive temporal
filtering using the Savitzky–Golay method to smooth out anomalies and discontinuities
in the data impacted by cloud contamination [57]. This is accomplished by using time
series data, quality control information, and moving windows to fit a quadratic polynomial
function. All data products were re-scaled and re-projected to 1 km, UTM 34S projection
with various methods depending on the underlying physics and original spatial resolution
of each product described in the following sections.

Table 1. Summary of data products.

Data Product Description Original Units Original Spatial
Resolution

Original
Temporal

Resolution
Time Period

MODIS 1 MCD12Q1 Version
6 [58] Land Cover Type 1 (IGBP 2) Class 500 m Annual 2009–2018

MODIS MCD43A4 Version
6 [59]

Nadir BRDF 3-Adjusted Reflectance for
Bands 1–7 N/A 500 m Daily 2009–2018

MODIS MCD43A2 Version
6 [60]

BRDF/Albedo Band Quality for Bands
1–7 N/A 500 m Daily 2009–2018

MODIS MCD19A2 Version
6 [61]

MAIAC Aerosol Optical Depths at 0.47
µm and AOD QA N/A 1 km Daily 2009–2018

MODIS MCD19A3 Version
6 [62] MAIAC 4 BRDF Model Parameters N/A 1 km 8-Day 2009–2018

MODIS
MOD11A1/MYD11A1

Version 6 [63,64]

Daytime and Nighttime Land Surface
Temperatures and QC 5 Kelvin; Bit Field 1 km Daily 2009–2018

MODIS MCD15A3H Version
6 [65] Leaf Area Index and LAI 6 QA 7 m2/m2; Class Flag 500 m 4-Day 2009–2018

FLDAS 8 Noah [66] Global Surface Pressure Pa 0.1◦ Monthly 2009–2018
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Table 1. Cont.

Data Product Description Original Units Original Spatial
Resolution

Original
Temporal

Resolution
Time Period

GTOPO30 9 DEM 10 [67] Digital Elevation m 30 arc-sec Static 1996

GOSIF 11 [68] Global ’OCO-2 12’ Solar-Induced
Chlorophyll Fluorescence W m−2 µm−1 0.05◦ 8-Day 2009–2018

OCO-2 [69] Solar-Induced Chlorophyll Fluorescence W m−2 µm−1 sr−1 2.25 km by 1.29 km 16-Day 2014–2015

3IMERGM 13 [70] Mean Precipitation Intensity mm/h 0.1◦ Monthly 2009–2019

1 The MODerate resolution Imaging Spectroradiometer (MODIS) was launched on two satellites: Terra, which descends across the equator
in the morning local time [71], and Aqua, which ascends across the equator in the afternoon local time [72]. MCD refers to observations
collected by the combined MODIS instruments from both Terra and Aqua satellites. MOD refers to data retrieved by the Terra satellite only,
and MYD refers to data retrieved by the Aqua satellite only. 2 IGBP, International Geosphere-Biosphere Programme. 3 BRDF, Bidirectional
Reflectance Distribution Function. 4 MAIAC, Multi-Angle Implementation of Atmospheric Correction. 5 QC, Quality Control. 6 LAI, Leaf
Area Index. 7 QA, Quality Assurance. 8 FLDAS, Famine Early Warning Systems NETwork (FEWS NET) Land Data Assimilation System.
9 GTOPO30, Global 30 Arc-Second Elevation. 10 DEM, Digital Elevation Model. 11 GOSIF, Global ’OCO-2’ Solar-Induced chlorophyll
Fluorescence. 12 OCO-2, Orbiting Carbon Observatory-2. 13 3IMERGM, Integrated Multi-satellitE Retrievals for Global Precipitation
Measurement L3.

2.2.1. Precipitation Data

Integrated Multi-satellitE Retrievals for Global Precipitation Measurement (IMERG)
precipitation intensity data at 0.1◦ (∼10 km), monthly resolution were obtained from
the National Aeronautics and Space Administration (NASA) Precipitation Processing
System’s (PPS) Science Team On-Line Request Module (STORM) [70]. The original data
were bilinearly interpolated to 1 km spatial resolution. Accumulated precipitation data
were calculated by multiplying the monthly mean precipitation intensities by the time
period of interest (i.e., converted from mm/h to mm/month, mm/season, mm/period, or
mm/year).

2.2.2. Vegetation Data

MODIS MCD15A3H Version 6 Leaf Area Index (LAI) products at 4-day, 500 m reso-
lution were re-projected with the HEG tool, cloud-corrected in TIMESAT (Figure 2), and
aggregated to 1 km spatial resolution by taking the average of every four pixels with a
final 4-day, 1 km resolution [65]. LAI is representative of canopy cover, which is linked to
surface energy balance and modulates interactions between vegetation, hydrologic pro-
cesses, and the atmosphere, such as evapotranspiration, rainfall interception, throughfall,
and stemflow [73,74].

Global ‘Orbiting Carbon Observatory-2 (OCO-2)’ solar-induced chlorophyll fluores-
cence (GOSIF) data were obtained from the Global Ecology Group’s Data Repository at
8-day, 0.05◦ resolution and OCO-2 SIF data were obtained from the Goddard Earth Sciences
Data and Information Services Center (GES DISC) at 16-day, 2.25 km by 1.29 km resolu-
tion [68,69]. For the purposes of this manuscript, SIF and GOSIF are used interchangeably
unless otherwise specified (i.e., OCO-2 SIF used in SIF analysis is a separate data product
from GOSIF). This fluorescence is emitted directly from the core of photosynthetic ma-
chinery and is thus indicative of vegetative photosynthetic status, unlike other vegetation
indices that describe “greenness” [68]. SIF can serve as a proxy for ecosystem gross primary
productivity (GPP), with strong correlations between SIF and GPP climatologies on the
monthly scale for deciduous broadleaf, mixed forest, evergreen needleleaf forests, and
croplands [53]. Significant correlations with higher variability have been observed for
land cover types including savanna, evergreen broadleaf, and shrublands [53]. SIF data
were re-projected in the Quantum Geographic Information System (QGIS) to UTM 34S
projection, and then interpolated using nearest-neighbor to 1 km spatial resolution. OCO-2
SIF are kept at the original resolution, and comparisons between the two data are made by
selecting GOSIF values that are closest geographically to each OCO-2 orbit overpass.
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Figure 2. (a) Spatial and (b) temporal comparisons between 2010 original and new TIMESAT-
corrected Leaf Area Index (LAI) data.

Fractional Vegetation Cover (FVC) was calculated using a semi-empirical method
(Equation (1)) based on the Normalized Difference Vegetation Index (NDVI)
(Equation (2)) [75]. NDVI is a measure of “greenness” that exploits chlorophyll reflectance
of near-infrared light and absorption of visible red light [76]. Any FVC values over 1 were
set to 1, and any pixels whose LAI values were 3 or higher were also assumed to have 100%
FVC.

FVC =

(
NDVI − NDVI0

NDVIs − NDVI0

)2
, (1)

where NDVI0 is the NDVI corresponding to bare soil (NDVI0 = 0.3) and NDVIs is the
NDVI corresponding to full vegetation cover (NDVIs = 0.8), which were approximated
after systematic inspection of MODIS NDVI time series graphs. NDVI is the time-varying
NDVI value calculated from TIMESAT-corrected MODIS MCD43A4 Version 6 Band 1 (red)
and Band 2 (NIR1) reflectance data that was aggregated by taking the average of every
four 500 m pixels to 1 km resolution with daily time steps [76], given by:

NDVI =
NIR1 − red
NIR1 + red

. (2)

2.2.3. Land Cover Re-Classification

The MODIS MCD12Q1 Version 6 product’s International Geosphere-Biosphere Pro-
gramme (IGBP) land cover classification system was used to characterize land cover in
the UZRB [58]. The data were downloaded at annual, 500 m spatial resolution and ag-
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gregated by taking the mode of every four pixels to 1 km resolution, then re-classified
into six main land cover types: miombo, tree savanna, grass savanna, wetland, water, and
barren/built-up. The re-classification is presented in Table 2. Larger trees and shrublands
in the IGBP classification were assumed to be representative of miombo because the under-
story in miombo woodlands is scattered and composed of suppressed tree saplings and
broadleaved shrubs [18,77]. Sedges, forbs, and grasses sparsely but continuously cover the
ground layer [18,77]. The dominant tree species in miombo are of the genera Brachystegia,
Julbernardia, and/or Isoberlinia, which are unique to miombo ecosystems [18,77–79]. Other
important species include Burkea africana, Pseudolachnostylis maprouneifolia, Diplorhynchus
condilocarpon, and more [18,77]. The large broadleaf trees are characteristic of wet miombo,
where canopy cover is dense and trees are over 15 m in height [18,77]. In the IGBP classifi-
cation, open and closed shrublands contain woody perennials 1–2 m in height, which is
characteristic of Eriosema, Sphenostylis, Kotschya, Dolichos, and Indigofera perennial plants
that dominate the shrub composition of dry miombo [18]. Since the IGBP classification
provides woody savanna, savanna, grassland, and cropland land cover classes that are
distinct from shrubland land cover, the IGBP classes were assumed to cover all woody
savanna and grass savanna land cover types. The same re-classification was used by
Lowman et al. (2018) [52] to represent Southern Africa using MCD12Q1 Version 5 data
instead of MCD12Q1 Version 6 data.

Using the same methodology as Lowman et al. (2018) [52], dynamic wetland maps
were created using five wetland predictor variables derived from MODIS MCD43A4
Version 6 Nadir BRDF-adjusted reflectance data after aggregation to 1 km resolution with
daily temporal resolution [59,60]. These indices aid in visualizing seasonal changes in
wetland area, and stationary land cover data for three consecutive wet years (2010–2012)
were used as training data for wetland probability mapping (Appendix A) considering
six wetland indices (Figure 3c–h). Two distinct peaks in the histograms generally signifies
a “good” wetland predictor. As such, NDVI, which has the greatest amount of overlap
between wetland and non-wetland values and the most irregular peaks, was not used
as a wetland predictor variable. As shown in Figure 3b, threshold area curves were
generated for 2009 to 2018, indicating that, at scales above 150 km, there is less uncertainty
with wetland mapping. At finer resolutions, uncertainty increases greatly and varies
according to interannual variability in climate and weather. For example, a 60% threshold
yields uncertainty on the order of 100%. Based on the black line in Figure 3b marking
the permanent wetland area derived from stationary land cover between 2010 and 2012
(Figure 3a), a threshold value of 99% was selected. Compared to previous work on wetland
probability mapping [52] that used MCD12Q1 Version 5 data processed with the now-
retired MODIS Reprojection Tool (MRT), the MCD12Q1 Version 6 data processed with
the HDF-EOS to GeoTIFF Conversion Tool refines the permanent wetland class in the
stationary land cover and thus highlights the interannual variability in wetland extent
tied to precipitation. These dynamic wetland area maps were overlaid onto the land cover
maps to complete the reclassification, as shown in Figure 4.

Figure 5 displays varying vegetation densities of the three land cover types of interest
in this study: grass savanna, miombo, and woody savanna. Miombo trees are generally
taller and more densely packed, with extensive root systems that can reach up to 27 m in
lateral length and over 5 m in vertical depth [17]. On the other hand, woody savanna trees
are shorter and more spread out, with smaller root systems ranging 2–12 m laterally and
0.7–1.5 m vertically [80]. Grass savanna vegetation are the least dense with shallow root
systems, often containing seasonally waterlogged wetland areas and shallow depressions
called dambos that intersperse the landscape [17]. Figure 6 illustrates relative sizes and
root zone distributions of woody savanna, grass savanna, and miombo.
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Figure 3. (a) Stationary land cover map based on Moderate Resolution Imaging Spectroradiometer (MODIS) MCD12Q1
Version 6 data for three wet years (2010–2012), along with (b) threshold-area curves for 2009–2018. The black line indicates
the permanent wetland area of the stationary land cover map. (c–h) Histograms of wetland and non-wetland pixels from
training data using: (c) Near-Infrared Reflectance (NIR) data; (d) the Normalized Difference Vegetation Index (NDVI); (e)
the Normalized Difference Water Index (NDWI); (f) Tasseled Cap (TC) Brightness; (g) TC Greenness; (h) TC Wetness.

Table 2. Land cover classes.

Land Cover Classification MODIS MCD12Q1 IGBP Land Cover Class

Water 15: Permanent Snow/Ice
17: Water

Miombo

1: Evergreen Needleleaf Forests
2: Evergreen Broadleaf Forests
3: Deciduous Needleleaf Forests
4: Deciduous Broadleaf Forests
5: Mixed Forests
6: Closed Shrublands
7: Open Shrublands

Woody Savanna 8: Woody Savanna

Grass Savanna

9: Savanna
10: Grasslands
12: Cropland
14: Cropland/Natural Vegetation Mosaic
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Table 2. Cont.

Land Cover Classification MODIS MCD12Q1 IGBP Land Cover Class

Wetland 11: Permanent Wetland

Barren/Built-up 13: Urban
16: Barren

Figure 4. Seasonal land cover derived from MODIS MCD12Q1 land cover classes for a wet year (2011; left) and a dry year
(2015; right) to compare (a) wetland extent after the peak of the rainy season to (b) wetland extent during the middle of the
dry season.
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Figure 5. Google Earth images comparing vegetation densities of three different land cover types in the UZRB: (a) grass
savanna; (b) miombo; (c) woody savanna [81]. Google Earth Image ©2021: Google, Data SIO, National Oceanic and
Atmospheric Administration (NOAA), U.S. Navy, National Geospatial-Intelligence Agency (NGA), General Bathymetric
Chart of the Oceans (GEBCO), Landsat/Copernicus, AfriGIS (Pty) Ltd, International Bathymetric Chart of the Arctic Ocean
(IBCAO), Maxar Technologies, Centre National D’Etudes Spatiales (CNES; National Centre for Space Studies)/Airbus.
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Figure 6. Diagram depicting varying spatial distributions of root zones for woody savanna, grass
savanna, and miombo land cover types. The diagram was not drawn to scale, but approximate sizing
was determined based on tree heights, vertical root depths, and lateral root lengths found in the
literature [17,80].

2.2.4. Albedo Algorithm

Given the lack of hourly albedo data available for this region, surface albedo data
were derived from MODIS MAIAC MCD19A2 aerosol optical depth (AOD) and MCD19A3
bi-directional reflectance distribution function (BRDF) model parameter data using ex-
isting methodology [61,62,82]. Figure 7 depicts the surface albedo data processing and
calculations flowchart with final spatial and temporal resolutions specified for each data
product.

Black-Sky Albedo (BSA), or directional-hemispherical reflectance, is the albedo of
a surface illuminated in one direction. Equation (3) describes how BSA is calculated by
a simplified polynomial expression to represent the integration of the BRDF over the
exitance hemisphere for a single irradiance direction [83]. White-Sky Albedo (WSA),
or bi-hemispherical reflectance, is the surface albedo generated by diffuse illumination.
Equation (4) describes how WSA is calculated by a simplified polynomial expression
to represent the integration of the BRDF over all viewing and irradiance directions [83].
Famine Early Warning Systems Network (FEWS NET) Land Data Assimilation System
(FLDAS) surface pressure, Global 30 Arc-Second Elevation (GTOPO30) digital elevation,
and MODIS MOD11A1/MYD11A1 land surface temperature data were inputted into the
National Renewable Energy Laboratory’s Solar Position Algorithm (NREL SPA) to calculate
the hourly solar zenith angles (SZA) for each pixel [63,64,66,67,84].

αbs(θ, λ) = fiso(λ)
(

g0,iso + g1,isoθ2 + g2,isoθ3
)

+ fvol(λ)
(

g0,vol + g1,volθ
2 + g2,volθ

3
)

+ fgeo(λ)
(

g0,geo + g1,geoθ2 + g2,geoθ3
)

,

(3)

αws(θ, λ) = fiso(λ) + 0.189184 fvol(λ)− 1.377622 fgeo(λ) , (4)
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where αbs(θ, λ) is black-sky albedo, αws(θ, λ) is white-sky albedo, θ is the solar zenith
angle, λ is the wave band, fk are the Ross-Thick Li-Sparse (RTLS) kernel parameters
(k = isotropic, volumetric, andgeometric), and g0,k, g1,k, and g2,k are the coefficients corre-
sponding to each RTLS parameter presented in Table 3.

Figure 7. Surface albedo data processing and calculations flowchart. MAIAC, Multi-Angle Implemen-
tation of Atmospheric Correction. SIN, MODIS SINusoidal projection. UTM, Universal Transverse
Mercator projection. FLDAS, Famine Early Warning Systems NETwork (FEWS NET) Land Data
Assimilation System. GTOPO30, Global 30-Arc Second Elevation. BRDF, Bi-directional Reflectance
Distribution Function. RTLS, Ross-Thick Li-Sparse.



Remote Sens. 2021, 13, 2954 13 of 34

Table 3. Black-sky albedo coefficients from [85].

Kernel Term k = isotropic k = volumetric
(Ross-Thick)

k = geometric
(LiSparse-R)

g0,k 1.0 −0.007574 −1.284909
g1,k 0.0 −0.070987 −0.166314
g2,k 0.0 0.307588 0.041840

To obtain fraction of diffuse skylight (SKYL) values, a look-up table retrieved from
the MODIS User Tools section of Professor Crystal Schaaf’s Lab site was used to bilinearly
interpolate SKYL values based on AOD and SZA values [86]. These SKYL values act as
weights for calculating blue-sky albedo, or albedo corresponding to actual atmospheric
conditions, from an interpolation between BSA and WSA, as shown in Equation (5) [83]:

α(θ, λ) = [1− S(θ, τ(λ))]αbs(θ, λ) + S(θ, τ(λ))αws(θ, λ) , (5)

where α(θ, λ) is narrowband blue-sky albedo, S(θ, τ(λ)) is the fraction of diffuse skylight,
and τ(λ) is the aerosol optical depth. The seven resulting narrowband blue-sky albedos
were then combined to calculate shortwave broadband albedo using Equation (6) [83]:

A(θ) = ∑
i

ciα(θ, λi) , (6)

where A(θ) is the broadband albedo and ci is the conversion coefficient corresponding to
MODIS reflectance band i presented in Table 4.

Table 4. Narrowband spectral-to-broadband albedo conversion coefficients from [48,85].

MODIS Band Wavelength (nm) Shortwave (SW)

1 620–670 0.3973
2 841–876 0.2382
3 459–479 0.3489
4 545–565 −0.2655
5 1230–1250 0.1604
6 1628–1652 −0.0138
7 2105–2155 0.0682

intercept — 0.0036

2.2.5. Orbit-Based SIF Analysis

Since GOSIF data were derived from MODIS data, Modern-Era Retrospective Analysis
for Research and Applications, Version 2 (MERRA-2) meteorological reanalysis data, and
OCO2-SIF data, both GOSIF and OCO-2 SIF datasets were compared in an orbit-based
analysis. GOSIF data were corrected with a 24 h daily correction factor, while OCO-2 SIF
data were corrected with the following daytime-only daily correction factor (any SZAs
over 90◦ were set to 90◦) in Equation (7) [87]:

F̄s =
Fs

(t2 − t1)× cos SZA(t0)
×
∫ t2

t1

cos(SZA(t))dt , (7)

where F̄s is the average daily SIF value, Fs is the instantaneous OCO-2 SIF value at 757 nm,
t1 is the beginning time (sunrise for daytime-only), t2 is the end time (sunset for daytime-
only), SZA(t0) is the instantaneous solar zenith angle at the time the observation was taken,
t0, and SZA(t) is the solar zenith angle at time t. To match the 24 h daily correction factor
calculations provided in the OCO-2 User Guide as closely as possible, the solar zenith
angles were calculated at 10-minute intervals using the NREL SPA, and the integral was
approximated via the trapezoidal method for daytime hours only [84,87]. Only OCO-2
SIF observations collected under nadir and for clear skies conditions were used, since the
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Cubist regression tree model used to produce GOSIF from OCO-2 soundings averaged
OCO-2 SIF data collected under similar conditions [68].

2.2.6. Data Analysis

For each year of interest (e.g., 2010–2011 and 2015–2016), the data were compared in
phase-space plots by masking the data for each land cover type and calculating the mean
values and 95% confidence intervals over time. Ellipses were then overlaid onto the graphs
to approximate the shape of the limit-cycles with arrows to indicate the direction of time.
The time period for each graph was not based off of the calendar year so that the data
points would represent two consecutive rainy and dry seasons.

To explain anomalous seasonality in the albedo data, the slope of the terrain was
examined using GTOPO30 digital elevation data in QGIS to determine where flat land
or water may impact the data values. When other anomalous behavior was identified in
specific locations in the landscape, phase-space graphs for albedo and fractional vegetation
cover were plotted as well.

3. Results and Discussion
3.1. Spatial and Temporal Variability of Precipitation

Spatial and bar graph comparisons of mean monthly accumulated precipitation are
displayed in Figures 8 and 9, respectively.

Figure 8. Spatial comparisons of Integrated Multi-satellitE Retrievals for Global Precipitation Mea-
surement (IMERG) mean monthly accumulated precipitation for 2009–2018.

In general, 2009–2014 and 2017–2018 were relatively wet years, while 2015 and 2016
were relatively dry years (see Table S1 in the Supplementary Materials). Based on the
spatial interannual comparisons (Figure 8) and land cover comparisons (Figure 9), the
northern areas of the basin where miombo and woody savanna dominate receive more
accumulated rainfall on average than the southern portion where grass savanna dominates.
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Figure 9. Bar graph comparisons of IMERG mean monthly accumulated precipitation for 2009–2018
for all land cover, miombo, grass savanna, and woody savanna.

3.2. Spatial Variability of Vegetation

Seasonal spatial comparisons of LAI, SIF, and FVC are displayed in Figure 10. The
use of an NDVI-based fractional vegetation cover calculation appears to highlight the
flush of grasses during the rainy season and their subsequent senescence during the dry
season characteristic of semi-arid regions in Africa [88]. Woody savanna and miombo
retain some fractional vegetation cover during the dry season, which could be attributed to
frequent accidental and deliberate fires as people prepare land for harvest or for livestock
grazing. The miombo ecosystem likely contains the largest burned area globally estimated
at approximately 1 million km2 yr−1 [17]. These fires generally decimate grasses, shrubs,
and fine woody biomass, but trees and other woody plants often persist, re-sprouting
quickly from any remaining root systems and stems [17]. LAI and SIF data reflect similar
seasonal contrasts, although the tree savanna LAI data in the northwest portion of the UZRB
appear to be less sensitive across both seasons. This could be attributed to the smoothing
effect of the TIMESAT cloud correction since many pixels were cloud-contaminated during
the peak of the rainy season demonstrated by the large fluctuations in original LAI values,
particularly for the woody savanna pixel shown in Figure 2. In addition, the seasonally
inundated grass savanna/wetland areas in the center of the basin consistently have low
values of LAI, GOSIF, and FVC that are distinct from the seasonal greening and senescence
observed in other grass savanna areas in the southern portion of the basin. The wetland
areas mapped in Figure 4 are based on a 99% threshold from the wetland probability maps
determined using stationary MODIS MCD12Q1 permanent wetland pixels (Figure 3b),
but the actual wetland areal extent may cover a larger, sparsely vegetated area marked by
the low (red) values in Figure 10 that the MODIS (LAI and FVC) and OCO-2/MERRA-2
instruments (GOSIF) are able to detect.

Orbit-Based SIF Analysis

The results of the orbit-based SIF analysis in Figure 11a,c display GOSIF values
that are more densely concentrated between 0 and 0.4 W m−2 µm−1 sr−1, while the
OCO-2 SIF values are more variable over a wider range of SIF values. Despite the many
advantages of GOSIF in its global, continuous coverage and longer record (2000–2020),
these results suggest that the application of the daily correction factor over 24 h may be
underestimating the SIF signal because nighttime values were taken into account. On the
other hand, the GOSIF data appear to capture seasonal trends more clearly (Figure 11a),
with values ranging around 0.15–0.4 W m−2 µm−1 sr−1 during the rainy season and around
0–0.2 W m−2 µm−1 sr−1 during the dry season (Figure 11b).
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Figure 10. Spatial comparisons of (a,b) 2011 and (c,d) 2015 Leaf Area Index (LAI), Solar-Induced chlorophyll Fluorescence
(SIF), and Fractional Vegetation Cover (FVC) (a,c) just after the peak of the rainy season and (b,d) during the middle of the
dry season.
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Figure 11. Global ’OCO-2’ Solar-Induced chlorophyll Fluorescence (GOSIF) vs. Orbiting Carbon Observatory-2 (OCO-2)
orbit-based comparisons. (a) Cloud bias plot depicting pixels for all land cover types between 2014–2015. (b) Spatial
comparisons of GOSIF and OCO-2 orbits and (c) histogram comparisons of the distribution of nadir-only, clear skies SIF
observations. OCO-2 data here are corrected with a daytime-only daily correction factor, while GOSIF data are corrected
with a 24 h daily correction factor.

3.3. Spatial and Temporal Variability of Shortwave Broadband Albedo

Figure 12 shows an example of 2011 BSA, WSA, and actual blue-sky spectral albedo
values at noon local time for MODIS Band 2 (near-infrared) during the rainy season
(Figure 12a) and the dry season (Figure 12b). Figure 13 depicts spatial graphs of 2011
(Figure 13a,b) and 2015 (Figure 13c,d) shortwave broadband albedo for times after sunrise,
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at noon, and before sunset local time. Figure 14a displays time series comparisons of 2009
to 2018 monthly mean diurnal cycles of surface albedo for three different land cover types
along with land cover values (Figure 14b) and albedo values (Figure 14c) for reference.
The locations of the three pixels within the basin used for the interannual monthly mean
diurnal cycle comparison (Figure 14a) for each land cover type are marked in Figure 14c
with a black plus sign for miombo, a black cross for tree savanna, and a black circle for grass
savanna. Figure 14d displays the annual (calendar year) mean accumulated precipitation
values across the basin for each year from 2009 to 2018.

Figure 12. Example of Black-Sky Albedo (BSA), White-Sky Albedo (WSA), and blue-sky spectral albedo comparisons
between dates in (a) the rainy season (14 March 2011) and (b) the dry season (28 July 2011) at noon local time.

Based on these results, the hourly shortwave broadband albedo exhibits a diurnal
cycle expected of actual albedo because of the data’s dependence on instantaneous solar
zenith angles. The spatial graphs (Figure 13) suggest that albedo values are generally
under 0.12 for inundated areas in the wetlands during the rainy season around noon local
time (see Table S2 for mean annual albedo values corresponding to permanent wetlands).
Surface albedo was also consistent with land cover differences during peak sunlight hours
(i.e., noon local time), which makes sense given that the solar zenith angle and subsequently
the fraction of diffuse skylight at those times is smaller. Assuming albedo estimates at
noon local time are representative of actual albedo, increases in solar zenith angle (i.e., after
sunrise and before sunset in Figures 12 and 13) appear to overestimate albedo because
the fraction of diffuse skylight is higher. In Figure 12, spectral albedo for near-infrared
wavelengths (MODIS Band 2) is also generally lower during the dry season. The decreased
albedo leads to increases in the net radiation available for latent and sensible heat fluxes,
particularly for sensible heat fluxes because the vegetation is dry. These results suggest a
positive feedback between dynamic radiative properties of the landscape and rainfall that
captures seasonal variability.
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Figure 13. Spatial comparisons of (a,b) 2011 and (c,d) 2015 shortwave broadband albedo for morning, noon, and afternoon
local times (a,c) just after the peak of the rainy season and (b,d) during the middle of the dry season.
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Figure 14. (a) Time series comparison of 2009–2018 monthly average diurnal cycles of shortwave broadband albedo for
three different land cover types. The 2011 rainy season (b) land cover and (c) shortwave broadband examples with the
miombo (plus sign), tree savanna (cross), and grass savanna (circle) pixels corresponding to the time series marked spatially
with black symbols. (d) IMERG precipitation data for each calendar year between 2009 and 2018.

A grassy portion of the temporary wetlands in the UZRB outlined by the gray rectangle
in Figure 15 had higher albedo values than would be expected during the dry season. The
results from the slope analysis suggest that the anomalous albedo values may be explained
by increased turbidity in flat water [89]. The slopes also provide a potential explanation
for why the monthly mean diurnal cycles for the grass savanna pixel in Figure 14 near
the start of the rainy season (October–December) appear to flip upside down. The grass
savanna pixel (marked by a black circle) is in a flat area close to the natural outlet in the
southeastern portion of the UZRB, and it turns into a wetland area during the rainy season.
This inundated, grassy, flat terrain could slow down waters carrying sediments as they
drain out of the basin, increasing the turbidity of the water and causing surface albedo to
increase.
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3.4. Phase-Space Analysis

Phase-space maps of albedo, FVC, and SIF for miombo, grass savanna, and woody
savanna across different years are shown in Figures 16 and 17. Each point represents the
mean value for all pixels of that land cover type, with colors representing the corresponding
day of the year. The 95% confidence intervals were plotted as horizontal and vertical error
bars, although many of the confidence interval values were so close to the mean that the
short error bars were obscured by the markers. Dark blue shapes show the approximate
form of each set of pixels, with arrows overlaid on the shapes to mark the direction of
time. The offset between the two branches of the seasonal limit-cycle (“loop”) indicates the
degree of hysteresis in the relationship between the two variables. The land cover classes
used here incorporate dynamic wetland mapping since each point represents a 4-day (for
graphs with LAI or FVC but without GOSIF) or 8-day (for graphs with GOSIF) time step,
depending on which dataset has the coarser temporal resolution. This enables a more
realistic comparison of the interactions between albedo, LAI, FVC, and SIF and rainfall
variability for each land cover type as wetland areas become inundated.

Figure 15. Shortwave broadband albedo at noon local time for 2011 (a) after the peak of the rainy
season and (c) during the dry season compared with the corresponding (b) elevations and (d) terrain
slope analysis. The gray box outlines an area with higher than expected albedo values during the dry
season.

3.5. Seasonal Variability of Albedo

Across all land cover types, inspection of the smooth limit-cycles in Figure 16a indi-
cates large hysteresis (offset of the trajectory in phase-space) consistent with strong seasonal
patterns in the wet year and decreasing albedo in the rainy season (tied to increasing FVC
and increased LAI and SIF in Figure 17a) with increasing albedo ranges from woody to
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grass savanna and miombo in-between. In the dry year, however, the limit-cycles collapse
(Figure 16b) with flipped behavior for grass and woody savanna land cover types. For grass
savanna, albedo decreases more dramatically in the wet season when the precipitation
deficit is at a maximum during the dry year (see Table S2 in the Supplementary Materials)
and darker, greener grass flushes the landscape. For woody savanna, the limit-cycles
exhibit smaller hysteresis in dry conditions (Figure 16b). Thus, drought depresses the
seasonality of albedo. Nevertheless, note that, while the albedo offset is reduced, the
miombo limit-cycles are stable and exhibit seasonal hysteresis.

The collapse of the radiative hysteresis (albedo offset) under dry conditions during
2015–2016, particularly for grass savanna pixels, is indicative of the high vulnerability
of this ecosystem to water stress. Indeed, Figure 18 compares the mean limit-cycle for
grassland under wet and dry conditions with the limit-cycles for grassland in the areas
that receive daily mid-day rainfall as per Lowman et al. (2018) [52]. Under dry conditions,
the local afternoon rainfall is critical for grass sustainability. The decreased hysteresis
offsets during 2015–2016 for woody savanna and miombo reflects the prominent decrease
in precipitation in the northeastern portion of the UZRB during 2015–2016, where miombo
and woody savanna dominate. As a result, reduced rainfall and soil moisture differences
between seasons decrease the difference in albedo during transitional periods.

Figure 16. Phase-space analysis of mean albedo, SIF, and FVC values for each land-cover class for (a) a wet year (2010–2011)
and (b) a dry year (2015–2016) across miombo (MB), grass savanna (GS), and woody savanna (WS) land cover types. The
accumulated annual precipitation for each year (consecutive rainy and dry seasons from November to October) is shown on
the right-hand side for reference. Dark blue elliptical shapes represent the approximate shape of the limit-cycle and arrows
indicate the direction of time. The 95% confidence interval values are plotted as horizontal and vertical error bars, with bar
lengths representing the distance of the interval endpoints to the mean. Rainy season values in the phase-space diagrams
are marked by the dark blue to dark red transition to the right of the graphs and dry season values are marked by the light
blue to light green transition to the left of the graphs.
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The drop in albedo values for grass savanna in the southern portion of the basin could
be due to the relative increase in the contribution of flooded dambos to the landscape-
scale albedo when grass savanna is stressed under dry conditions in the rainy season of
2015–2016. These results suggest that these data capture both seasonal and interannual
variability in response to the amount of precipitation in a given year.

3.6. Seasonal Variability of Vegetation

LAI, SIF, and FVC values were highest during the peak of the rainy season and
lowest towards the end of the dry season. Both FVC and SIF values dropped close to 0
for grass savanna during the dry season, which can be explained by seasonal senescence
characteristic of herbaceous vegetation in semi-arid regions [88]. Based on comparisons
of the vegetation data depicted in Figure 17, the degree of hysteresis for each graph
varied depending on the time of year and the land cover type. In general, LAI and SIF
comparisons display a positive linear dependence without hysteresis for both miombo and
woody savanna in the wet year. This behavior highlights increases in LAI due to increases
in soil moisture that result in increased photosynthesis and SIF activity. Note however that,
due to cloud cover in the rainy season, hysteresis emerges for grass savanna with the lower
branch (lower LAI, lower SIF) in the wet season, highlighting seasonal increases in soil
moisture in response to precipitation.

Figure 17. Phase-space analysis of mean LAI, SIF, and FVC values for each land-cover class for (a) a wet year (2010–2011)
and (b) a dry year (2015–2016) across miombo (MB), grass savanna (GS), and woody savanna (WS) land cover types. The
accumulated annual precipitation for each year (consecutive rainy and dry seasons from November to October) is shown on the
right-hand side for reference. Dark blue elliptical shapes represent the approximate shape of the limit-cycle and arrows indicate
the direction of time. The 95% confidence interval values were plotted as horizontal and vertical error bars, with bar lengths
representing the distance of the interval endpoints to the mean. Rainy season values in the phase-space diagrams are marked
by the dark blue to dark red transition to the right of the graphs and dry season values are marked by the light blue to light
green transition to the left of the graphs.
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Figure 18. (a) Phase-space analysis of mean albedo and FVC values for grass savanna pixels for a
wet year (2010–2011) and a dry year (2015–2016) across the entire UZRB, as well as for the midland
wetland area that receives localized precipitation (Anomaly) [52]. The 95% confidence interval values
were plotted as horizontal and vertical error bars, with bar lengths representing the distance of the
interval endpoints to the mean. (b) On the right is a conceptual diagram that synthesizes the impact
of afternoon convection (Anomaly) produced by local circulations organized by land–atmosphere
interactions and groundwater convergence [52] on the seasonal cycle of albedo. This shows the
importance of landscape organization of water fluxes in producing hot-spots of enhanced ecosystem
resilience.

FVC saturates in the peak of the rainy season (cross-over loop). LAI and FVC compar-
isons indicate strong hysteresis for most of the year. The phase-space trajectories of (LAI,
FVC) and (LAI, SIF) do not change significantly between the wet and dry year suggesting
that they capture functional behavior of the three vegetation types, which could be used to
parameterize regional phenology in models.

Woody savanna and miombo land cover exhibit similar LAI and SIF values, which
can be explained by their similar root system structures. Notably, miombo pixels display
enhanced hysteresis offsets compared to woody savanna pixels, emphasizing its more
extensive lateral and deep root system [17]. Lateral roots near the surface effectively
function as shallow grass roots because water does not have to infiltrate as deep into the
soil to reach tap roots. Grass savanna has the strongest hysteresis during the rainy season,
which is expected because the shallow root systems are more sensitive to changes in soil
moisture. Near the surface, soil moisture is governed by rainfall variability because the
topsoil is more susceptible to water loss through evaporation compared to deeper soils. In
addition, the development of tap roots in woody savanna and miombo vegetation allow
for root uptake of deep-water storage, resulting in a decreased sensitivity to changes in
precipitation. Overall, hysteresis decreases between the wet and dry year, with greater
impacts on grass savanna because of the higher soil moisture sensitivity due to the shallow
root system characteristic of herbaceous vegetation [88].

3.7. Sources of Uncertainty

Although all data were interpolated or aggregated to 1 km spatial resolution for data
analysis, Figure 19 illustrates how comparisons between coarser resolution (i.e., SIF in
Figure 19a) and finer resolution (i.e., land cover in Figure 19b) data may decrease the
accuracy of remotely-sensed land surface properties. Detailed, dynamic physical features
such as wetland areal extent are lost as spatial resolution decreases, and smaller features
such as dambos can be obscured even at 1 km resolution.
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Figure 19. Spatial resolution comparisons between (a) a 0.05◦ × 0.05◦ grid and (b) a 1 km × 1 km grid.

In addition, the shapes in Figure 17 resemble a cone and an ellipse for LAI vs. SIF
and LAI vs. FVC, respectively, which appear as though they are folded over. The sharp
drops in LAI during the peak of the rainy season indicate that the interpolation of widely
variable LAI values in the TIMESAT cloud correction algorithm for each year could be
skewed by outliers at the transition between calendar years (see the first data points of
Figure 2b for woody savanna), resulting in LAI that is not representative of the landscape
during the rainy season when cloud contamination issues are most severe. Figure 2a shows
a decrease in LAI values to the east of the wetlands which may be a result of TIMESAT
filtering at short time scales and cloud contamination. Increased values to the west of and
within the wetlands after TIMESAT correction are a product of averaging in TIMESAT,
suggesting a loss of information. Of the re-classified miombo pixels, mixed forest pixels
(based on the original IGBP classification) are more influenced by averaging issues, while
evergreen broadleaf pixel values (based on the original IGBP classification) are preserved
(see Figure 3a of the stationary land cover for the original IGBP land cover classes).

3.8. Future Work

Future studies could further examine the changes in surface energy fluxes discussed
in this paper by, for example, analyzing in situ data from flux-towers co-located with the
three main ecosystems across the UZRB to examine the phase-space of radiative properties
and vegetation phenology. Lowman et al. (2018) [52] used satellite data to specify vege-
tation parameters including radiative properties and compared their simulations using
a hydrologic model with dynamic vegetation [90] against flux-tower data from Mongu,
Zambia with good results (see their Figure 7). Lowman and Barros (2019) [91] added a
predictive phenology module to the same model to simulate the feedbacks among vegeta-
tion dynamics, climate variability (temperature, humidity, and rainfall), and the surface
energy budget to be compared against satellite and flux-tower observations. Furthermore,
it would be interesting to examine the strength of local land–atmosphere coupling and
to characterize the impact of changes in the spatial organization of albedo on the spatial
organization of clouds and rainfall. Because of the large areal extent of savanna ecosystems
and because seasonal changes in albedo imply seasonal changes in Bowen ratio, and there-
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fore in low-level relative humidity and moist instability, there is also potential for regional
impacts on convective activity tied to vegetation condition (e.g., [92,93]). Whereas previous
studies have generally focused on humid climatic regions, the UZRB is located in a region
of transition between the Congo River Basin and the Kalahari Desert.

Future work could also involve analyzing finer resolution (i.e., 30 m) Landsat imagery
in addition to the land surface data examined in this manuscript to develop more dynamic
land cover maps and improve comparisons across different land cover types. Agricultural
areas are of great interest since local populations in the UZRB rely on subsistence agriculture.
The land use and land cover changes associated with small-scale agriculture can have
profound impacts on the water and surface energy balance in the region as population
increases and climate change add additional stressors to food security [10,11,17,94,95]. A
better understanding of the land–atmosphere feedbacks and natural system resiliency could
inform climate-smart agricultural practices aligned with the United Nations Sustainable
Development Goals to address climate mitigation, adaptation, and poverty reduction.

4. Conclusions

A joint, multi-sensor analysis of albedo, leaf area index, fractional vegetation cover,
solar-induced chlorophyll fluorescence, and precipitation was conducted to understand
how land surface properties are interrelated in maintaining the surface energy balance
and water budget. The estimated albedo exhibit realistic diurnal cycles, and the results
from the analysis indicate that strong seasonality and inter-annual variability in albedo are
directly tied to landscape greening, and in particular soil moisture availability in the root
zone and root water uptake following precipitation events. This study establishes regional-
scale relationships that illustrate the functional behaviors of miombo, grass savanna, and
woody savanna land cover types. Deep-rooted vegetation is less vulnerable to drought.
Miombo exhibits optimal adaptive characteristics with robust seasonality for both dry and
wet conditions in the region of study (see Figure 6). Operational phase-space analysis of
albedo-FVC and albedo-SIF limit cycles can be used to monitor ecosystem stability and to
detect changes. For example, grass savanna’s high vulnerability to water stress is indicative
of potential run-away feedbacks of miombo deforestation.

Dambos (seasonal headwater wetlands) provide localized surface storage for runoff
in this region. The hydrologic functionality of dambos is similar to flood irrigation with
distributed runoff control, that is the natural system counterpart to micro-dams in small-
holder agriculture [96]. Infiltration of ponded water recharges the water table and soil
moisture in the rainy season; in the dry season, miombo’s deep roots physiologically pump
water from deep soil layers upward that is then laterally redistributed at shallow soil
depths. During the rainy season, miombo root systems anchor the soil catenas reducing
erosion, and thus preserve the topsoil and landform. Dambos and miombo trees play
therefore complementary roles in regional hydrology that increase the overall landscape
resilience to water stress throughout the year.

The importance of dambos in food production in Southern Africa, and in particular
Zambia, Zimbabwe, and Malawi, has long been studied (e.g., [22,97–102]). The synergy
between miombo and dambos provides a framework for sustainable agriculture to emulate
the resiliency of natural systems in this region. Indeed, recent data show significant
increases in crop yield (30–60%) from cultivated dambos when miombo trees are preserved
in the landscape as opposed to those that have been cleared [103].

In addition to increasing surface water storage through cultivated dambos, accessing
blue water resources, or water withdrawn from surface water and aquifers without deplet-
ing environmental flows or groundwater, in a sustainable fashion is crucial for long-term
agriculture. Economic water scarcity corresponds to conditions in which blue water re-
sources are physically available, but society’s use of that water is hindered by the lack of
institutional and economic capacity required to access such water resources [9,104–106].
Agricultural economically water scarce croplands are rainfed agricultural areas where
sustainable irrigation expansion is suitable [9]. In Zimbabwe, irrigation by recharge from
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thousands of human-made earth micro-dams has long been recognized as key to high
agricultural productivity [107–109]. Dambos play in natural systems an irrigation role not
unlike the small earth dams in Zimbabwe farms. Abandonment and inadequate mainte-
nance of these micro-dams in the last twenty years has been in large part associated with
the severe decline in agricultural productivity (e.g., [107,108]). Therefore, prospects for
long-term subsistence agriculture in the region encompass the preservation of dambos’
ecohydrological functionality.

As shown by Rosa et al. (2020) [9], croplands in the savannah ecosystems to the
north and northeast of the Upper Zambezi River Basin experience agricultural economic
water scarcity, particularly in the dry season. Irrigation expansion for Sub-Saharan crop-
lands facing economically water scarce conditions along with sustainable deficit irrigation
practices (i.e., irrigation that reduces blue water supply to below maximum levels and
enables the growth of mildly water-stressed crops with minimized impact on crop yield)
from areas not currently facing water scarcity such as the UZRB can generate enough
food for 189–235 million more people with a roughly 24–96% increase in irrigation water
consumption [9]. Adopting sustainable deficit irrigation practices in conjunction with
cultivated shallow dambos and miombo trees can enhance the resilience of the ecosystem
and surrounding communities, improving food and water security as climate hazards
intensify in the coming years [1,9,103,110].
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Abbreviations
The following abbreviations are used in this manuscript:

AOD aerosol optical depth
BRDF bi-directional reflectance distribution function
BRF bi-directional reflectance factor
BSA black-sky albedo
CNES Centre National D’Etudes Spatiales (National Centre for Space Studies)
DEM Digital Elevation Model
FEWS NET Famine Early Warning Systems Network
FLDAS FEWS NET Land Data Assimilation System
FVC fractional vegetation cover
GEBCO General Bathymetric Chart of the Oceans
GES DISC Goddard Earth Sciences (GES) Data and Information Services Center (DISC)
GIS Geographic Information System
GOSIF Global ’OCO-2’ Solar-Induced chlorophyll Fluorescence
GPP gross primary productivity
GTOPO30 Global 30 Arc-Second Elevation
HEG HDF-EOS to GeoTIFF
HEG-C HDF-EOS to GeoTIFF Converter
HDF-EOS Hierarchical Data Format - Earth Observing System
IBCAO International Bathymetric Chart of the Arctic Ocean
IGBP International Geosphere-Biosphere Programme
IMERG Integrated Multi-satellitE Retrievals for Global Precipitation Measurement
ITCZ Inter-Tropical Convergence Zone
JFMA January, February, March, and April
LAI Leaf Area Index
MAIAC Multi-Angle Implementation of Atmospheric Correction
MERRA-2 Modern-Era Retrospective Analysis for Research and Applications, Version 2
MIR Mid-Infrared Reflectance
MJJAS May, June, July, August, and September
MODIS Moderate Resolution Imaging Spectroradiometer
MRT MODIS Reprojection Tool
MSL Mean Sea Level
NASA National Aeronautics and Space Administration
NDVI Normalized Difference Vegetation Index
NDWI Normalized Difference Water Index
NGA National Geospatial-Intelligence Agency
NIR Near-Infrared Reflectance
NOAA National Oceanic and Atmospheric Administration
NREL SPA National Renewable Energy Laboratory’s Solar Position Algorithm
OCO-2 Orbiting Carbon Observatory-2
OND October, November, and December
PBL Planetary Boundary Layer
PPS Precipitation Processing System
QA Quality Assurance
QC Quality Control
QGIS Quantum Geographic Information System
RTLS Ross-Thick Li-Sparse Reciprocal
SIF Solar-Induced Chlorophyll Fluorescence
SIN MODIS SINusoidal Projection
SKYL fraction of diffuse SKYLight
STORM Science Team On-Line Request Module
SZA Solar Zenith Angle
TC Tasseled Cap
USGS United States Geological Survey
UTM Universal Transverse Mercator
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UZRB Upper Zambezi River Basin
WSA White-Sky Albedo

Appendix A. Wetland Probability Mapping Algorithm

Using seven bands of TIMESAT-corrected MODIS MCD43A4 Version 6 Nadir BRDF-
adjusted reflectance data (Table A1), several indices sensitive to the greenness and water
content of the surface were tested to determine how well they predicted the dynamic
wetland areal extent using a similar methodology as Lowman et al. (2018) [52]. Stationary
MODIS MCD12Q1 Version 6 land cover data from consecutive years with the largest
permanent wetland area (2010–2012) were used to create training data of each index, and,
based on how well the peaks of wetland and non-wetland pixels were separated in the
histograms in Figure 3, five wetland predictor variables were selected: Near-Infrared
Reflectance (NIR1, or MODIS Band 2), the Normalized Difference Water Index (NDWI),
Tasseled Cap (TC) Brightness, TC Greenness, and TC Wetness. These indices, described in
Equations (A1) and (A2), were incorporated into a logistic regression model (Equations (A3)
and (A4)) to produce seasonally-varying wetland maps.

NDWI =
green−MIR1

green + MIR1
, (A1)

where NDWI is the normalized difference water index, green is MODIS reflectance Band 4
representing green light, and MIR1 is MODIS reflectance Band 6 representing mid-infrared
light [111].

TCx = wx1(red) + wx2(NIR1) + wx3(blue)

+ wx4(green) + wx5(NIR2) + wx6(MIR1)

+ wx7(MIR2) ,

(A2)

where TCx is the tasseled cap index value for index x (x = brightness, greenness, wetness)
and wxi is the tasseled cap coefficient for MODIS band i. MODIS instrument specifications
and TC index coefficients are presented in Table A1.

Loge

(
P(X)

1− P(X)

)
= ω0 + ω1x1 + · · ·+ ωnxn = ωTX, P(X) ∈ (0, 1) , (A3)

P(X) =
exp(ωTX)

(1 + exp(ωTX))
, (A4)

where P(X) is the probability that wetland area is present within a given pixel based
on predictor variables X and ωn is the regression coefficient for predictor variable x
representing the variable’s weight toward the resulting wetland presence probability [52].
Based on the intersection of the stationary wetland area line with the threshold-area curves
for the three wet years (2010–2012) in Figure 3b, a 99% probability threshold was selected
to determine where wetland areas were located.

Table A1. MODIS instrument specifications and tasseled cap coefficients from [112].

MODIS Band Wavelength (nm) Light Brightness (wb) Greenness (wg) Wetness (ww)

1 620–670 Red 0.4395 −0.4064 0.1147
2 841–876 Near-infrared (NIR1) 0.5945 0.5129 0.2489
3 459–479 Blue 0.2460 −0.2744 0.2408
4 545–565 Green 0.3918 −0.2893 0.3132
5 1230–1250 Near-infrared (NIR2) 0.3506 0.4882 −0.3122
6 1628–1652 Mid-infrared (MIR1) 0.2136 −0.0036 −0.6416
7 2105–2155 Mid-infrared (MIR2) 0.2678 −0.4169 −0.5087
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