
remote sensing  

Article

The Key Reason of False Positive Misclassification for Accurate
Large-Area Mangrove Classifications

Chuanpeng Zhao 1,2,3 and Cheng-Zhi Qin 2,3,4,*

����������
�������

Citation: Zhao, C.; Qin, C.-Z. The

Key Reason of False Positive

Misclassification for Accurate

Large-Area Mangrove Classifications.

Remote Sens. 2021, 13, 2909. https://

doi.org/10.3390/rs13152909

Academic Editor: Arturo

Sanchez-Azofeifa

Received: 14 June 2021

Accepted: 21 July 2021

Published: 24 July 2021

Publisher’s Note: MDPI stays neutral

with regard to jurisdictional claims in

published maps and institutional affil-

iations.

Copyright: © 2021 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

1 Key Laboratory of Wetland Ecology and Environment, Northeast Institute of Geography and Agroecology,
Chinese Academy of Sciences, Changchun 130102, China; zhaocp.15s@igsnrr.ac.cn

2 State Key Laboratory of Resources & Environmental Information System, Institute of Geographical Sciences
and Natural Resources Research, Chinese Academy of Sciences, Beijing 100101, China

3 College of Resources and Environment, University of Chinese Academy of Sciences, Beijing 100049, China
4 Jiangsu Center for Collaborative Innovation in Geographical Information Resource Development and

Application, Nanjing 210023, China
* Correspondence: qincz@lreis.ac.cn; Tel.: +86-10-64888959

Abstract: Accurate large-area mangrove classification is a challenging task due to the complexity
of mangroves, such as abundant species within the mangrove category, and various appearances
resulting from a large latitudinal span and varied habitats. Existing studies have improved mangrove
classifications by introducing time series images, constructing new indices sensitive to mangroves,
and correcting classifications by empirical constraints and visual inspections. However, false positive
misclassifications are still prevalent in current classification results before corrections, and the key
reason for false positive misclassification in large-area mangrove classifications is unknown. To
address this knowledge gap, a hypothesis that an inadequate classification scheme (i.e., the choice of
categories) is the key reason for such false positive misclassification is proposed in this paper. To
validate this hypothesis, new categories considering non-mangrove vegetation near water (i.e., within
one pixel from water bodies) were introduced, which is inclined to be misclassified as mangroves,
into a normally-used standard classification scheme, so as to form a new scheme. In controlled
conditions, two experiments were conducted. The first experiment using the same total features to
derive direct mangrove classification results in China for the year 2018 on the Google Earth Engine
with the standard scheme and the new scheme respectively. The second experiment used the optimal
features to balance the probability of a selected feature to be effective for the scheme. A comparison
shows that the inclusion of the new categories reduced the false positive pixels with a rate of 71.3%
in the first experiment, and a rate of 66.3% in the second experiment. Local characteristics of false
positive pixels within 1 × 1 km cells, and direct classification results in two selected subset areas
were also analyzed for quantitative and qualitative validation. All the validation results from the two
experiments support the finding that the hypothesis is true. The validated hypothesis can be easily
applied to other studies to alleviate the prevalence of false positive misclassifications.

Keywords: classification scheme; false positive misclassification; non-mangrove vegetation near
water; mangrove map; Google Earth Engine

1. Introduction

Mangroves are a community of trees and shrubs adapted to tidal environments found
in tropical and subtropical regions of the world [1,2]. Mangroves provide a wide range of
ecosystem services such as coast protection and carbon sinks, as well as materials such as
food and medicine [3–7]. Mangroves distribution is dynamic as a result of deforestation
for agriculture, aquaculture, and urban expansion [8–10] or afforestation efforts [11,12].
Remote sensing (RS)-based approaches have been developed to efficiently map mangrove
distribution over large areas, especially since Giri, et al. [13] obtained a global mangrove
distribution map using Landsat data. However, due to the presence of different mangrove
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species, a large latitudinal span, and the mixing with other forest types at the fringes,
accurate large-area mangrove mapping remains a challenging task [14–16].

Existing RS-based studies on large-area mangrove classifications firstly derived man-
groves by a classification procedure, and then corrected the classification results using
various empirical constraints and visual inspections (i.e., post-processing) to obtain man-
grove maps. Due to the widespread occurrence of false positive patches in direct classi-
fications [17,18], the correction on the false positive misclassification is crucial. During
the correction, the false positive misclassifications can be comparatively corrected by both
empirical constraints and visual inspections, which highly rely on human experience. For
example, distances have been widely used in mangrove mapping, such as the distance to
coastline to screen out areas far away from coasts (e.g., 10 km by Hu, et al. [19]), and the
distance to water to screen out false positive patches (e.g., 2.5 km by Xia, et al. [20]), which
are still arbitrary for the large-area situation. Moreover, false positive misclassifications
close to mangroves can easily escape from these constraints (e.g., the distance to coastline,
the distance to water, and elevation). Thus, it is highly valuable to improve the performance
of the classification procedure to obtain accurate large-area mangrove mapping.

In the classification procedure, the classification algorithms varied in forms [21–23],
while containing the same core, that is, using samples to determine a decision surface [24–27]
for optimally distinguishing the interest categories.

To improve the performance of mangrove classifications, the features of a sample
have been augmented by introducing multi-temporal and/or multi-source images. Re-
cent studies on mangrove classification have focused on the application of time series
imagery [14,18,19,28]. However, Zhao and Qin [18] revealed widespread false positives
that misclassified vegetation near water as mangroves, even though the increase of the
samples’ features was adopted.

When the increase of features did not improve false positive misclassification much,
the performance of mangrove classifications is affected by the adopted classification scheme
(the classification scheme in this study is defined as the choice of categories) which de-
termines the class diversity of samples and consequently affects the construction of the
decision surface in partitioning the feature space according to samples’ membership in
different classes [27,29]. However, there are few studies involved in the effects from classi-
fication schemes, and most of them designed classification schemes for standardization of
classification results [30] rather than exploring a way to improve the classification results.
Baloloy, et al. [31] applied a scheme of seven classes (i.e., mangroves, terrestrial vegetation
(forest), terrestrial vegetation (non-forest), bare soil, built-up, water, and clouds) to deter-
mine the threshold for identifying mangroves, and Zhao and Qin [18] utilized a scheme
of 10 classes (i.e., mangroves, coastal forests, salt marsh, grass, cropland, sand or rock,
terrestrial forests, permanent water, tidal flats, and artificial impervious surfaces) to train a
classifier for mangrove classification. These classification schemes do not well consider the
uniqueness of coastal areas, which are affected by terrestrial and marine environments and
anthropogenic activities [32,33]. A typical example is the widespread existence of aqua-
culture ponds [34], which are shown as small water bodies with vegetation strips on the
edges. The non-mangrove vegetation strips near water bodies can be easily misclassified
as mangroves [12,14,18,19]. Such land cover near water bodies does not belong to standard
a priori classification schemes.

Therefore, in this study a hypothesis was proposed, that is, the inadequate consider-
ation of non-mangrove vegetation near water in priori classification schemes is the key
reason for false positive misclassification. If the hypothesis was true, an adjustment on
the classification scheme to be a new classification scheme may improve the classifications.
When regarding the vegetation near water that is easily misclassified as mangroves as new
categories, the systematic false positive misclassifications might be partitioned out from
the mangrove category during the construction of the decision surface, thus to alleviate
false positive misclassification.
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To validate the hypothesis, two experiments were conducted to compare the direct
classification results of mangroves in China in 2018 based on two different classification
schemes (with and without categories for non-mangrove vegetation near water). The first
experiment classified mangroves with two schemes by using exactly the same features,
and the second experiment used the optimized features for each scheme. The classification
results of each experiment were quantitatively evaluated with the reference data.

The remaining of this paper is organized as follows. Section 2 firstly presents the basic
idea of the experiment design, including the definition of categories for non-mangrove
vegetation near water. Then, an approach was designed following the basic idea and was
applied to extracting mangroves in China using a time series of images from Sentinel-1
synthetic aperture radar (SAR) and Sentinel-2 Multispectral Instrument (MSI), as well
as the Advanced Land Observing Satellite (ALOS) World 3D-30 m (AW3D30) DEM as a
data source, and derived 10-m-resolution classification results from the two classification
schemes for each experiment. Section 3 evaluates the classification results and validates
the hypothesis in a form of comparing accuracies of these classification results. Section 4
discusses the prevalence of false positive misclassifications in existing studies, and the
implications of the validated hypothesis to other mangrove classifications. Conclusions
are presented in Section 5. This paper aims to explore the hypothesis associated with the
choices of categories in classification schemes. The validated hypothesis will benefit the
performance of mangrove classifications with improved classification schemes.

2. Data and Methods
2.1. Basic Idea

According to the hypothesis, non-mangrove vegetation near water is the core of the
new classification scheme. In this study, the non-mangrove vegetation near water is defined
as the non-mangrove vegetation within one pixel (i.e., 10 m for Sentinel images) from water
bodies. Because these vegetations and adjacent water are divided into one pixel at a coarse
resolution, there is an increase in the similarity to mangrove pixels in reflectance because
of the tidal inundation characteristic of mangroves and their environments [14,18].

To validate the hypothesis, categories for non-mangrove vegetation near water (i.e.,
the herbaceous vegetation that senesces in winter, and the woody that is evergreen) can be
added into the standard priori classification schemes to build new classification schemes.
In controlled conditions (using the same data sources, features, and approaches), if the new
classification scheme produces much better classification results than the standard one, the
hypothesis is accepted.

In addition to using the same features, the adoption of optimal features for each of the
classification schemes should also be tested. This is due to the fact each land cover category
is inclined to be characterized by different feature subsets (e.g., normalized difference water
index (NDWI) for water, enhanced vegetation index (EVI) for vegetation). The inclusion
of new categories into the new scheme will construct a new optimal feature subset that
is different from the one from the standard scheme. Thus, the probability of a randomly
selected feature falling into the optimal feature subset is different (e.g., the Random Forest
(RF) algorithm randomly selects features in constructing decision trees [35]), especially
when the provided features are redundant, as is the situation in this study. The optimal
features, though different for each classification scheme, are served as an approximation
of the optimal feature subset. Because the optimal feature subset is different for each of
the classification schemes after the inclusion of new categories, the hypothesis is further
validated using the optimal features.

2.2. Study Area

The hypothesis was validated along the coastal area of China. In this region, man-
groves are scattered along the lengthy coastlines from their most suitable tropical zone
climate to the marginal subtropical zone (Figure 1). Within the area, abundant tidal pat-
terns (i.e., diurnal, semidiurnal, and mixed tides) enrich the interaction between seas and
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rivers [36]. The variety of climate and salinity combinations leads to a great diversity in
mangroves, with 24 species accounting for about one-third of the total true mangrove
species existing worldwide [11,37]. The mangrove species that cannot live in a terrestrial
or aquatic habitat are regarded as one category in current classifications [23], combined
with their varying canopy density and physical appearance, the difficulty of accurately
classifying the mangroves of China is exacerbated. Numerous aquaculture ponds and
abundant forms of land use also result in large areas of vegetation near water, which is the
basis of validating the proposed hypothesis.
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Figure 1. Map of the study area (adapted from Zhao and Qin [18]). The area covers about half of China’s coastline, including
the coastal areas of Zhejiang, Fujian, Guangdong, Guangxi Zhuang Autonomous, Hong Kong, Macao, Taiwan, and Hainan.

A preliminary area (3.83◦ N to 31.18◦ N, 108.02◦ E to 122.95◦ E) was divided into
1 × 1′ cells. To fully capture the area in which mangroves may grow in southern China, the
cells were intersected with low-lying areas filtered by the ETOPO1 global relief model [38],
a low-lying area identified by AW3D30 [39] and the most recent tidal flat map of southern
China for 2017 [36]. Then, the cells of these three sources were merged by union to form
the study area.

2.3. Data Sources
2.3.1. Sentinel Images and DEM

Features were calculated from Sentinel-1 SAR and Sentinel-2 MSI images (Figure 2),
which, with their constellations of twin satellites developed by the European Space Agency,
provide higher temporal resolutions than Landsat-8. The Sentinel-1 SAR images are sensi-
tive to the physical properties of the land surface (e.g., the canopy structure of vegetation)
and have two bands which can penetrate clouds: the vertical transmit and vertical receive
(VV) polarization bands and the vertical transmit and horizontal receive (VH) polarization
bands. The Sentinel-2 MSI images are sensitive to bio-chemical properties (e.g., chlorophyll
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content) and have ten bands: three visual bands (B2, B3, B4), one near infrared band
(B8), four red-edge bands (B5, B6, B7, B8A), and two shortwave infrared band (B11, B12).
AW3D30, produced using ALOS scenes acquired from 2006 to 2011 and released in 2016,
was selected to derive terrain-based features because of its high vertical accuracy of about
5 m [40–42]. In this study, AW3D30 was used to provide terrain information of low-lying
vegetation habitats, which is one of the characteristics of mangroves [14,18].
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To describe land covers by their frequency over a time period (e.g., greenness frequency
in Chen, et al. [14]), time series of Sentinel-2 images from July 2017 to July 2019 were used.
Other features were calculated using a median composite image [43] derived from the
same period to reduce noise and cloud effects. The optical images were masked using the
QA60 band. All the data were accessed and processed on the Google Earth Engine cloud
computing platform, which includes SAR images of Sentinel-1 (https://developers.google.
com/earth-engine/datasets/catalog/COPERNICUS_S1_GRD (accessed on 24 December
2020)), top-of-atmosphere reflectance data of Sentinel-2 (https://developers.google.com/
earth-engine/datasets/catalog/COPERNICUS_S2 (accessed on 24 December 2020)), and
AW3D30 data (https://developers.google.com/earth-engine/datasets/catalog/JAXA_
ALOS_AW3D30_V1_1 (accessed on 24 December 2020)).

2.3.2. Features Used in the Experiments

The features used in the experiments were collected in existing mangrove mapping
studies and then categorized into two types based on whether a feature is specifically
designed for identifying mangroves, that is, general features and specific features (Table 1).
General features are for general purpose, such as VV band from Sentinel-1 SAR used in
mapping mangroves in China by Hu, et al. [28], elevation from AW3D30 used in mapping
mangroves in China by Zhao and Qin [18], NDVI, the enhanced vegetation index (EVI),
and land surface water index (LSWI) from Sentinel-2 MSI used in mapping mangroves in
China by Chen, et al. [14]. Based on the literature on mangrove classification, 39 general
features were collected, including 15 single band features from Sentinel-1 and -2 images
using a median composition of time-series images of the same time period as well as
DEM-derived information [18,19,44,45], nine band ratio features extended from [46,47],
and 15 index features as in [17,48–50].

https://developers.google.com/earth-engine/datasets/catalog/COPERNICUS_S1_GRD
https://developers.google.com/earth-engine/datasets/catalog/COPERNICUS_S1_GRD
https://developers.google.com/earth-engine/datasets/catalog/COPERNICUS_S2
https://developers.google.com/earth-engine/datasets/catalog/COPERNICUS_S2
https: //developers.google.com/earth-engine/datasets/catalog/JAXA_ALOS_AW3D30_V1_1
https: //developers.google.com/earth-engine/datasets/catalog/JAXA_ALOS_AW3D30_V1_1
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Table 1. Features used in the experiments.

Types Subtypes Expressions

general
features

bands VV, VH, B2, B3, B4, B5, B6, B7, B8, B8A, B11, B12, elevation, slope, aspect

band
ratios B4/B8, B8/B4, B8/B11, B8/B12, B11/B12, B2/B4, B4/B2, B3/B4, B4/B3

other
indices

NDVI = B8−B4
B8+B4 EVI = B8−B4

B8+6×B4−7.5×B2+1 MSAVI = (B8−B4)×1.5
B8+B4+0.5

NDWI = B3−B8
B3+B8 mNDWI = B3−SWIR

B3+SWIR LSWI = B8−SWIR
B8+SWIR

NDRE = B8−RE
B8+RE NIRv = B8×

(
B8−B4
B8+B4 − c

)
S2REP = 705 + 35×

B7+B4
2 −B5

B6−B5

specific
features

indices

MI = B8−B11
B8×B11 MVI = |B8−B3|

|B11−B3| MDI = B8−SWIR
SWIR

DNVI = (B11−B12)2
√

B11+B12
CMRI = NDVI−NDWI WFI = B8−B4

B12

MFI = B5+B6+B7+B8A
4 − 0.071× B12− 0.929× B4 FDI = B8− B4− B3

frequency-
based

indices

FG = ∑ G
N , G

=

{
|1, LSWI > 0∩ EVI > 0.2
|0, Other values

FC = ∑ C
N , C ={

|1, LSWI > 0.3∩NDVI > 0.3
|0, Other values

FT = ∑ T
N , T ={

|1, LSWI ≥ EVI∪ LSWI ≥ NDVI
|0, Other values

FG
NDVI

FC
NDVI

FT
NDVI

Note: Shortwave infrared (SWIR) represents B11 and B12, thus two features can be calculated from the expression (e.g., two features were
extracted by the expression of the modified normalized difference water index (mNDWI)). RE represents B5, B6, B7, and B8A, thus four
features were extracted using the normalized difference red edge (NDRE). The constant value c of near-infrared reflectance of vegetation
(NIRv) can be set to 0 or 0.08. For frequency-based indices, the frequency is the ratio between the number of images meeting the criteria
and the number of cloud-free images (denoted as N) over the selected period. NDVI represents the mean of NDVI over the same period.

A number of 15 specific features which are sensitive to mangroves and mangrove en-
vironments were also collected. Nine among them are index features: mangrove index (MI)
from Winarso, et al. [51], the mangrove forest index (MFI) from Jia, et al. [52], the mangrove
vegetation index (MVI) from Baloloy, et al. [31], the discriminant normalized vegetation
index (DNVI) from Manna and Raychaudhuri [53], the combined mangrove recognition
index (CMRI) from Gupta, et al. [54], mangrove discrimination index 2 (MDI2), mangrove
discrimination index 1 (MDI1), the wetland forest index (WFI) from Wang, et al. [17], and
the forest discrimination index (FDI) as modified in Kamal, et al. [55]. The remaining six
indices describe mangroves using frequency over a time period, not only the frequencies of
greenness (FG), canopy coverage (FC), and tidal inundation (FT), but also the ratio between
these frequencies and mean NDVI was extracted since the thresholds of the phenology-
based algorithm were calculated according to the mean NDVI as in Chen, et al. [14].

2.3.3. Reference Mangrove Map Used in the Experiments

The mangrove map of China for 2019 was used as the reference map to validate the
hypothesis. By combing the classification results from Sentinel images and DEM (i.e., a
subset of the features in Table 1), and the corrections including empirical constraints based
on a tidal flat map and visual inspections based on the Google Earth images, the reference
map achieved an overall accuracy of 96.4 ± 0.3% based on validation datasets, and an
accuracy of 96.2% based on a total of 1096 field sample plots [56]. This map is open-accessed
at the Science Data Bank (http://www.dx.doi.org/10.11922/sciencedb.00245 (accessed
on 7 January 2021)). The mangrove map produced mainly by interpreters through visual
inspections and field investigation (such as the mangrove map by [57]) was not chosen as
the reference mangrove map. This is because the way such a mangrove map is produced
is comparatively different from the classification-based way focused in this study. For
example, the neighboring mangrove patches (even including some nearby tidal flats) will
be sketched as one patch by human, but the classification algorithms will not simplify these
patches to be one.

http://www.dx.doi.org/10.11922/sciencedb.00245
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2.4. The First Experiment: Classification with the Two Schemes When Using the Same
Total Features
2.4.1. Standard Classification Scheme and Sampling

A revised classification scheme (Table 2) from Zhao and Qin [18] was reused, as well
as the samples they collected (http://www.dx.doi.org/10.11922/sciencedb.00279 (accessed
on 7 January 2021)). For each category, 1200 sample points were randomly selected to
generate the training dataset, which was used to describe the categories. The samples
were the same size to guarantee the equal probability of each category to be trained by
the random forest algorithm. The remaining samples in each category were added to the
validation set.

Table 2. The standard classification scheme without consideration of the non-mangrove vegetation
near water.

Category Description

mangroves trees, shrubs, and palms that strictly distribute in the intertidal
environments [1], which are also referred as true-mangroves [2,13]

forests terrestrial forests, coastal forests, and semi-mangroves that can survive
in terrestrial environments [2]

cropland cultivated land that is dominated by rice

water permanent water area that is not affected by seasons

tidal flats bare land that is inundated by high tides and is exposed in low tides

impervious surface sandy and pebble beaches, rocky coasts, and artificial structures (e.g.,
residential areas, roads)

2.4.2. New Classification Scheme and Sampling

Considering phenological characteristics of vegetation near water that the herbaceous
senesces in winter and the woody is evergreen, the two categories were added into the
typical scheme to build the new classification scheme (Table 3). Following the definition
of non-mangrove vegetation near water in Section 2.1, a total of 2776 samples for woody
vegetations near water and 2931 samples for herbaceous vegetations near water were
manually collected based on high-resolution Google Earth images. For each of the two
categories, 1200 samples were randomly selected and they were combined with the former
training dataset to generate the new training dataset; the remaining samples were added to
the validation set.

Table 3. The new classification scheme with consideration of the non-mangrove vegetation near water.

Category Description

mangroves trees, shrubs, and palms that strictly distribute in the intertidal environments [1]

forests terrestrial forests, coastal forests, and semi-mangroves that can survive in
terrestrial environments [2]

cropland cultivated land that is dominated by rice

water permanent water area that is not affected by seasons

tidal flats bare land that is inundated by high tides and is exposed in low tides

impervious surface sandy and pebble beaches, rocky coasts, and artificial structures (e.g., residential
areas, roads)

forest near water woody vegetations near water that distribute in the edge of rivers, reservoirs,
aquaculture ponds, etc.

grass near water herbaceous vegetations near water that distribute in the edge of rivers,
reservoirs, aquaculture ponds, etc.

http://www.dx.doi.org/10.11922/sciencedb.00279
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2.4.3. Classification under the Two Schemes

As an ensemble classifier with high computation efficiency, RF is widely used in
land cover classification, including mangrove classification [19,35,58]. Among the RF
parameters, the number of trees and the number of input variables randomly chosen at
each node need to be determined by the user. Following Belgiu and Drăguţ [35], the
number of trees was set to 500, and the number of input variables randomly chosen at each
node was set to be seven. Same parameters were used for classifications under the two
schemes. The classifications were executed utilizing 54 features (see Section 2.3.2) on the
GEE platform.

2.5. The Second Experiment: Classification with the Two Schemes Using the Optimal Features
2.5.1. Feature Selection

The optimization of features was achieved through feature selection, which can ap-
proximate the optimal feature subset for each classification scheme. A genetic algorithm
(GA) [45,59–61] was used, using the genalg package [62] in the R environment (Vienna,
Austria). The algorithm, inspired by the theory of evolution, can find a global optimum by
selection, crossover, and mutation [63,64]. To select the features in this study, a population
was randomly initialized with a certain number of individuals. An individual representing
a candidate solution for feature selection was composed of a total of 54 bits. The bits of
1 or 0 (i.e., individual genes) indicate whether the corresponding features are selected or
not. Then, each individual was evaluated by a fitness function. Individuals with high
fitness values were more likely to be chosen for reproduction (i.e., selection). During the
reproduction, a pair of individuals was selected to swap a corresponding segment of the
bits (i.e., crossover) and the reproduced individuals were randomly selected to change
one randomly chosen bit (i.e., mutation). Finally, the reproduced individuals formed a
new generation. The cycle of evolution and reproduction was repeated until meeting a
stopping criterion.

The fitness function used to evaluate the individuals is important, as it guides the
evolution in GA. To be consistent with the RF-based classifications, the out-of-bag error,
used to estimate the performance of the trained RF model, was used as a fitness value to
evaluate an individual (i.e., a candidate combination of features). The out-of-bag error was
calculated using out-of-bag samples, which are subsets of training samples by a random
sample with replacement [65]. Due to the randomness in sampling, the fitness value
varies for a given combination of features. To solve the problem, the evaluation procedure
was monitored to record individuals and corresponding fitness values. An individual
appearing several times in the iteration with varying fitness values could be represented by
a mean fitness value to reduce the effect of randomness. Moreover, the best combination of
features was determined by voting a set of top 10 individuals sorted by mean fitness value
after trial and error, to increase the robustness of the selected features. The GA converged
quickly using the default parameters (population size = 200, generation number = 100,
mutation rate = 1%). The number of 7 to 15 genes was tested to obtain different feature
combinations for each scheme.

The optimal features for each scheme were determined by classification performances
in case area. The performance was measured by the sensitive rate (i.e., the rate between
number of mangrove pixels and number of pixels classified as mangroves) in reference to
a mangrove map. When sensitive rates were close, the spatial distribution of mangrove
patches was used to determine the best pre-classification result, thus the corresponding
features were chosen as the optimal features. When a reference map is absent, visual
inspections can be used to determine the best pre-classification result corresponding to the
selected features.

After the feature selection, there are 12 optimal features for the standard classifica-
tion scheme (B2, B5, VV, VH, elevation, sr9, NDWI, NDRE4, DNVI, MDI2, MVI, FG), and
10 optimal features for the new classification scheme (B5, VV, elevation, sr6, sr8, FDI, LSWI,
mNDWI2, NDRE4, FG).
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2.5.2. Classification Using the Optimal Features under the Two Schemes

The classification schemes and training datasets were the same as in Section 2.4. The
RF was used in classifications using the optimal features on the GEE platform, with the
number of trees set to 500 and the number of input variables randomly chosen at each node
to be three.

Figure 3 shows the detailed workflow for the two experiments. The first experiment
does not include a feature selection procedure (i.e., the blue arrows that skipped feature
selection), thus validates the hypothesis using exactly the same features. The second exper-
iment validates the hypothesis in approximate optimal feature space. The feature selection
was performed using R, and classifications were performed using the GEE platform.
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2.6. Evaluation and Hypothesis Validation
2.6.1. Evaluation Methods

The classifications with the two schemes were evaluated through a quantitative accu-
racy assessment based on the validation dataset (Figure 4). Considering that the difference
between classification schemes before and after inclusion of new categories will affect
the evaluation [66], and as well that the mangrove category is the focus of this study, the
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evaluation was performed based on two categories (i.e., mangroves and non-mangroves).
A number of 900 mangrove validation samples were randomly selected in a mangrove
map, which was produced mainly by interpreters through visual inspections and field
investigation (see Section 2.3.3). Non-mangrove validation samples with the same size
were selected by stratified random sampling in the prepared validation set (i.e., a total
number of 6102 samples). All of the four classification results use the same validation
dataset. According to the formula provided by James, et al. [67] and Murray, et al. [68],
the theoretical number of validation samples should be 1537 for such an area, thus the
generated validation set with 1800 samples in this study should be reliable. The confusion
matrices for each experiment were provided to measure the two classifications with dif-
ferent schemes. In each confusion matrix, the producer’s accuracy and user’s accuracy
were calculated for mangroves and non-mangroves, as well as the overall accuracy for all
classes [66].
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2.6.2. Hypothesis Validation Methods

As the core of this study is to reveal the key reason for false positive misclassification,
the validation focused on the false positive part. The number of false positive pixels of
mangroves was used for comparison (The false positives and false negatives below are for
mangroves). The false positive pixels were judged pixel by pixel based on the reference
mangrove map. If a pixel was non-mangrove in the reference map and meanwhile was
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mangroves in the classification result, it was regarded as a false positive pixel. To reveal
local false positive characteristics of the classification results, the pixels misclassified
as mangroves within each 1 × 1 km cells were summarized with a method of stratified
summary statistics (i.e., the sum of number of misclassified pixels fell into different intervals
defined by breaks 0.1%, 1%, 5%, 10%, 20%, 30%, and 40%). The number of cells in each false
positive rate interval was compared in the whole area by the 100% stacked column chart
and in case areas by the spatial distribution map (Figure 5). A small percentage of intervals
greater than zero and a large proportion of false positive rates equal to zero both mean a
better performance. In addition to the summarized local statistics, the direct classification
results in two selected subset areas were also compared by visual inspections (Figure 5);
their false positive pixels serve as a measure of quantitative evaluation.
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Figure 5. Locations of selected case areas and subset areas. The case areas are annotated with I, II, and III near the left of
the black frames, covering the mangrove-rich area in Hainan, the mangrove-rich area at the estuary in Guangdong, and
the non-mangrove area at the estuary in Zhejiang. The subset areas, with the annotation of A and B near the right of the
red frames, are smaller than case areas, to depict the direct classifications in detail. The subset area A is a coastal area with
complex land covers, and the subset area B is dominated by aquaculture.

If the new scheme outperformed the standard scheme in each experiment by the
quantitative and qualitative validations, the hypothesis is accepted.

3. Results
3.1. Evaluation Results of the Classifications
3.1.1. Classification Results Using the Same Total Features in the First Experiment

As mangroves are the focus in this study, other categories were excluded in Figure 6.
The main maps (Figure 6a,d) show that the mangroves along the coast occupy areas too
small to be seen at full scale, and the zoomed-in maps show a wide spread of man-
grove patches.
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The confusion matrices of the classifications without corrections are shown in Table 4.
After the inclusion of non-mangroves near water, the overall accuracy increased from 75.8%
to 80.8%. Both the producer’s accuracy and user’s accuracy showed that the commission
error (i.e., non-mangroves misclassified as mangroves) was reduced at an expense of a
slightly increased omission error (i.e., mangroves misclassified as non-mangroves). The
improvement on the commission error when adopting the new scheme was consistent with
visual judgement, that is, the classification result with the new scheme had a cleaner and
tidier distribution of patches classified as mangroves than that with the standard scheme
(Figure 6b,e).
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Table 4. Confusion matrices of the classifications without correction with a standard classification
scheme and a new classification scheme in the first experiment. The performance of classification
with the standard scheme is shown in (a), and that with the new scheme is shown in (b).

(a) with the standard classification scheme

Reference

Mangroves Non-Mangroves User’s Accuracy

Classification
result

mangroves 633 169 78.9%
non-mangroves 267 731 73.3%

Producer’s Accuracy 70.3% 81.2%
Overall Accuracy 75.8%

(b) with the new classification scheme

Reference

Mangroves Non-Mangroves User’s Accuracy

Classification
result

mangroves 571 16 97.3%
non-mangroves 329 884 72.9%

Producer’s Accuracy 63.4% 98.2%
Overall Accuracy 80.8%

3.1.2. Classification Results Using the Optimal Features in the Second Experiment

After feature selection, the classifications improved (Figure 7). Similar to classifications
in the first experiment, the classification result with the new scheme outperformed the one
with the standard scheme by visual inspections (Figure 7b,e).

The confusion matrix and the corresponding statistics are shown in Table 5. Similar
to results in the first experiment, the overall accuracy increased from 76.4% to 81.1% after
the inclusion of non-mangroves near water. For mangroves, the commission error has a
reduction of 17.3% with an increment of omission error of 6.3%. The error matrices support
the improvement originated from the inclusion of new categories.

Table 5. Confusion matrices of the classifications without correction with a standard classification
scheme and a new classification scheme in the second experiment. The performance of classification
with the standard scheme is shown in (a), and that with the new scheme is shown in (b).

(a) with the standard classification scheme

Reference

Mangroves Non-Mangroves User’s Accuracy

Classification
result

mangroves 630 155 80.3%
non-mangroves 270 745 73.4%

Producer’s Accuracy 70.0% 82.8%
Overall Accuracy 76.4%

(b) with the new classification scheme

Reference

Mangroves Non-Mangroves User’s Accuracy

Classification
result

mangroves 573 14 97.6%
non-mangroves 327 886 73.0%

Producer’s Accuracy 63.7% 98.4%
Overall Accuracy 81.1%
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3.2. Validation Results of the Hypothesis

In terms of overall performance, the number of false positive pixels reduced from
16,767,422 to 4,805,313 because of the inclusion of the two categories in the first experiment,
with a reduction rate of 71.3%. After the same total features were changed to optimal
features approximating the optimal feature subset, the number of false positive pixels
reduced from 11,835,120 to 3,993,705 in the second experiment, with a reduction rate of
66.3%. Results from both experiments support the hypothesis to be true.

In view of the local false positive characteristics, the 100% stacked column chart
(Figure 8) showed that in each experiment the classification result with the new scheme
outperformed that with the standard scheme. After inclusion of the two categories, the
percentage of cells with a zero false positive rate increased by 9.7% in the first experiment,
and it increased by 13.9% in the second experiment. The percentage of each interval
greater than 0.1% decreased in varying degrees, and the percentage of cells having a false
positive rate greater than 1% deceased from 18.6% to 5.3% in the first experiment, while
the percentage decreased from 13.1% to 4.4% in the second experiment.

The spatial distribution of percentage of false positive pixels in each 1 × 1 km cell is
in Figure 9. In the first experiment, the inclusion of the two categories suppressed false
positive patches (e.g., Figure 9a,d). The suppression was more significant in the second
experiment after converting from the standard scheme to the new scheme (e.g., Figure 9h,k).
Such an improvement can also be because this experiment utilized optimal features to
approximate the optimal feature subset, thus to balance the probability of a selected feature
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to be effective. The local characteristics of false positive pixels support the hypothesis to be
true, by means of summary of the whole area and by means of spatial distribution in the
case areas.

The direct classification results in two selected case areas in two experiments are
shown in Figure 10, and corresponding sum statistics of the false positive pixels are shown
in Table 6. By visual inspections, the inclusion of the two categories had significantly im-
proved the classification results, which was more apparent in the subset area B dominated
by aquaculture (Figure 10h–l). The improvement in the subset area A in the first experiment
was not so apparent as in the second experiment. The quantitative statistics showed that
the false positive pixels were reduced by 27.1% in the subset area A in the first experiment
by converting from the standard scheme to the new scheme, and others were reduced by
more than 82.9% through the conversion. The direct classifications support the hypothesis
to be true by means of visual inspections and quantitative statistics.

In summary, the hypothesis was proven to be true in three levels of validation in
the two experiments, including total number of false positive pixels in the whole area,
the proportion and distribution of 1 × 1 km cells with false positive pixels falling into
different intervals, and the reduction rate and distribution of false positive pixels in direct
classifications in two selected subset areas.
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Figure 9. Percentage of false positive pixels in each 1 × 1 km cell that falls into intervals defined by breaks 0.1%, 1%, 5%,
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Table 6. Number of false positive pixels in the two selected subset areas in two experiments.

Subset Area A Subset Area B

with the Standard Scheme with the New Scheme with the Standard Scheme with the New Scheme

the first
experiment 124,564 90,755 156,424 17,622

the second
experiment 60,700 10,386 121,402 20,082
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Figure 10. Classification results in the two selected subset areas in two experiments. (Exp1: the first experiment that utilized
the same total features in classifications in (b), (c), (h), and (i), and Exp2: the second experiment that utilized the optimal
features in classifications to balance the probability that a selected feature was effective for the scheme in (e), (f), (k), and (l).
The reference map and corresponding true color composite image from Sentinel-2 for two selected subset areas are shown
in left panels, that is, (a) and (d), (g) and (j), respectively.

4. Discussion
4.1. Improvement from the Inclusion of New Categories Outperforms That from Increasing
Sample Size

Note that the classification accuracy can also be improved by increasing the training
sample size [69]. If the improvement from increasing the sample size is similar to that from
inclusion of new categories, the hypothesis should be modified from the current one to
state that the inadequate consideration of non-mangrove vegetation near water is one of
the (key) reasons for false positive misclassification.
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This issue is discussed using the first experiment (presented in Section 3.1.1) as an
example. We generated a new training dataset with 10,800 samples, which was increased
by 50% compared with the training dataset for the standard scheme. Under the same
classification scheme (i.e., the standard scheme without consideration of non-mangrove
near water), features (i.e., the same total features), algorithm with the parameter-settings
(i.e., random forest with a tree number of 500 and a number of input variables randomly
chosen at each node of 7), and platform (i.e., the Google Earth Engine), a classification result
with a standard classification scheme using the increased training dataset was generated.
The number of false positive pixels and number of false negative pixels of the classification
result was compared with those from the first experiment (Table 7).

Table 7. Comparison of the number of false positive pixels and false negative pixels before and after
increasing the training dataset size under the standard classification scheme (i.e., before inclusion of
the new categories). The corresponding result after inclusion of the new categories (i.e., under the
new classification scheme) is also provided for comparison.

Samples Number of False
Positive Pixels

Number of False
Negative Pixels

before inclusion of
the new categories

before increasing
sample size (i.e.,
7200 samples)

16,767,422 547,466

after increasing
sample size (i.e.,
10,800 samples)

13,173,621 529,063

after inclusion of the
new categories 9600 samples 4,805,313 844,524

Table 7 shows that the increasement of training sample size can improve the classifica-
tion result, but the magnitude of improvement is smaller than that from inclusion of new
categories (i.e., the non-mangrove near water). As a consequence, the hypothesis can stand
as stable.

4.2. Prevalence of False Positive Misclassifications in Existing Studies

The classification results from three existing studies in two selected subset areas are
shown in Figure 11. In the terrestrial, the result from Baloloy, et al. [31] and that from
Chen, et al. [14] were spatially similar (Figure 11b,c). The false positive misclassifications
in the terrestrial were rarely mentioned in the literature, which may result from the fact
that these errors can be eliminated by corrections (such as by applying distance to coastline
constraints). In view of vegetation near water, all the approaches failed to give an acceptable
result. Though the result from Zhao and Qin [18] seems to be cleaner (Figure 11d), it did not
well suppress the non-mangrove vegetation patches near water as that from Chen, et al. [14].
Thus, the false positive misclassifications remain unresolved by various improvements in
mangrove classifications.

The classification schemes adopted in the above approaches did not consider an
inclusion of new categories (i.e., vegetation near water) to improve the classifications.
Mangroves live between terrestrial and marine conditions, where natural and in artificial
wetlands are abundant. Mangroves swamps have the characteristics of water inundation,
which are similar to salt marshes, lands cultivated for rice during transplanting phase
to early vegetative growth phase, and edges of aquaculture ponds. The situation was
exacerbated by mixed pixels that vegetation near any water will mix their spectrums to
be similar to that having the water inundation characteristics. As a consequence, the
non-mangrove near water ignored by standard classification scheme tends to be allocated
to be mangroves [70]. Thus, the separability between mangroves and these similar non-
mangrove pixels (i.e., wetlands pixels, mixed pixels) is the key to resolve the false positive
misclassifications.
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approaches, including a threshold approach based on the mangrove vegetation index (MVI) by Baloloy, et al. [31] in (b,f), a
phenology-based approach by Chen, et al. [14] in (c,g), and a random forest (RF)-based classification approach by Zhao and
Qin [18] in (d,h), have varied data sources, features, and classification schemes. Reference maps for subset areas are shown
in (a,e). Zoom-in figures are used to compare classification details. The classification results with a classification scheme
considering non-mangrove near water using the same total features (i.e., classification results with the new scheme in the
first experiment) are shown in zoom-in figures in (a,e).

The inclusion of the new categories provides a new way to significantly alleviate the
prevalent false positive misclassifications in existing studies (zoom-in figures of Figure 11).
The included categories drive the classifier to partition them out from the mixture including
mangroves and false positive pixels. Such a mandatory partition may result in some
pixels previously classified as mangroves as being classified into the new categories (i.e.,
the reduction of producer’s accuracy), meanwhile a much larger number of systematic
misclassified pixels were corrected to be classified into the new categories (i.e., significant
reduction on the number of false positive pixels). This phenomenon can be called the
shunting effect of the inclusion of new categories, which may explain the mechanism of
the improvement in this study.

4.3. Implications to other Mangrove Classification Approaches

In this study, the false positive misclassifications have been significantly reduced with
a reduction rate of 71.3% using the new scheme or a rate of 66.3% using the new scheme and
feature selection. This improvement is easy to implement in classifications by introducing
the new categories to consider vegetation near water that is defined as vegetation within
one pixel (i.e., 10 m for Sentinel images) from water bodies.

The false positive misclassifications are one of the main sources of mangrove map
inconsistencies [22,56,71–73]. Due to empirical constraints that relied on human experience,
researchers applied varied constraints with different thresholds (e.g., Hu, et al. [19] used a
10 km distance to the coastline to delineate the potential mangrove areas form the terrestrial,
while [14] used a 15 km distance to the coastline). Furthermore, these coarse constraints
cannot delineate the false positive patches nearing the mangroves or the sea, such as edges
of aquaculture ponds. Thus, the results after corrections need further visual inspections.
The widespread occurrence of false positive patches means exhaustive visual inspections,
because the visual inspections include three tasks: checking results by empirical constraints,
fixing false positive patches that escaped from the constraints, and correcting false negative
patches. Fewer false positive misclassifications will shrink the search space for visual
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inspections, improve the processing efficiency, and reduce participation of labors that have
different experience on identifying mangroves, thus increasing the accuracy of mangrove
maps. When both mangrove maps approximate the true distribution of mangroves, the
consistency problem will be resolved.

5. Conclusions

In this paper, by analyzing the direct classifications from existing RS-based studies
on large-area mangrove classifications, a hypothesis that an inadequate classification
scheme is the key reason for the false positive misclassification in large area mangroves
classifications was proposed. To validate the hypothesis, new categories (i.e., woody
vegetations near water, and herbaceous vegetations near water) defined as vegetation
within one pixel (i.e., 10 m for Sentinel images) from water bodies were introduced into a
standard classification scheme, and thus formed a new classification scheme. In controlled
conditions, two experiments in China were conducted on the Google Earth Engine cloud
computing platform to derive direct classification results from the two schemes for the year
2018, between which the first experiment using the same total features, and the second
experiment using the optimal features to balance the probability of a selected feature to
be effective for current scheme. In reference to a mangrove map, the inclusion of the new
categories reduced the false positive pixels with a rate of 71.3% in the first experiment,
and a rate of 66.3% in the second experiment. The hypothesis was also quantitatively and
qualitatively validated by the proportion and distribution of 1 × 1 km cells with false
positive pixels falling into different intervals, and by the reduction rate and distribution of
false positive pixels in direct classifications in two selected subset areas. All of the three
levels of validation in the two experiments support the hypothesis as true.

To the best of our knowledge, this research was the first to reveal and validate the key
underlying reason of false positive misclassifications in large-area mangrove classifications.
The experiments in this study significantly suppressed the false positive pixels by forcing
classification algorithms to partition the false positives out from mangroves after inclusion
of the new categories. A significant reduction of false positive pixels will shrink the search
space for visual inspections, improve the processing efficiency, and reduce participation of
labors, thus to increase the accuracy of mangrove maps. The validated hypothesis can be
easily applied to other studies by introducing the new categories.

In the future, the focus will be on the simplification of the multi-class schemes to
increase the efficiency in applying the validated hypothesis, and the increase of fea-
tures by time-series images to further decrease the false positive misclassifications in
mangrove classification.
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