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Abstract: Many studies have attempted to predict soil organic matter (SOM), whereas mapping
high-precision and high-resolution SOM maps remains a challenge due to the difficulty of selecting
appropriate satellite data sources and prediction algorithms. This study aimed to investigate the
influence of different remotely sensed images and machine learning algorithms on SOM prediction.
We constructed two comparative experiments, i.e., full-band and common-band variable datasets of
Sentinel-2A and MODIS images using Google Earth Engine (GEE). The predictive performances of
random forest (RF), artificial neural network (ANN), and support vector regression (SVR) algorithms
were evaluated, and the SOM map was generated for the Songnen Plain. Results showed that the
model based on the full-band Sentinel-2A dataset achieved the best performance. The application
of Sentinel-2A data resulted in mean relative improvements (RIs) of 7.67% and 5.87%, respectively.
The RF achieved a lower root mean squared error (RMSE = 0.68%) and a higher coefficient of
determination (R2 = 0.67) in all of the predicted scenarios than ANN and SVR. The resultant SOM
map accurately characterized the SOM spatial distribution. Therefore, the Sentinel-2A data have
obvious advantages over MODIS due to their higher spectral and spatial resolutions, and the
combination of the RF algorithm and GEE is an effective approach to SOM mapping.

Keywords: soil organic matter; Sentinel-2A; MODIS; machine learning algorithms; Google Earth
Engine; Songnen Plain; China

1. Introduction

Soil is an integral part of terrestrial ecosystems and plays a vital role in the circulation
of energy and materials between the atmosphere and the biosphere [1,2]. Soil organic
matter (SOM) is an important component of soil that affects soil fertility and carbon
sequestration [3–7] and plays an important role in improving crop yield [8–10] and main-
taining agricultural sustainability and food security [11]. Therefore, accurately predicting
and quantifying the spatial distribution of SOM is vital for promoting the improvement of
soil fertility, the development of a sustainable regional ecosystem, and the implementation
of soil management policies [12]. Although many studies have been done on building
SOM prediction models and accomplishing mapping of spatial distribution, it remains
a challenge to accurately map SOM content due to the difficulty of selecting appropriate
satellite data sources and prediction algorithms for a specific region.
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Numerous methods have been developed to map the spatial distribution of SOM. The tra-
ditional approach applies a titration procedure [13] to soil samples in a spectrophotometer [14]
to determine the SOM content. However, it is difficult to quantitatively obtain the SOM spa-
tial distribution at large scales [15] because large amounts of time and money are required
to conduct soil survey activities; moreover, the measured SOM values are significantly
affected by the field experience of the soil surveyor [16,17]. Subsequently, geostatistical
methods [18] (e.g., kriging and cokriging) are widely applied to predict SOM [12,19–23].
However, these methods require the collection of sufficiently dense [23–26] and representa-
tive soil samples [27], as well as the assumption of second-order stationarity [28,29]. With
the rapid development of remote sensing technology, SOM prediction approaches based on
satellite remote sensing data have undergone significant development. Early SOM remote
sensing prediction relied mainly on linear regression analysis [12,30–33]. Currently, various
empirical models have been gradually developed and have exhibited improved predic-
tion accuracy [34,35]. These models generally associate different statistical methods with
predictive variables that are closely related to the SOM content [35,36], such as combining
remote sensing data with topographical data. However, it is worth noting that problems
of nonlinearity and multicollinearity exist in the kriging and multiple linear regression
calculation processes [37–40].

To overcome these restrictions, the application of machine learning algorithms, such
as random forest (RF) [41–45], artificial neural network (ANN) [23,26,29,40,46,47], and sup-
port vector regression (SVR) [11,48,49] algorithms, has gradually developed in soil science
research due to the significant advantages of these algorithms over previous approaches,
i.e., improved model accuracy, greater computing efficiency, and simplified fitting. Due to
the spatial variability in climatic conditions, soil parent materials, human activities, and
land use management, no single algorithm model is universally applicable for predict-
ing SOM in different regions [50,51]. Some researchers have tried to compare the SOM
prediction performances of multiple algorithms [11,52]. However, most of the existing
studies in Northeast China have explored SOM prediction accuracy generally based on
a single algorithm and a single type of satellite imagery [53–57] or on hyperspectral satellite
data [58,59]. Therefore, the combination of different machine learning algorithms with
multiple satellite images for SOM prediction must be further explored.

Thus far, many studies have suggested that SOM is sensitive over the entire visi-
ble near-infrared (VNIR)-shortwave infrared (SWIR) (400–2500 nm) region [60–62]. The
SOM content can be reflected by differences in the spectral reflectance characteristics of
soil [63–65]. A great deal of work has been done in applying remote sensing images to
establish prediction models for soil properties and to complete the mapping of the spatial
distribution of soil properties by using sensitive bands or spectral indices as model input
variables; this is particularly common with Moderate Resolution Imaging Spectroradiome-
ter (MODIS) products (e.g., MOD09A1 images) [50,54,66,67]. However, MOD09A1 pixels
frequently include data from different dates during the eight-day composite period [54],
and the pixels may simultaneously reflect abnormal conditions in local areas caused by
other environmental factors (e.g., atmospheric conditions and crop residue); these issues
arise due to the limitation of the moderate spatial resolution of the sensor and thereby limit
the potential improvement of SOM prediction accuracy.

To overcome the heterogeneity of MODIS pixels, it is thus important to use remotely
sensed data with higher spectral and spatial resolutions to ensure reasonable SOM pre-
diction accuracy and produce high-precision spatial distribution maps. The Sentinel-2A
satellite performs multispectral imaging missions with high spatial resolution and includes
13 bands in the visible, near-infrared (NIR), and shortwave infrared (SWIR) regions of the
spectrum. The use of Sentinel-2A data significantly improves the spatial resolution of obser-
vations and provides an effective solution to the problems of the low availability and spatial
resolution of MODIS data. Therefore, it is necessary to evaluate the application potential of
Sentinel-2A data for SOM prediction to supplement the insufficiency of the information
contained in MODIS data and to draw high-precision spatial distribution maps.
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To our knowledge, relatively little is understood about the underlying relationships
between the spatial distribution of SOM and the separate use of time series Sentinel-2A
and MODIS images derived from the Google Earth Engine (GEE) data pool with three
machine learning algorithms (i.e., RF, ANN, and SVR). Hence, our study was undertaken
with the following objectives: (1) to compare the performances of Sentinel-2A and MODIS
data for SOM prediction; (2) to compare the performances of models based on different
machine learning algorithms for regional-scale SOM prediction; and (3) to map the spatial
distribution patterns of SOM content in the cultivated areas of the Songnen Plain.

2. Materials and Methods

Figure 1 shows a comprehensive overview of the methods applied to map SOM in the
Songnen Plain. The major parts are as follows: the yellow panels collect field samplings
and build the training and validation sample sets; the purple panels construct two sets of
comparative experiments, namely, full-band and common-band variable datasets using
time-series Sentinel-2A and MODIS images based on the GEE cloud platform; the grey
panels establish SOM prediction models using the RF, ANN, and SVR algorithms based
on the training sample dataset and two sets of variable datasets and assess the model
performance based on the validation sample dataset; the green panels select the optimal
model and perform SOM mapping.
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Figure 1. The workflow for mapping regional SOM based on Sentinel-2A and MODIS imagery using
machine learning algorithms and the GEE cloud platform.

2.1. Study Area and Field Sampling

Our study area was located on the northern Songnen Plain (122~131◦E, 43~49◦N)
(Figure 2). This area is an important food production base, with good natural conditions for
crop growth. The climatic conditions are dominated by a temperate continental semi-arid
and semi-humid monsoon climate, with an annual mean precipitation varying between
400 mm and 600 mm [68] and an annual average air temperature of 3.3 ◦C [69]. The overall
terrain of the cultivated land in our study area is relatively flat. The elevation is high in the
northeast and low in the southwest, ranging from 104~496 m. The study area has fertile
soil resources with relatively high SOM contents; they provide good soil fertility conditions
for planting various crops, such as maize, soybeans, and rice.
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Figure 2. Location map with soil sampling sites and main soil types in the study area (a). Photograph of the soil surface and
landscape after being ploughed (b).

The Songnen Plain is commonly deemed to be an area with typical Mollisols [70,71].
Four soil types are mainly distributed in the cultivated land, including black soil, chernozems
soil, aeolian soil, and meadow soil, which are represented as Phaeozems, Chernozems,
Arenosols, and Cambisols in the World Reference Base for Soil Resources (WRB) [72,73].
Phaeozems and Chernozem are distributed in the northeastern part of Songnen Plain,
and their SOM contents are higher than those of other soils. Arenosols are located in the
southwest with low SOM content, and Cambisols are scattered among the other three soil
types and distributed in low-lying areas.

Since the cultivated land in the study area is ploughed from the end of March to the
beginning of April every year, the soil is exposed to the ground from then on. There is no
snow cover or straw burning, almost no residual on the soil surface, and no large area of
vegetation cover in the study area (Figure 2b), so from early April to late May belongs to the
bare period of cultivated land, which is defined as the bare soil period. A field survey was
conducted over the bare soil period to select the sample collection areas on the cultivated
land of the Songnen Plain. The topsoil (0–20 cm) samples along the vertical profile of
the soil were collected. To ensure that the SOM content of the sampling points would be
representative, we selected flat and open cultivated lands along both sides of the highway
for sample collection, and the sample intervals were about 10 km. We superimposed a 30 m
spatial resolution digital ‘cultivated land’ mask on the soil map with ArcMap 10.2 to help
select soil sampling locations. Then, 5–6 subsampling points were randomly selected in
a square grid within a 30 × 30 m area. The soil samples were obtained by mixing the
subsamples so that the measured SOM content can effectively reflect the average level of
regional SOM content. Finally, a portable global positioning system (GPS, G350, Beijing
UniStrong Science and Technology Limited Company, Beijing, China) was applied to record
the geographic locations and collection times of each sample. In total, 281 soil samples from
cultivated land were collected. The samples were placed in polyethylene plastic bags and
kept at 4 ◦C until they were transported to the laboratory for analysis. Subsequently, the
soil samples were air-dried, and fallen leaves and stones were removed from the samples.
The samples were then passed through a 0.20 mm mesh [74] and measured for their SOM
content using the potassium dichromate volumetric method [75].
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2.2. Remotely Sensed Imagery
2.2.1. Sentinel-2A and MODIS Satellite Data

Sentinel-2A and MOD09A1 images were used as the main remote sensing data for
analysis and were derived from the GEE data pool (https://code.earthengine.google.com/,
accessed on 28 June 2020). As the MOD09A1 image is a composite dataset, cloud processing
is not required. For Sentinel-2A data, automatic cloud and cloud shadow masking methods
were used, which creates gaps with no data in different locations for different image dates.
After that, all available multi-temporal observations covering the study area were used
to generate a seamless median composite imagery for the target year of 2020, which is
conducive to reduce the poor observation effect caused by frequent clouds and shadows.
In our study, remote sensing images in the bare soil period were used as data sources,
which could effectively capture the surface information of bare cultivated soil and reduce
interference, thereby obtaining a more real soil surface reflectance. In total, we used
1540 Sentinel-2A images and 14 MODIS images in the period of April to May in 2019–
2020 (Figure 3). Table 1 shows the band parameter information for the Sentinel-2A and
MOD09A1 imagery. The common bands for the Sentinel-2A and MOD09A1 images were
b2 or b3 (blue band), b3 or b4 (green band), b4 or b1 (red band), b8 or b2 (NIR band), b11 or
b6 (SWIR-1 band), and b12 or b7 (SWIR-2 band).
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Figure 3. Study area showing the overlapping Sentinel-2A scenes used in the per pixel compositing.
Different colors indicate the number of scenes per pixel.

Table 1. Band parameter information for Sentinel-2A and MOD09A1 images.

Satellite Sentinel-2A MOD09A1

Band Name Band Central
Wavelength/(um)

Spatial
Resolution/(m) Band Central

Wavelength/(um)
Spatial

Resolution/(m)

Coastal 1 433 60 X X X
Blue 2 490 10 3 469 500

Green 3 560 10 4 555 500
Red 4 665 10 1 645 500

Red edge-1 5 705 20 X X X
Red edge-2 6 740 20 X X X

https://code.earthengine.google.com/
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Table 1. Cont.

Satellite Sentinel-2A MOD09A1

Band Name Band Central
Wavelength/(um)

Spatial
Resolution/(m) Band Central

Wavelength/(um)
Spatial

Resolution/(m)

Red edge-3 7 783 20 X X X
NIR-1 8 842 10 2 858.5 500
NIR-2 8A 865 20 X X X

Water vapour 9 945 60 X X X
SWIR-1 11 1610 20 6 1640 500
SWIR-2 12 2190 20 7 2130 500

Mid-infrared X X X 5 1692.5 500

Note: “X” indicates excluded bands information of Sentinel-2A and MOD09A1 images.

2.2.2. Land Cover Dataset

The MODIS land cover type product (MCD12Q1) was applied to obtain the land cover
map of the Songnen Plain in 2020 at a 500 m spatial resolution [76]. It included 11 natural
vegetation classes, three non-vegetated land classes, and three other classes that were
obtained [77] using supervised classification and post-processing that incorporated prior
knowledge to further refine specific classes. Therefore, the MCD12Q1 land cover type
product was used to identify cropland pixels and extract the boundary of the croplands on
the Songnen Plain for SOM prediction.

2.3. Variable Datasets Construction

Our variable dataset consisted of spectral bands, spectral indices, and terrain factor in
this study. The scheme of full-band and common-band variable datasets using Sentinel-2A
and MODIS images is shown in Table 2. The spectral bands were provided by Sentinel-2A
and MODIS images. The calculations and descriptions of spectral indices and terrain factor
are as follows.

Table 2. The scheme of full-band and common-band variable datasets using Sentinel-2A and
MODIS images.

Variable Dataset Full-Band Common-Band

Variable Name Sentinel-2A MODIS Sentinel-2A MODIS

Coastal
√

b1 X X X
Blue

√
b2

√
b3

√
b2

√
b3

Green
√

b3
√

b4
√

b3
√

b4
Red

√
b4

√
b1

√
b4

√
b1

Red edge-1
√

b5 X X X
Red edge-2

√
b6 X X X

Red edge-3
√

b7 X X X
NIR-1

√
b8

√
b2

√
b8

√
b2

NIR-2
√

b8A X X X
Water vapour

√
b9 X X X

SWIR-1
√

b11
√

b6
√

b11
√

b6
SWIR-2

√
b12

√
b7

√
b12

√
b7

Mid-infrared X
√

b5 X X
R11(6)/4(1)

√ √ √ √

NDVI
√ √ √ √

EVI
√ √ √ √

RVI
√ √ √ √

DVI
√ √ √ √

NDWI
√ √ √ √

Elevation
√ √ √ √

Note: “
√

” indicates the included band that is selected as the model input, “X” indicates excluded bands.
R11(6)/4(1) denotes the ratio of b11 (6) to b4 (1) of Sentinel-2A and MODIS imagery, respectively. NDVI, EVI, RVI,
DVI, and NDWI denote normalized difference vegetation index, enhanced vegetation index, ratio vegetation
index, difference vegetation index, and normalized difference water index, respectively.
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2.3.1. Spectral Index Construction

A spectral index is an effective and rapid way to construct model input variables [78].
This approach can also reduce reflection spectrum errors and thereby improve the accuracy
of SOM prediction [79,80]. We calculated the following indices: ratio spectral indices, such
as R11(6)/4(1) [53,54,56], the ratio vegetation index (RVI) [50], and the enhanced vegeta-
tion index (EVI) [50,81,82]; difference spectral indices, such as the difference vegetation
index (DVI) [50,83]; and normalized difference spectral indices, such as the normalized
difference water index (NDWI) [50,84–86] and the normalized difference vegetation in-
dex (NDVI) [50,87,88]. Prior studies have proven that the ratio index, difference index,
and normalized difference index are conducive to predicting SOM [54,58,89]. The typical
moisture absorption bands in the soil spectrum at 1400, 1900, and 2200 nm [90] correspond
to b11 (6) and b12 (7) of Sentinel-2A and MODIS imageries. According to previous SOM
predictions in the literature covering the Songnen Plain over the bare period [53,54,56],
R(6/1) was determined as the ratio of b6 to b1 based on MODIS imagery, which generally
showed a good relationship with SOM and was thus used as the model input variable.
This spectral index can denote soil moisture information and reduce the negative impact of
precipitation on SOM prediction; thereby improving the prediction accuracy. Therefore,
R11(6)/4(1) was adopted as an empirical spectral index based on Sentinel-2A (i.e., R(11/4))
and MODIS (i.e., R(6/1)) images in our study. NDVI, EVI, RVI, and DVI are the four most
commonly used vegetation spectral indices to characterize vegetation information, which
are able to reduce the influence of early growing seedlings on SOM prediction and pro-
vide a better environment for SOM spatial prediction. Moreover, NDWI was constructed
mainly reflecting the soil moisture status [91] when there was almost no crop coverage.
The spectral indices listed above were calculated based on the following equations:

R11(6)/4(1) =
b11(6)

b4(1)
(1)

RVI =
bNIR−1

bred
(2)

EVI = 2.5× bNIR−1 − bred
bNIR−1 + 6bred − 7.5bblue + 1

(3)

DVI = bNIR−1 − bred (4)

NDVI =
bNIR−1 − bred
bNIR−1 + bred

(5)

NDWI =
bNIR−1 − bSWIR−1

bNIR−1 + bSWIR−1
(6)

where b11 and b6 represent the Sentinel-2A and MODIS imagery SWIR-1 bands, respectively,
and b4 and b1 represent the red bands of those two images.

2.3.2. Terrain Factor

Elevation data was extracted from the World Wildlife Fund (WWF) HydroSHEDS
void-filled DEM dataset; this dataset characterizes changes in soil’s physical and chemical
properties at a spatial resolution of 90 m and was used for terrain analysis in this study. The
elevation is a vital factor affecting the distribution of SOM for areas with relatively large
terrain changes, which has been widely applied for producing land cover maps [92–95]
and performing soil attribute predictions [50,66].

2.4. Methodology
2.4.1. Machine Learning Algorithms

RF is an ensemble decision tree (DT)-based machine learning algorithm, and the
predicted SOM content was determined by the results of multiple DTs [96,97]. The RF
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algorithm uses mainly the bootstrap aggregating technique (bagging) and the recursive
partitioning method to combine and average the prediction results of multiple unrelated
DTs [98]. It performs SOM prediction by using a feedback iteration process and calculates
the out-of-bag (OOB) error [97] to achieve the optimal prediction result, thereby avoiding
model variability and instability [20,99]. We applied the random forest function [100] on
the GEE cloud platform to perform SOM prediction. Here, three parameters were required
to establish the RF models: the number of trees (i.e., n-tree), many features in each split
(i.e., m-try), and the minimum number of samples that needed to occur on a leaf node
(i.e., min_samples_leaf); these values were set to 300, 3, and 5, respectively.

SVR is a form of support vector machine (SVM) that aims to solve regression problems
based on the support vector concept. Due to the high applicability and robustness of the
model constructed by the SVM algorithm, it has been widely used in classification and
regression problems in various fields [58,101,102]. Notably, setting the kernel function
and the parameter C is extremely important for obtaining good model performance [58].
The kernel function is applied to project the dataset into a high-dimensional feature space
and then to perform the regression prediction process. Meanwhile, the optimal parameter
C value was determined by the minimum root mean squared error (RMSE) [58]. We used
the kernlab package in R software [47] and the radial basis function (RBF) as the kernel
function for performing SOM predictions in our study.

A back-propagation ANN was applied in our study that constructed a non-linear,
non-parametric estimation error back-propagation regression model [103]. The input layer
includes the independent variables used to perform the predictions and continuously feeds
back the learning results (i.e., the bias) to the hidden layer. Then, the hidden layer discerns
the complexity of the prediction model and implements non-linear mapping [40]. Finally,
the output layer obtains a trained neural network. Through the process of forward and
backward propagation, a trained model can calculate the gradient, update the weight of
the network, and estimate the biases; that is, the biases are continuously assigned to each
layer of the “neuron” until the biases of the neural network reach an acceptable range, thus
stopping the running program and achieving the regression prediction of SOM [40,58]. The
ANN model was constructed by programming it in MATLAB software, and the optimal
prediction accuracy was evaluated on the basis of the RMSE value.

2.4.2. Assessment and Prediction

To assess the model accuracy, the soil sample data were randomly divided into
two groups: 75% [46] of the sample data was used to train the models, and the remaining
25% was used for validation purposes. The RMSE [50,104–106] and the coefficient of deter-
mination (R2) [104,107] were used to evaluate the prediction accuracy of the models. The
mean error (ME) [11,19,20,50] was applied to assess the unbiased prediction. Furthermore,
we also used relative improvement (RI) in the RMSE [52,108] to measure the improvement
in the prediction accuracy achieved by using the Sentinel-2A dataset rather than the MODIS
dataset. These statistical indicators were calculated with the following equations:

RMSE =

√
∑n

i=1(oi − pi)
2

n
(7)

R2 = 1− ∑n
i=1(pi − oi)

2

∑n
i=1(oi − o)2 (8)

ME =
1
n

n

∑
i=1

(oi − pi) (9)

RI =
RMSEm − RMSEn

RMSEm
× 100% (10)
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where oi and pi denote the observed and predicted SOM values, respectively; n denotes
the number of soil samples used for validation; p and o denote the means of the predicted
and observed SOM values; and RMSEm and RMSEn denote the RMSE values for a single
machine learning algorithm model using MODIS and Sentinel-2A imagery, respectively.

Identifying the optimal model based on the accuracy of the SOM prediction results
was crucial for mapping the spatial distribution of SOM content with sufficient accuracy.
The optimal model generally has a lower RMSE value and higher R2 value, denoting
higher prediction accuracy [40,54], with the RMSE value approaching 0 and R2 value
approaching 1 [20,40]. The ME value approaching zero signifies an unbiased prediction [20].
Therefore, in this study, the optimal model was identified and used to produce the spatial
distribution map of SOM content.

3. Results and Analysis
3.1. Descriptive Statistics of the SOM Content

The descriptive statistics for the SOM contents in the whole, training, and validation
datasets were performed with SPSS Statistics 22 software and are shown in Table 3. The
measured SOM content in the whole soil sampling dataset ranged from 0.43 to 7.90%, with
a mean of 3.85% and a standard deviation (SD) of 1.21. The measured SOM contents in
the whole, training, and validation datasets had similar mean and SD values, indicating
that the soil samples in the randomly allocated training and validation datasets had high
representativeness. Therefore, the prediction results could reflect the spatial distribution
patterns of SOM with sufficient accuracy.

Table 3. Descriptive statistics for the SOM contents in the whole, training, and validation datasets.

Soil Dataset N
SOM

Minimum % Maximum % SD % Mean %

Whole dataset 281 0.43 7.90 1.21 3.85
Training dataset 207 0.43 7.90 1.22 3.91

Validation dataset 74 0.64 6.12 1.17 3.71
Note: SD denotes the standard deviation of the SOM content. Similar SDs mean that the SOM content datasets
have a similar degree of dispersion and stability; in particular, the relatively small SD of the validation dataset
means that its values are less discrete and are close to the mean value.

3.2. Model Performance

The Pearson correlation coefficients (r) between the independent variable and the
SOM content were calculated and then used to rank all the independent variables. Figure 4
shows the correlation analysis results based on the full-band (Figure 4a,b) and common-
band (Figure 4c,d) variable datasets of the Sentinel-2A and MODIS images. We found that
the independent variables as the model inputs had a good correlation coefficient with the
SOM content on all of the predicted scenarios. The level of statistical significance of the
variables was p < 0.01.

Figure 5 shows the performances of the RF, ANN, and SVR models in predicting SOM
based on the full-band (Figure 5a–f) and common-band (Figure 5g–l) variable datasets from
the Sentinel-2A and MODIS images. In two sets of comparative experiments, we found that
the model performances of the three machine learning algorithms based on Sentinel-2A
images were better than those of the algorithms based on the MODIS images. As shown in
Figure 5a–f, the RF, ANN, and SVR models had lower RMSE values (0.68%, 0.73%, and
0.70%) and higher R2 (0.67, 0.67, and 0.63) values when they were based on the Sentinel-2A
dataset (Figure 5a–c); in contrast, the three models had slightly higher RMSE values (0.71%,
0.79%, and 0.79%) and lower R2 values (0.66, 0.56, and 0.56) when they were based on the
MODIS dataset (Figure 5d–f). Notably, these results also demonstrate that the multi-band
characteristics of Sentinel-2A images make them more helpful than MODIS images for
predicting SOM with high accuracy. Simultaneously, the ME values were overall low. The
lower ME values were generally obtained by SVR and RF algorithms and the highest
was obtained by ANN algorithm on all of the predicted scenarios. Moreover, comparing
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Figures 5g–i and 5j–l when the common-band variable datasets of Sentinel-2A and MODIS
images were used as model inputs, the model performances of the three machine learning
algorithms of the former (Figure 5g–i) achieved lower RMSE values (0.70%, 0.70%, and
0.76%) and higher R2 (0.66, 0.65, and 0.57) values, whereas, the latter (Figure 5j–l) achieved
higher RMSE values (0.73%, 0.78%, and 0.79%) and lower R2 values (0.64, 0.58, and 0.56),
which is due to the high spatial resolution of the Sentinel-2A images resulting in improved
prediction accuracy.

Comparing the statistical indicator of RMSE values, the application of Sentinel-2A
data resulted in mean RIs of 7.67% and 5.87% compared to the application of MODIS data,
respectively, in the two sets of comparative experiments. Moreover, the above results also
indicated that the predictive ability of the RF models produced a lower RMSE (0.68%) and
a higher R2 (0.67) in all of the predicted scenarios than those of the ANN and SVR models;
therefore, the RF model achieved the highest prediction accuracy when it was based on the
variable datasets from the full-band Sentinel-2A images, and was selected as the optimal
prediction model.
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In addition, we also mapped the spatial distribution of the residuals (Figure 6) of the
optimal prediction model. The values of residuals were divided into six levels and given
different colours so that the spatial distribution characteristics of the values of each level
can be clearly observed. Figure 6 showed that the residual points of different levels were
irregular and randomly distributed without a clustered distribution that is too high or too
low in a certain area. Therefore, the SOM prediction model established in our study is
suitable for performing SOM prediction, which can be used to draw the spatial distribution
map of SOM in the Songnen Plain.
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3.3. Spatial Characteristics of Predicted SOM Map

To demonstrate the result of the optimal prediction in our experiment and implement
a comparative analysis of the mapping results of the two images, the SOM content of the
study area was mapped based on the predictions generated from full-band Sentinel-2A
(Figure 7a) and MODIS (Figure 7b) imagery datasets by the RF algorithm (Figure 7).
Figure 7a,b both showed that the SOM content was predicted to be high in the northeastern
part of the study area and low in the southwestern part, which is consistent with the
literature [53,54,56,58,59]. Due to the high latitude, cold environment, and distribution
of SOM-rich soil types (e.g., Phaeozems and Chernozems) in the northeastern part of the
study area, the predicted SOM was higher in this region. However, low-SOM soil types
(e.g., Arenosols) and pastoral areas are widely distributed in the southwestern part of the
study area, and the predicted SOM in that region was relatively low. Since Cambisols are
usually distributed in low-lying areas, the migration of soil caused by external conditions
such as rainwater led to the soil accumulating in these areas, resulting in a higher SOM
content. Therefore, the SOM content on the Songnen Plain generally exhibited a trend of
being high in the northeast and low in the southwest.
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4. Discussion
4.1. Comparison of Sentinel-2A-Based and MODIS-Based Models

SOM prediction methods using satellite remote sensing data have made consider-
able progress. Numerous studies have applied satellite remote sensing data, including
moderate-resolution data such as MODIS images, to perform SOM prediction and map
its spatial distribution patterns [30,50,54,66,77,109]. However, the use of MODIS prod-
ucts (e.g., MOD09A1) has some limitations. First, each MOD09A1 image is an eight-day
composite dataset, and the temporal information associated with each pixel may be in-
consistent [54]; this can increase the negative effects of the spatial heterogeneity of soil
properties and the spatial variations in pixel temporal information and soil moisture, re-
sulting in lower prediction accuracy. Second, the accuracy of SOM prediction models can
be influenced by the satellite image quality and environmental factors, and the pixels in
MODIS images may reflect abnormal conditions in local areas. This is especially notable
in MOD09A1 images with a 500 m resolution and may lead to anomalies in soil surface
reflectivity that reduce the accuracy of SOM prediction. Therefore, the prediction accuracy
of models based on MODIS data is limited due to the high subpixel heterogeneity [110,111].

We established two sets of comparative experiments and constructed separate full-
band and common-band variable datasets, which aimed at comparing the performances
of Sentinel-2A and MODIS data from the perspectives of spectral information richness
and spatial resolution. The results demonstrated that the accuracies of the three machine
learning algorithms that used Sentinel-2A data were all higher than those of the algorithms
that used MODIS data because of the richer spectral information contained in the multi-
band series and the higher spatial resolution of the Sentinel-2A data. The superiority of
Sentinel-2 images has also been verified in other research fields [111,112]. Therefore, our
study suggests that using Sentinel-2A images can significantly improve SOM prediction
accuracy and may provide opportunities to generate high-resolution, high-precision maps
of the spatial distribution of SOM.
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4.2. Applicability of Machine Learning Algorithms

The results showed that the RF algorithm achieved slightly better performance than
the ANN and SVR algorithms. Consistent with the existing literature, the RF algorithm
represented a promising approach for mapping the spatial patterns of SOM at the regional
scale. For example, Mahmoudzadeh et al. [113] applied RF, which outperformed the
SVM and cubist (CU) algorithms, to predict the spatial distribution of SOM in western
Iran. Tziachris et al. [20] confirmed that the RF algorithm consistently outperformed the
regression kriging (RK) algorithm for soil attribute mapping. Moreover, Chen et al. [50]
demonstrated that compared to DT and bagging DT (BDT) algorithms, the RF attained
a higher R2 value when evaluating the SOM changes at the regional scale. Simultaneously,
our study achieved better model performance based on Sentinel-2A images using the RF
algorithm compared to the previous research result in the Songnen Plain. Dou et al. [54]
established a regional SOM prediction model and mapped the spatial distribution of SOM
content using the stepwise multiple regression method based on MODIS images, but the
RMSE value (0.81%) was higher than that of our study (0.68%). Therefore, the RF algorithm
has been widely recognized in SOM prediction at the regional scale and yielded promising
model performance.

The use of the RF algorithm provided certain advantages that can be summarized as:
(1) RFs can not only quickly predict the training and validation datasets but can also effec-
tively avoid overfitting due to the implementation of random sampling strategies [44,58];
(2) the multicollinearity problem between features can be effectively avoided, supporting
high-dimensional features [114,115]; (3) the hierarchical relationships can be character-
ized, showing good stability in regard to missing and unbalanced data [116]; (4) it has
strong robustness to the outliers in the variables, and handles these outliers through the
binding method [117]; (5) they can also provide the importance of explanatory variables
to determine their contributions for the model and the main predictive factors [117,118].
Moreover, the RF algorithm also has significant advantages in terms of OOB error, and it is
generally considered a good estimate of the expected error of unseen data [119]. Although
machine learning algorithms can handle non-linear and missing data well and can effec-
tively avoid multicollinearity between features, SVR and back-propagation ANNs have
certain limitations. For instance, the back-propagation ANN algorithm is similar to a “black
box” [58,120,121]; it is difficult to find the appropriate kernel function for the SVM for each
specific application, and the algorithm is highly complex [122–124]. Simultaneously, due to
the spatial variability in climatic conditions, soil parent materials, human activities, and
land use management, the prediction accuracy of different algorithm models may vary
greatly among different study areas, and no single algorithm is universally applicable for
different regions [50,51]. Therefore, future studies should consider how to obtain a more
universal SOM prediction model and improve the computational efficiency of such a model
to enhance its practical applicability.

4.3. Advantages of the Google Earth Engine for SOM Prediction

As a comprehensive big data platform for resource integration, GEE is a cloud-based
geospatial analysis platform that provides large storage and robust computing
capacities [92,125]. It allows users to easily access interactive remote sensing images and
algorithms to perform scientific analyses for research and visualize geographic system
information [126]. Currently, the GEE data pool includes a catalogue of satellite images and
geospatial datasets from numerous remote sensing satellites around the world that spans
more than 40 years [92,125]. Although GEE has been widely applied for the production of
land cover type maps [92–95], it is rarely used in studies of the spatial prediction of soil
properties. Thus, the application of GEE for SOM prediction requires further exploration
and development. In our study, the GEE cloud platform was applied to allow rapid ac-
cess and complex pre-processing of time series Sentinel-2A and MODIS images without
requiring local downloads. In addition, the RF algorithm was used with the algorithm
function of the GEE platform to generate a high-precision spatial distribution map of SOM.
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Therefore, the usage of GEE can greatly improve the efficiency of scientific researchers [127],
and it has been widely applied in scientific research in many fields at local, regional, and
global scales [92,125].

4.4. Limitations and Future Researches

We identified three limitations to this study. First, we chose to predict SOM with only
Sentinel-2A and MODIS imagery datasets, and the bare soil period for cultivated land
was adopted as our research period. Due to the limitation of the short bare period and
the influence of clouds, few images covering the study area can be effectively used, so the
time-series images were applied to generate seamless composite images in our study. The
composite image can make up for the lack of single image information caused by the poor
observation effect with frequent clouds reduce the impact of different ground conditions,
and eliminate vegetation information [128]. However, only a few studies have applied
composite images to predict SOM [50] or soil organic carbon (SOC) [129–131], which is
because the application potential and interpretability of these composite images need
to be further evaluated.Therefore, future studies should attempt to assess other remote
sensing image sources with high spatial-temporal resolution [58,107,132–134] and fusion
images of different time periods or types [135,136] to decrease the uncertainty in SOM
predictions at the regional scale, thereby achieving more accurate maps of the spatial
distribution of SOM. Secondly, our results demonstrated that the RF algorithm resulted
in better model performance than the ANN and SVR algorithms. Nevertheless, other
methods should also be tested to achieve better model performance for SOM prediction
in future studies. Potential methods include Bayesian maximum entropy (BME) [82],
geographically weighted RK (GWRK) [137,138] and hybrid algorithms (e.g., ANN-kriging,
RF-kriging) [20,139], which have been applied for SOM prediction. It has also been shown
that integrating different algorithms or images generally improves the accuracy of SOM
mapping at the regional scale.

Furthermore, the prediction accuracies achieved in our study were considered satis-
factory, but a good model should exhibit not only excellent performance but also strong
robustness and generalization ability [40]. It has been widely recognized that the use of
spatially related auxiliary variables can effectively improve the prediction accuracy of
soil attributes, and the spatial distribution pattern of SOM are generally controlled by
environmental variables such as elevation [55,140]. Our results showed that elevation
had a higher correlation with SOM, and was adopted as the model input variable. Con-
sistent with previous research, elevation is an important topographical attribute and as
the model input variable to investigate the impact of terrain conditions on SOM content
levels [20,30,40,50,141]. However, the SOM distribution is controlled by multiple environ-
mental factors, such as climatic condition, geological units, vegetation cover information,
and land use measures [19,23,139,142]. Therefore, the objective of future research is to
build a more comprehensive and appropriate set of feature variables and to incorporate
various specific agricultural management practices in order to improve the accuracy of
SOM prediction and more accurately map the spatial distribution of SOM.

5. Conclusions

Using the GEE cloud platform, we built separate full-band and common-band variable
datasets with Sentinel-2A and MODIS datasets in order to confirm the superiority of
the Sentinel-2A dataset. We also evaluated the performances of the RF, ANN, and SVR
algorithms for SOM prediction and finally generated the spatial distribution map of SOM
across the croplands on the Songnen Plain. Our findings indicated that the prediction
results of the model based on Sentinel-2A data showed a good relationship with the
actual SOM data, thereby Sentinel-2A data achieved better results than MODIS data for
SOM mapping on the Songnen Plain due to the higher spectral and spatial resolutions.
Moreover, the RF model generally performed better than the ANN and SVR models. The
GEE cloud platform provided an ideal and rapid way to obtain various time series remote
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sensing image data and to implement SOM prediction using a machine learning algorithm
function. As expected, the SOM content was higher on the northeastern and lower on the
southwestern Songnen Plain. This study provides promising insights into SOM mapping
and a data reference for assessing soil carbon pools.
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