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Abstract: Hyperspectral remote sensing can obtain both spatial and spectral information of ground
objects. It is an important prerequisite for a hyperspectral remote sensing application to make good
use of spectral and image features. Therefore, we improved the Convolutional Neural Network (CNN)
model by extracting interior-edge-adjacency features of building roof and proposed a new CNN
model with a flexible structure: Building Roof Identification CNN (BRI-CNN). Our experimental
results demonstrated that the BRI-CNN can not only extract interior-edge-adjacency features of
building roof, but also change the weight of these different features during the training process,
according to selected samples. Our approach was tested using the Indian Pines (IP) data set and our
comparative study indicates that the BRI-CNN model achieves at least 0.2% higher overall accuracy
than that of the capsule network model, and more than 2% than that of CNN models.

Keywords: hyperspectral image; spectral and spatial feature; Convolutional Neural Network (CNN);
interior-edge-adjacency features; building roof

1. Introduction

Compared to traditional remote sensing, hyperspectral remote sensing can not only
obtain spatial information, but also acquire digital spectral images of materials on the
earth surface using many narrow contiguous spectral bands. With massive spectrums of
information, it shows a strong superiority in object detection and material identification [1].
Additionally, until now hyperspectral images (HSI) have been used in several applications,
ranging from agriculture and forestry to global environmental change research [2–5]. How-
ever, due to the high dimensionality of hyperspectral data, problems regarding overfitting
can always occur. To avoid this problem, methods such as Principal Component Analy-
sis (PCA), Linear Discriminant Analysis (LDA), and Independent Component Analysis
(ICA) [6–8] were applied. After that, traditional machine learning algorithms, such as
Support Vector Machine (SVM) [9] and Neural Network (NN) [10] have been used for
classification. Not coincidentally, it is difficult to perform recognition and classification
tasks using these conventional machine learning algorithms because of high redundancy
and nonlinear of HSI [11–17]. But deep learning technology solves these problems to
some extent.
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Deep learning (DL), a part of a broader family of machine learning methods, is widely
used in computer vision, and information retrieval. In recent years, Convolutional Neural
Network (CNN) models [18], Dense Networks [19], Capsule Networks [20], and the Deep
Belief Network (DBN) are proposed to the imagery identification tasks in remote sensing.
Cao et al. [21–28] studied the application of CNN or DBN to the hyperspectral remote
sensing domain. Zhong et al. [29] introduced an end-to-end spectral-spatial residual
network (SSRN). For HSI classification, a special state-of-the-art CNN model, ResNet,
was used [30]. Gao, Lim, and Jia [31] used a CNN model with multiple features. Li,
Xie, and Li [32] introduced a CNN model with a new spatial feature-based strategy for
band selection. Chen et al. [33] introduced a conventional CNN model. Paoletti et al. [34]
proposed a CNN model based on capsule network, a new model that is broadly used
in computer vision field nowadays. CNN combines the spatial and spectral features via
multichannel convolutional kernels that can integrate the information in the spatial and
spectral dimensions into one and the same feature map. In convolution, because spatial
and spectral information are mixed and become inseparable, the proportion of the two
different features is stationary and unalterable. In other words, in these models, the weight
of the two features in different areas with the same type of land-cover cannot be adjusted.

To strengthen spectral and spatial features, we propose a Building Roof Identification
Convolutional Neural Network (BRI-CNN) based on interior-edge-adjacency features,
which has a more flexible structure. We applied three different scales of convolutional
kernels directly to the input image, including a set of 1 × 1 kernels aimed at the interior
features of building roof (also named as spectral features), a set of 3 × 3 kernels to extract
edge features, and a set of 5 × 5 kernels for adjacency features. To classify a pixel, we
acquired its 9 × 9 neighbours. If the pixel is located near the boundary of different types of
land-cover, the spatial features of the input image are more useful. When the central pixel
is located in the interior of one with the same type of land-cover, the spatial features lose
their effectiveness, and the spectral features are dominant. BRI-CNN was designed and
tuned using our own HSI data. To evaluate BRI-CNN more objectively, some public data
sets were also used.

The rest of the paper is organized as follows. Section 2 briefly introduced the data and
methods we used and provided the hyper-parameters of our model. Section 3 presented
the experimental results during the determination of hyper-parameters and compared the
performance of BRI-CNN and other models. This is followed in Section 4 by a conclusion
of our research.

2. Data and Methods
2.1. Data

A hyperspectral image, containing 64 bands in the range of 0.462 to 10.25 µm, was
obtained in Beijing in 2001, using a push-broom hyperspectral imager (PHI) sensor. With a
spatial resolution of 1 m, we labelled some pixels to represent different kinds of rooftop
materials as samples on GIS software, shown in Figure 1. The selected samples had nine
classes painted in different colours, corresponding to different rooftop materials. The
samples were split into two sets: a training set with 50% samples used to train the network
and a testing set used with another 50% samples to test the trained network. Detailed
information is shown in Table 1.

Indian Pines (IP) data set consists of 145 × 145 pixels with 224 bands ranging from
0.4 to 2.5 micrometers. In IP data set, labelled samples are split into the training, test, and
validation set with the ratio of 1.5:1.5:7.
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Figure 1. Nine classes of selected samples in remote sensing image. 

Table 1. Reference classes and sizes of training and testing set of our data. 

No. Class Training Testing Total 
1 blue colour steel 241 242 483 
2 red tile 62 63 125 
3 white colour steel 323 324 647 
4 red colour steel 92 92 184 
5 polyethylene 39 39 78 
6 cement concrete 113 114 227 
7 Ceram 105 105 210 
8 cement 275 276 551 
9 reinforced concrete 40 40 80 

10 others 4749 4749 9498 
 total 6039 6044 12,083 

Training: the number of samples that split into training set; Testing: the number of samples in test-
ing set; Others: including all non-architectural-used materials such as water, vegetation, and road-
ways. 

Indian Pines (IP) data set consists of 145 × 145 pixels with 224 bands ranging from 0.4 
to 2.5 micrometers. In IP data set, labelled samples are split into the training, test, and 
validation set with the ratio of 1.5:1.5:7. 

2.2. Input of BRI-CNN 
The input images are created with every single pixel and its eight neighbourhoods, 

and a set of 9 × 9 images is formed. With a pixel and its neighbourhoods, we classify the 
pixel using the texture information between the pixel and its neighbours. However, there 
are 64 bands in our HSI data that ordinarily would be correlated [35]. So instead taking 
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Figure 1. Nine classes of selected samples in remote sensing image.

Table 1. Reference classes and sizes of training and testing set of our data.

No. Class Training Testing Total

1 blue colour steel 241 242 483
2 red tile 62 63 125
3 white colour steel 323 324 647
4 red colour steel 92 92 184
5 polyethylene 39 39 78
6 cement concrete 113 114 227
7 Ceram 105 105 210
8 cement 275 276 551
9 reinforced concrete 40 40 80

10 others 4749 4749 9498
total 6039 6044 12,083

Training: the number of samples that split into training set; Testing: the number of samples in testing set; Others:
including all non-architectural-used materials such as water, vegetation, and roadways.

2.2. Input of BRI-CNN

The input images are created with every single pixel and its eight neighbourhoods,
and a set of 9 × 9 images is formed. With a pixel and its neighbourhoods, we classify the
pixel using the texture information between the pixel and its neighbours. However, there
are 64 bands in our HSI data that ordinarily would be correlated [35]. So instead taking
the original image as input, we decomposed these bands into a set of linearly uncorrelated
principal components using PCA. By decreasing the dimension of the whole image, we can
reduce the time complexity and accelerate the convergence of our algorithm. Assuming
that the spectral features of any two land-cover types differ from each other more than 1%,
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we retained 99% of the variance. Finally, 5 principal components in our data set and 24 in
IP data set were retained; thus, the input data is an aggregation of 9 × 9 × 5 images for
our data set and 9 × 9 × 24 for IP data set. Note that if the network is applying to another
different hyperspectral image, the input should be adjusted according to the result of PCA.

2.3. Main Structure of a Conventional CNN

Each input image is fed into a layer of convolutional kernels, which is actually a set of
matrices. They convolve with the input image according to Equation (1), and the result z is
then activated by an activation function as Equation (2):

z = W ∗ a + b (1)

ReLU(z) =
{

0, z < 0
z, z ≥ 0

(2)

where W is the kernel matrix; a is the input image, and b is called the bias term. Rectified
Linear Units (ReLU), a nonlinear activation function, is chosen in our study. This function
allows a network to easily obtain sparse representations, which increases with sparsity-
including regularization [36]. Besides, the ReLU function avoids the vanishing gradient [37]
and exploding gradient problems.

After the activation, local primary features are extracted and mapped into a set of
intermediate patches (known as feature maps), which can be regarded as the input images
of the next convolutional layer. A convolution and an activation operation as a basic
process, repeating for certain times, stops until the whole feature map can be covered by
the convolutional kernel. It is believed that features in all depths can be extracted after that.

Outcomes of the last convolutional layer are flattened to a column of neurons and each
neuron contains a value that represents a feature of the original input image. To calculate
the similarity between these values and the label of their original input image, neurons
are connected to Fully Connected (FC) layers, in which neuron features are correlated and
finally we can get another set of neurons according to their correlations. The Normalized
Exponential Function, also known as the Softmax Function [38], is a generalization of the
logistic function to a multiclass classification problem. The possibility q that one input
image belongs to each selected class is calculated using Equation (3):

q(z)i =
ezi

∑K
j=1 ezj

(3)

where zi represents one value from the neurons of the output layer; i represents the number
of one class; K is the total number of classes.

Obviously, because the values of kernels and neurons are initialized manually, the
predicted label may be far from the correct. Therefore, a Cross Entropy loss function is
utilized to express the discrepancies between calculated and true labels in most cases.
Taking p as the true label distribution, the cross entropy over a given set is defined as
follows (Equation (4)):

H(p, q) = −∑
i

p(i)lnq(i) (4)

The loss will propagate backward to adjust the weights of kernels and neurons. Once
we diminish the loss, i.e., discrepancy between calculated and true label, the capability of
the network increases.

From the first convolutional operation to the tuning of weights, the whole procedure
constitutes the training process in CNN. Adequate number of manual labelled input images
helps the model to learn sufficient features of different land-cover types. After the training
process ceases, a predicted process is followed, during which all weights in the model are
invariant and the type of unknown input images can be predicted.
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2.4. Structure of BRI-CNN

Rather than one specific size of a convolutional kernel, we used three different scale
kernels (1 × 1, 3 × 3, and 5 × 5) simultaneously to extract different kinds of features in the
input images. 3 × 3 kernels are for edge spatial features, the 5 × 5 are for adjacency spatial
features, and the 1 × 1 aim to extract interior spectral features, making it possible to adjust
feature proportions later on.

After the convolution processes, we stacked different outcomes and flattened them
into one-dimension, regarded as the input of the sub-sequential fully connected layer. The
last part of our CNN is a classifier, which classifies a pixel while predicting and performing
back-propagation while training. The detailed structure of the tuned model is shown in
Figure 2 and Table 2.
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Table 2. Detailed structure of the proposed model.

Input Layer with the Size of 9 × 9 Patches

Convolutional layers

Number of kernels Stride Pooling

5* 3* 1*

22
22

128
64 1 No128

128

Number of neurons Dropout BatchNorm.

Fully-connected layers 4000
1000 Yes Yes

Output layer activated by Softmax
5*, 3*, 1*: kernels with size of 5 × 5 × h, 3 × 3 × h, and 1 × 1 × h, where h is the number of channels of the
previous layer network. BatchNorm.: Batch normalization.

All hyper-parameters in our model, including the size of kernels, the number of
kernels in convolutional layers, etc., were determined after near one hundred times
of tests. We used 64 1 × 1 × 5 kernels on input image to get the first set of feature
maps, 128 3 × 3 × 5 kernels followed by two layers with 128 3 × 3 × 128 kernels to get
the second set of feature maps, and 22 5 × 5 × 5 kernels followed by one layer with
22 5 × 5 × 22 kernels to get the third set of feature maps. Same padding ensured that three
sets of feature maps had the same size in spatial dimension; thus, we stacked them in a
spectral dimension. Two fully connected layers have 4000 and 1000 neurons, respectively.
The number of neurons in the output layer is determined by the number of labelled classes
in the training data set. When applied in our data set, the output layers have ten neurons
with a softmax activation function.
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2.5. Optimization Function

In our experiment, we use Adadelta to minimize the loss. Adadelta is an adaptive
gradient descent optimization algorithm, which uses first order methods to simulate second
order derivatives in Newton’s method [38]. The weight of the neurons is updated as follows
(Equations (5)–(8)):

E[g2]t = ρE[g2]t−1 + (1− ρ)g2
t (5)

∆θt = −
RMS[∆θ]t−1

RMS[g]t
· gt (6)

E[∆θ2]t = ρE[∆θ2]t−1 + (1− ρ)∆θ2
t (7)

θt+1 = θt + ∆θt (8)

where E is the expected value; g is the gradient of the loss function; ρ is a constant momen-
tum factor; RMS means root mean square; ∆θ represents the updated value. Compared
with other optimizers, Adadelta relies slightly on hyper-parameters and causes the loss
function to converge very rapidly at the beginning of the training. At the end of the training
process, the loss fluctuates slightly over the minimum value.

As mentioned above, we calculate the partial derivative of the loss function, while
optimizing the weight, as follows (Equation (9)):

∂Hi

∂θT
i x

= − ln (
eθ

T
i x

∑K
k=1 eθ

T
j x
)
′
= Pi − 1 (9)

Clearly, the partial derivative of Equation (4) is easy to compute when applying
Softmax Function (Equation (3)). Thus, the time complexity is reduced.

2.6. Evaluation Method

Evaluation methods for deep learning always describe the global condition, such as
accuracy and loss. They are good indicators over the whole image, but global accuracy
cannot represent the true accuracy within a selected area. To be more precise, we compared
the predicted outcome with the result of manual interpretation in the same selected area
and then calculated the Prediction Accuracy (PA), which is the most accurate criterion
within a specific area. In addition, we divided the error into False Negative Rate (FNR) and
False Positive Rate (FPR), which are convenient for reducing the error and improving the
network in two different ways.

Given FN and FP as the number of unrecognized pixels and wrongly recognized
pixels, PA, FNR and FPR are computed as follows:

FNR =
FN

M ·N (10)

FPR =
FP

M ·N (11)

PA = 1− FNR− FPR (12)

where M and N are the width and height of the selected area, respectively.

3. Results and Discussion

To better extract the interior-edge-adjacency features and classify the building roof, we
tuned different hyper-parameters independently, and obtained the most effective structure
for the network. In our experiment, four typical areas where the PA is relatively low are
selected to analyse in detail.
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3.1. Size of Convolutional Kernels

The discussion of the size of convolutional kernels is divided into two parts: the
convolutional kernels associated with spatial information and the convolutional kernels
related to spectral features. Taking into consideration the high resolution of this image
and the usual simple shape of the constructions, we chose small scale kernels to extract
textural features. Other spatial features, for example, semantic features, were extracted by
larger kernels (e.g., 7 × 7). However, because 7 × 7 kernels are so large it is difficult for the
network to converge. By segmenting large kernels into smaller ones, the computational cost
can be reduced [39]. In the edges of building rooftops, smaller scale kernels perform much
better than the larger ones. Thus, to integrally recognize buildings we tried 2 × 2 kernels,
3 × 3 kernels and 5 × 5 kernels separately, using the network of BRI-CNN, instead of using
three different size kernels simultaneously.

As shown in Figure 3, our proposed network, although performing better near the
edges, cannot separate elongated building rooftops only using 3× 3 kernels (Figure 3c) and
performs even worse using 2 × 2 kernels (Figure 3d), which means that, as the size of the
convolutional kernels becomes smaller, the network is even worse in separating the edge
features of building rooftops. But moderate quantities of large-scale kernels (e.g., 5 × 5)
help to separate adjacent buildings (Figure 3b), indicating 5 × 5 kernels can highlight
the adjacency spatial features. As seen from the curves (Figure 3e–g), the loss functions
have already converged within 150 epochs. Thus, we ceased the training processes after
150 epochs and acquired well trained models. Training accuracies of the three kernels
(5 × 5, 3 × 3, and 2 × 2) are about 99.49%, 99.31% and 99.42%, respectively. By using the
Adadelta Optimizer, accuracies fluctuate around the global minimum values. Additionally,
to evaluate these three kernels more precisely, we also calculate Prediction Accuracy, False
Negative Rate, and False Positive Rate. As shown in Table 3, for FPR and PA, the kernel
size of 5 × 5 shows much higher than that of the 3 × 3 kernels and 2 × 2 kernels. But with
the 3 × 3 kernels, there is a much lower cost in the false negative rate. So to combine the
advantage of 3 × 3 and 5 × 5 kernels, we used both in parallel.
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Figure 3. The proposed network outcomes using three different scale kernels separately. (a): a part of original image with
building rooftops made by White Colour Steel. (b): the predicted output that only using 5 × 5 kernels, while (c) using
3 × 3 kernels and (d) using 2 × 2 kernels. (e–g): accuracies and loss curves of training and testing of (b–d).
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Table 3. Seven different criteria on the network using three different scale kernels.

Kernel Size Training
Accuracy (%)

Testing
Accuracy (%) PA (%) FNR (%) FPR (%) Training Loss Testing Loss

5 × 5 99.49 ± 0.31 99.34 ± 0.35 97.53 1.91 0.55 0.0323 0.0327
3 × 3 99.31 ± 0.27 99.23 ± 0.32 88.55 1.39 10.04 0.0480 0.0461
2 × 2 99.42 ± 0.22 99.41 ± 0.22 82.22 1.67 16.10 0.0629 0.0632

After determining the size of convolutional kernels about spatial information, we
added to the model 1 × 1 kernels, the key part of BRI-CNN, which have a strong response
to interior spectral features of building roof. As shown in Figure 4, it is much more
difficult for a model without 1 × 1 kernels to recognize pixels located in the interior
of a building. Figure 4d is a perfect match with the ground truth, whereas Figure 4c,
obviously, is unqualified. Possible reasons are the input images formed by inner pixels and
their neighbours have no texture features, and normal convolutional kernels are mainly
used to extract texture features whereas inter-channel features are weakened. The use of
1 × 1 convolutional kernels can strengthen inter-channel features or interior features, so
three scale convolutional kernels are employed simultaneously.

Remote Sens. 2021, 13, x FOR PEER REVIEW 8 of 15 
 

 

Table 3. Seven different criteria on the network using three different scale kernels. 

Kernel 
Size 

Training 
Accuracy (%) 

Testing 
Accuracy (%) PA (%) 

FNR 
(%) FPR (%) 

Training 
Loss 

Testing 
Loss 

5 × 5 99.49 ± 0.31 99.34 ± 0.35 97.53 1.91 0.55 0.0323 0.0327 
3 × 3 99.31 ± 0.27 99.23 ± 0.32 88.55 1.39 10.04 0.0480 0.0461 
2 × 2 99.42 ± 0.22 99.41 ± 0.22 82.22 1.67 16.10 0.0629 0.0632 

After determining the size of convolutional kernels about spatial information, we 
added to the model 1 × 1 kernels, the key part of BRI-CNN, which have a strong response 
to interior spectral features of building roof. As shown in Figure 4, it is much more difficult 
for a model without 1 × 1 kernels to recognize pixels located in the interior of a building. 
Figure 4d is a perfect match with the ground truth, whereas Figure 4c, obviously, is un-
qualified. Possible reasons are the input images formed by inner pixels and their neigh-
bours have no texture features, and normal convolutional kernels are mainly used to ex-
tract texture features whereas inter-channel features are weakened. The use of 1 × 1 con-
volutional kernels can strengthen inter-channel features or interior features, so three scale 
convolutional kernels are employed simultaneously. 

 
Figure 4. Different outcomes of structures with and without 1 × 1 kernels. (a) a part of original image that having Red Tile 
land-cover type. (b) the Ground Truth (GT) of this building, (c) the prediction outcome of the model without 1 × 1 convo-
lutional kernel. (d) the outcome generated by the network with 1 × 1 convolutional kernels. 

3.2. Number of Convolutional Kernels 
There are three different kernel sizes: 1 × 1, 3 × 3 and 5 × 5. As mentioned above, 1 × 

1 kernels are used to extract the spectral features within channels. Because of its limited 
field of view, this kernel size does not contribute to the extraction of spatial features. 
Larger scale kernels are used to extract spatial features, including edge and adjacency fea-
tures. However, the larger the scale of kernel, the more difficult the network is to con-
verge. So we cut down the number of 5 × 5 kernels and increased the number of 3 × 3 
kernels, but still maintained moderate quantities of 5 × 5 kernels to split small adjacent 
buildings. The minimum number of 5 × 5 convolutional kernels is 22; fewer than this num-
ber will influence the performance of extracting small buildings. After a series of tests, we 
chose 64 1 × 1 kernels, 128 3 × 3 kernels and 22 5 × 5 kernels. 

As shown in Figure 5, the edges of building rooftops are not recognized in  
Figure 5c, but the building rooftops are almost completely extracted in Figure 5d. As 
shown in Table 4, the model with 128 3 × 3 kernels performs much better at the edge of 
the building roof than that with 32 3 × 3 kernels. More precisely, the FNR of the former is 
seven times lower than the latter. 
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3.2. Number of Convolutional Kernels

There are three different kernel sizes: 1 × 1, 3 × 3 and 5 × 5. As mentioned above,
1 × 1 kernels are used to extract the spectral features within channels. Because of its limited
field of view, this kernel size does not contribute to the extraction of spatial features. Larger
scale kernels are used to extract spatial features, including edge and adjacency features.
However, the larger the scale of kernel, the more difficult the network is to converge. So
we cut down the number of 5 × 5 kernels and increased the number of 3 × 3 kernels,
but still maintained moderate quantities of 5 × 5 kernels to split small adjacent buildings.
The minimum number of 5 × 5 convolutional kernels is 22; fewer than this number will
influence the performance of extracting small buildings. After a series of tests, we chose
64 1 × 1 kernels, 128 3 × 3 kernels and 22 5 × 5 kernels.

As shown in Figure 5, the edges of building rooftops are not recognized in Figure 5c,
but the building rooftops are almost completely extracted in Figure 5d. As shown in Table 4,
the model with 128 3 × 3 kernels performs much better at the edge of the building roof
than that with 32 3 × 3 kernels. More precisely, the FNR of the former is seven times lower
than the latter.
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Table 4. Seven criteria on two network structures with different 3 × 3 kernel numbers.

Kernel Number 32 128

Training accuracy (%) 99.40 ± 0.21 99.47 ± 0.27
Testing accuracy (%) 99.41 ± 0.25 99.43 ± 0.32

Predicted accuracy (%) 90.42 97.73
False negative rate (%) 7.76 1.01
False positive rate (%) 1.81 1.25

Training loss 0.0295 0.0178
Testing loss 0.0306 0.0191

In addition, we also investigated the outputs of models with different 1 × 1 kernel
numbers. For the 1 × 1 kernel, with 16 kernels, 32 kernels, 48 kernels, and 64 kernels, we
obtained PA of 87.42%, 89.71%, 94.33%, and 98.84%, respectively. Beyond the threshold of
64–80 kernels, the PA tends to be steady. The relation between the number of 1 × 1 kernels
and accuracy is shown in Figure 6.
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3.3. Number of Convolutional Layers

The deeper the convolutional layers, the more sophisticated the extracted features.
Lin, Chen, and Yan [40] called 1 × 1 kernel network in network; one layer of 1 × 1 kernels
sufficient to extract all the features within the channels. Additional 1 × 1 convolutional
layers will result in wasted computation. According to [39], one layer of large kernels can
be separated into several layers of smaller kernels. For example, three consecutive layers
of 3 × 3 kernels extract the same quantity of features as one layer of 7 × 7 kernels; two
layers of 5 × 5 kernels extract features in a like manner. That is why we replaced one layer
of large size kernels with more than one layers of small size kernels. Finally, the proposed
model was constructed with one 1× 1 convolutional layer, three 3× 3 convolutional layers,
and two 5 × 5 convolutional layers.

3.4. Number of Fully Connected Layers and Neurons

Convolutional layers are used to map raw data in feature space, indicating that
CNNs learn different kinds of building features by convolutional layers. After extracting
features, we combined different features. Different combinations of features represent
different kinds of buildings. Fully connected layers integrate features and map different
feature combinations into label space. Since the same padding is applied after every
convolution operation, and the strides of convolutional kernels are 1, we obtain 64, 128,
and 22 7 × 7 feature maps in 1× 1, 3× 3, and 5× 5 branches after convolving, respectively.
We stacked them in the channel dimension and attained a 214 × 7 × 7 feature map, which,
when flattened, resulting in a one-dimensional vector as the input layer for sub-sequential
fully connected layers. The number of input neurons for fully connected layers is 10,486.
Thus, we tried different quantities of fully connected layers and neurons. Finally, we
determined a two-FC-layer structure, with 4000 neurons in one layer and 1000 neurons in
the other layer.

In Figure 7, multiple different architectural materials are shown. Although in Figure 7b
all buildings are recognized, some other pixels are mistakenly regarded as architectural
materials. As indicated in Table 5, the FPR corresponding to Figure 7b is high, which
subsequently leads to a low PA. Thus, we simplified the structure of the FC layers as shown
in Figure 7c–e and attained the lowest FPR and highest PA in Figure 7e. Meanwhile, this
structure maintained a low FNR.

Table 5. PA, FNR, FPR of four different fully connected structures.

FC Structures PA (%) FNR (%) FPR (%)

8000, 4000, 1000 84.53 0.72 14.74
4000, 1000, 200 93.22 0.73 6.04

6000, 2000 95.91 0.86 3.22
4000, 1000 97.44 0.93 1.62

3.5. Performance on Public Data Sets

We briefly discussed the above processes using the IP data set, especially the size of
convolutional kernels in Section 3.1, the number of kernels in Section 3.2, and the number
of FC layers in Section 3.4. Six models with different sizes of kernels in convolutional layers
were trained on the IP data set to research the dependency of recognition results on the
kernel size. Prediction accuracies, together with the Cohen’s kappa coefficients (κ) [41]
of the results of these models were listed in Table 6. It shows a general increase in AA
(Average Accuracy), OA (Overall Accuracy) and κ, with the increasing size of kernels,
partly because of the extending field of view.
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Table 6. Classification results of Indian pines data set using different kernel sizes.

Kernel Size 1 × 1 2 × 2 3 × 3 4 × 4 5 × 5 7 × 7

AA (%) 87.38 86.80 94.08 85.58 98.83 96.67
OA (%) 96.02 95.85 96.83 97.56 98.84 99.01

κ 0.9340 0.9295 0.9462 0.9597 0.9763 0.9840
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Besides, seven different models were applied on the IP data set, which were identical
to those mentioned in Section 2.4, except for the number of 1 × 1 or 3 × 3 kernels. The
Classification results can be seen in Table 7. What we can learn from these results is that
the capability of BRI-CNN will be strengthened by adding the numbers of 1 × 1 and
3 × 3 kernels to some extent.
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Table 7. Classification results of Indian pines data set using different kernel numbers.

Model #32 3* #64 3* #256 3* #16 1* #32 1* #128 1* #256 1*

AA (%) 97.01 98.91 99.21 98.07 97.59 99.26 99.23
OA (%) 98.99 99.31 99.60 99.29 99.40 99.63 99.55

κ 0.9834 0.9887 0.9930 0.9913 0.9916 0.9933 0.9922
#32 3*: 32 3 × 3 kernels. #64 3*: 64 3 × 3 kernels. #256 3*: 256 3 × 3 kernels. #16 1*: 16 1 × 1 kernels. #32 1*: 32
1 × 1 kernels. #128 1*: 128 1 × 1 kernels. #256 1*: 256 1 × 1 kernels.

To highlight the importance of the 1 × 1 kernels, we implemented an experiment
without them while keeping all other hyper-parameters unchanged. The experimental
results show that, with 64 1 × 1 kernels, CNN can get nearly 2% higher OA and 0.01 higher
κ during predicting. All models above were trained with the training, test, and validation
ratio of 1.5:1.5:7.

3.6. Comparisons with Other Models

As we applied our model into IP data set, a validation data set for most DL models in
the HSI domain, we can compare our model with other previous works. As seen in Table 8,
a comparison of six outputs of different models shows that BRI-CNN generally performs
better than the other four state-of-the-art models. Compared with the best model [34], our
proposed network attains an OA that is 0.24% higher.

Figure 8a–c show the outcomes of ground-truth labels, SSRN [29] and BRI-CNN.
Figure 8d–f show a representative area in the left of original figures. In Figure 8e, boundary
pixels between the mainland-cover types are irregular, whereas in Figure 8f, the boundaries
of large pieces are in alignment, which is more similar to Figure 8d.

Table 8. Classification results of Indian pines data sets using different models.

Class
PA (%) of

BRI-CNN SSRN [33] [32] [31] [34]

1 97.83 97.82 89.58 100 97.83 96.96
2 99.51 99.17 85.68 94.94 94.82 99.15
3 99.88 99.53 87.36 96.65 97.23 99.16
4 100 97.79 93.33 99.06 99.58 99.92
5 99.17 99.24 96.88 98.15 99.59 99.75
6 99.73 99.51 98.99 98.93 99.59 99.86
7 100 98.70 91.67 96.00 100 98.57
8 100 99.85 99.49 100 100 100
9 95.00 98.50 100 100 100 100

10 98.97 98.74 90.35 97.37 93.93 98.85
11 99.67 99.30 77.90 98.91 97.23 99.69
12 99.16 98.43 95.82 97.93 98.99 98.45
13 100 100 98.59 98.91 100 100
14 99.92 99.31 98.55 100 99.76 99.70
15 100 99.20 87.41 96.84 97.93 99.64
16 96.77 97.82 98.06 90.36 98.92 98.78

AA 99.11 98.93 93.12 97.75 98.46 99.45
OA 99.58 99.19 87.81 97.97 97.57 99.34

κ 0.9930 0.9907 0.8530 0.9768 0.9723 0.9937
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4. Conclusions

In this paper, we presented a new approach to combine interior, edge, and adjacency
features using multi-scale kernels in parallel. The key structure of BRI-CNN is a set of
1 × 1 convolutional kernels, which is proved to be a great improvement in recognizing
types of land-cover, including building roof, due to the interior spectral features. It was
found that 3 × 3 kernels work well at the edge of building roof and 5 × 5 kernels are
efficient to separate adjacent buildings. Using these three different scale kernels, the
proposed network can perform robust both near the boundary and in the interior of
building roof. The experimental results indicate that the BRI-CNN model achieves nearly
0.2% higher overall accuracy and average accuracy than that of SSRN model, and at least
1% higher than most models, including conventional CNN and DBN models. Besides all
the hyper-parameters discussed above, we found input size is also a factor that affects the
subsequent structure. As the input size increases, more features are included in one input
picture, making it much more difficult to train the networks with little improvement. In
addition, when building roofs are smaller than the size of the convolutional kernel, we
should pay attention to the extracting result, because it may be terrible.
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