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Abstract: Understanding the biases in Deep Neural Networks (DNN) based algorithms is gaining
paramount importance due to its increased applications on many real-world problems. A known
problem of DNN penalizing the underrepresented population could undermine the efficacy of
development projects dependent on data produced using DNN-based models. In spite of this, the
problems of biases in DNN for Land Use and Land Cover Classification (LULCC) have not been
a subject of many studies. In this study, we explore ways to quantify biases in DNN for land use
with an example of identifying school buildings in Colombia from satellite imagery. We implement a
DNN-based model by fine-tuning an existing, pre-trained model for school building identification.
The model achieved overall 84% accuracy. Then, we used socioeconomic covariates to analyze
possible biases in the learned representation. The retrained deep neural network was used to extract
visual features (embeddings) from satellite image tiles. The embeddings were clustered into four
subtypes of schools, and the accuracy of the neural network model was assessed for each cluster.
The distributions of various socioeconomic covariates by clusters were analyzed to identify the links
between the model accuracy and the aforementioned covariates. Our results indicate that the model
accuracy is lowest (57%) where the characteristics of the landscape are predominantly related to
poverty and remoteness, which confirms our original assumption on the heterogeneous performances
of Artificial Intelligence (AI) algorithms and their biases. Based on our findings, we identify possible
sources of bias and present suggestions on how to prepare a balanced training dataset that would
result in less biased AI algorithms. The framework used in our study to better understand biases
in DNN models would be useful when Machine Learning (ML) techniques are adopted in lieu of
ground-based data collection for international development programs. Because such programs aim to
solve issues of social inequality, MLs are only applicable when they are transparent and accountable.

Keywords: trustworthy AI; land use; remote sensing

1. Introduction

Applications of popular machine learning algorithms, such as Deep Neural Networks
(DNN) on real-world problems, are on the increase due to their ability to effectively rep-
resent multiple levels of abstraction and auto-feature extraction, [1] revealing underlying
complex patterns in datasets. The field of Land Use and Land Cover Classification (LULCC)
has also embraced DNN, mostly for harnessing satellite imagery data [2–6]. In the field of
LULCC, land cover usually refers to the observed physical cover on the earth’s surface,
such as vegetation and human-made objects, while land use is characterized by the arrange-
ments, activities, and inputs people undertake in a certain land cover types to produce,
change, or maintain it [7].

DNN for land cover classification has been explored extensively due to its objec-
tivity in producing promising results, such as high-resolution building footprints, with
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considerably high validation accuracy (average precision and recall of 0.95 and 0.91, re-
spectively) [8,9]. On the other hand, the use of DNN to identify land use classes on remote
sensing data has remained questionable due to the fact that DNNs do not put into consid-
eration important LULCC features, such as the interesting relationship between LULCC
and socioeconomic dynamics [10] and thus making the algorithms more susceptible to
biases and discrimination driven by human input. Nonetheless, the ability to automatically
infer land-use types from satellite imagery in a scalable manner is critical for development
programs that target specific populations and purposes [11] in the absence of curated and
centralized databases. For example, the United Nations Children’s Fund (UNICEF) and
the International Telecommunication Union (ITU) have recently initiated a development
program targeting the provision of an Internet connection to schools in developing coun-
tries [12] which requires accurate and comprehensive datasets of school locations. A recent
study demonstrated that DNN-based algorithms result in high validation accuracy when
identifying school buildings from satellite imagery [13].

As promising as this new research is, without properly understanding the intrinsic
biases of those results, it would be pernicious to use such models for sensitive and hu-
manitarian applications (such as the use case described above) where the ethics of the AI
is paramount [14]. AI and machine learning in humanitarian situations are particularly
challenging and must be conducted with substantial ethical considerations. Any AI ap-
plication for humanitarian purposes should be developed based on some set of values
and principles that are widely accepted standards of right and wrong. AI application
for humanitarian purposes can be likened to AI application for medicine. Not only is a
higher degree of accuracy required, but it also requires a higher level of transparency and
explainability. Every AI or machine learning model is a reflection of the data used to train
it. If there is bias and class imbalance in the training data, the model will also be biased
and imbalanced along the lines of the dataset. Understanding the bias in a DNN model is
particularly important for the aforementioned application because the model could become
biased and discriminatory against schools in underrepresented and vulnerable communi-
ties, which are the main targets of the program and might have been less represented in
the training dataset.

Efforts to document biases in algorithms and the ways in which this process plays out
in practice have been made [15–18]. Work in [19] summarizes and exemplifies different
types of biases in DNN across a wide spectrum of applications. Biases in AI models can
further promote inequality. For example, X-ray scans have been used to support COVID-19
diagnostics in patients. However, since the data used to train the models does not often
include images of patients suffering from Tuberculosis or AIDS/HIV, in geographies where
those diseases are more common, the models often lead to misdiagnosis [20]. Associating
the biases of DNN with socioeconomic contexts is discussed in [21,22]. This approach is
particularly relevant for applications of DNN in land use classification because of LULCC’s
inherent ties with complex socioeconomic contexts and DNN’s tendency to be less effective
for underrepresented groups [23]. However, as [14] pointed out, it is much more important
to build a broader framework for detecting and preventing biases when they happen rather
than just flagging the existence of biases in algorithms.

In this study, we explore the biases and, consequently, the limitations of AI algorithms
in classifying land use in the context of international development. In particular, we
focus on the task of identifying school buildings in Colombia from satellite imagery. Our
overarching goal is to produce a framework that can be helpful in the identification
and rectification of biases in DNN-based land-use classification models that result in
worse accuracy for the most vulnerable communities. With this purpose, we fine-tune
a pre-trained deep neural network using all the human-validated, labeled images of
schools in Colombia available from [13], with the purpose of reproducing the results
obtained in [13]. Once the model is trained with satisfactory accuracy, we investigate the
representations learned by the model to learn how it relates to the original images and their
accuracy. In order to attribute biases of the model to the context of the landscape where
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schools are located, we focus on the learned representations by the model (embedding) and
how those representations are correlated with the socioeconomic context of the original
images. The embeddings extracted from the model are abstract representations of the data,
which are often difficult to interpret and require additional processing before they can be
analyzed [24,25]. With this objective, we clustered the embedded representations of the
images and calculated the distribution of geographically aligned socioeconomic covariates
for each cluster.

2. Related Works

Convolutional Neural Networks (CNNs) have in recent years introduced many ef-
ficient deep learning designs and high-level vision tasks in LULC image classification,
object detection, and image segmentation, as well as low-level vision tasks, such as edge
detection [26]. Deep CNN was initially developed for image classification due to the
efficient way convolution layers recognize edges, patterns, context, and shapes giving
rise to convolutional feature maps having spatial dimensions smaller and deeper than the
original [27]. AlexNet with 8-layer CNN architecture known as feature extractor, which
was developed by Krizhevsky et al. [28], is deemed as the originator of image classification
CNN. In recent times, many advancements to Krizhevsky’s architecture have taken place,
such as the use of a narrower receptive window and increasing the network depth.

In ImageNet 2014 contest produced VGGNet to improve the work developed by
Krizhevsky et al. VGGNet’s efficiency in image classification problems can be attributed to
the use of kernel filters (3 × 3 filters) and deep neural networks (16–19 layers). The authors
noted that 3 × 3 convolution layers have the same efficient receptive area as the 7 × 7
convolution layer. However, VGGNet’s architecture is wider, with larger non-linearities,
and fewer parameters to update [29]. This consolidates the hypothesis that the fairest
approach to boost a CNN performance is to increase the depth and width of the CNN.

The complexities in automatic LULC extraction from satellite imagery through image
classification demand larger CNNs. However, deep CNNs with numerous layers are harder
to train and computationally intensive due to vanishing and exploding gradients problems.
The Residual Network learning called ResNet gained traction recently due to this problem
of vanishing and exploding gradients. Residual networks were built with shortcuts to the
full and main networks and have been inspired by the VGG networks based on the concept
of skipping [30]. In order to detach from the problem of increasing depth when creating
a CNN architecture, ResNet develops a narrower network using shortcut connections, in
other words, directly connecting input layers to the later layers. The significant ability
to train very deep CNNs with great efficiency can be attributed to the regular cut-off’s
connection (skipping) among the Deep CNN blocks [31].

There is a general tendency to go for networks with more depth in order to feature-
engineer more details from the imagery. However, these result in extended data preparation
and higher computing costs. The need for low-latency models for mobile and embedded
devices inspired Howard and Wang [32] to develop a lightweight deep neural network
model referred to as Mobile networks (MobileNets). MobileNets and its derivatives were
developed to solve the problem of deeper networks constrained by the speed in realizing
satisfactory results in real-time and other applications. The idea with MobileNets is
that a regular neural network convolution layer is broken down into two filters, depth-
wise convolution, and pointwise convolution. The usual convolutional filter is more
computationally intensive than depth-wise and pointwise convolutions. In this model, each
channel is convolved with its kernel, called a depth-wise convolution. Next, the pointwise
(1 × 1) convolution is processed to abstract and integrate the individual intermediate layer
from the depth-wise convolution into a single feature layer.

Another method that has gained a lot of interest is the application of CNNs for more
complex object detection tasks other than pixel-based classification of LULC in satellite
imagery, which involves the classification of objects of interest and their positions in the
image based on regression. In view of this, we would like to explore the Faster Region-based
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CNN utilizing a region-based CNN in the next phase of this work. Faster R-CNN performs
object detection based on two key algorithms: a Regional Proposal Network (RPN) to detect
regions and a Region-CNN (R-CNN) detector classifying regions and refining boundary
boxes. The model involves first the use of a base network, that is, CNN architecture that
has been pre-trained for classification to generate the necessary activation feature map. The
extracted feature maps are then passed through the RPN to generate an object proposal.
Each object proposal from the RPN is then applied in the network by overlapping it over
the existing convolutional feature map. This extracts various fixed feature maps of the
field of interest for each proposal. The final Region-based CNNs (R-CNN) incorporates the
preceding output with class details based on regions proposal. Using the object proposals
extracted via RPN and the extracted features for any one of the proposals (via ROI pooling),
a final class and object localization is achieved [33]. R-CNN is a model which attempts to
simulate the final phases of CNN classification where a totally flattened layer is applied
to generate a score for each conceivable object form. R-CNN objectives are to classify the
proposal and modify the bounding box for the proposal according to the predicted class.
Although faster R-CNN is extremely reliable, it is relatively slower.

Similarly, the Region-Based Fully Convolutional Network (R-FCN) was developed by
Dai et al. [34] to handle the slowness property of Faster R-CNN frameworks. They used an
inefficient sub-network for each region a multitude of times, and R-FCN adopted a fully
convolutional architecture over the whole image. This allows total network convolutions
to carry out one calculation in detail and accurately. The R-FCN provides new location-
sensitive scoring maps. In addition, the issue between translation invariance and translation
difference in recognizing objects is addressed more effectively. Therefore, R-FCN integrates
feature maps and applies convolution to construct position-sensitive score maps, which
enable convolutional networks to perform both classification and detection in a single
evaluation successfully. The position-sensitive ROI pooling is used to produce a vote array
of the output size for any ROI to achieve a 2D score map of each class. For regression of the
boundary box, another convolution filter is used to construct a 3D output map on the final
feature maps. Then, the ROI-pooling is used to measure a 2D array with each element that
includes a boundary. The sum of these elements is the final bounding box estimate [34].
R-FCN presents new position-invariant spatial scores which enable convolutional networks
to successfully perform both classification and detection in a single evaluation. Introducing
these improvements to R-FCN allows the framework to execute about 10 times faster and
with better accuracy.

For real-time object detection applications that require maintaining a balance between
time, speed, and accuracy, single-phase deep learning approaches that detect multiple
objects in a single scan attract more attention. The two most popular single-shot models are
the YOLO and Single-shot detector (SSD) frameworks. YOLO is a network that classifies
bounding boxes in real-time [35]. To achieve this, YOLO combines area proposal and region
classification to form a single network and does this as the frame is simply regressing
on box localization and related probabilities. YOLO is exceptionally fast. However, it
does not guarantee the precision seen in the two-phase frameworks, such as R-FCN and
Faster R-CNN previously discussed. The SSD is a better approach as it is focused on a
feed-forward-based convolution network that generates a fixed-size bounding box set and
scores object instances present in these boxes, and a final detection method is based on a
Non-Maximum Suppression (NMS) criterion [36].

Certainly, the CNNS are very efficient in both pixel-based and object-based image
classification. CNNs achieve high performance through a gradient-based learning process
based on the concept of loss computation and loss function minimization [26,37,38] In view
of this, we experimented with the ResNet18 and MobileNetV2 in this study and concluded
the modeling and analysis with the Shift-Invariant ResNet18 CNN, which is relatively the
most suitable model based on our approach and objectives. The next phase of this study
includes some experimentation with object-based models as described above.
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3. Materials and Methods

An overview of the framework used in this study is summarized in Figure 1. The
input images, together with the neural network architecture and the obtained prediction,
are represented in the top row of Figure 1. The red block in Figure 1 with the label
“embedding” contains the learned representation of the data by the model. Running the
obtained embedding through a clustering algorithm, we arrived at four clusters that were
used to understand what the model was learning and if it was biased. Based on the location
information of each image, we were able to compute the distribution of socioeconomic
covariates within each image and consequently for each cluster, obtaining an aggregated
metric for each of them. The computed covariates for each cluster were used to assess the
bias in the model. This second part of the analysis is depicted in the second row of Figure 1,
in which we can observe how each image from each cluster (represented by the different
colors) is located in space and how for each image, we can compute a covariate based on
its location. Finally, the covariates are grouped to obtain joint statistics.
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3.1. Datasets

The dataset used in this study was obtained from UNICEF and consisted of a set of
images labeled by experts indicating whether a school is present or not and validated by
their function, which is education, but not by their physical characteristics. Yi et al. [13]
used as many images as they had available for their first model. Then they used only
selected images after validation for the second model. We replicated the second of their
experiment, fine-tuning a pre-trained network, and, therefore, we only used the images
that they used for validation. For each training sample location, a high-resolution image
tile of 224 by 224 pixels with zoom level 18 was collected from MAXAR’s image archive
under NextView license (Table A1). Furthermore, each image was augmented with its
corresponding socioeconomic covariates which were downloaded from the FTP site of
WorldPop [39]. The complete list of covariates used is mentioned in the Results section and
Table A4. The dataset used in this study consisted of 3424 images, out of which 1181 images
were labeled as having a school in them, and 2243 images were labeled as not having a
school. These labels were obtained from experts who manually verified each image.

3.2. School Building Classifier Model and Training

Inspired by the work in [13], we fine-tuned four deep learning architectures: ResNet18
and MobileNetV2 with and without anti-aliasing [40]; but finally settled on pre-trained
implementation of a Shift-Invariant ResNet18 Convolutional Neural Network from Py-
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Torch [41], as it outperformed the other models (Table 1). The architecture of a ResNet is
depicted in Figure 1 with the label “CNN” (Convolutional Neural Network). There, each
of the blocks represents a layer of the model, and the embedding corresponds to the output
of the average pooling layer. The entire satellite imagery dataset was randomly split as
80% of images for training (2191 images) and 20% for testing (685 images). The validation
dataset was 20% of the initial training dataset (548 images) [26]. We trained the network
using the following parameters: a batch size of 16, 0.0001 of the learning rate, 0.5 of the
dropout rate, and 25 epochs of training (Table A2). Each batch of images was transformed
using a random transformation such as a rotation, a flip, or a translation (Table A3) to
augment the dataset and avoid over-fitting.

Table 1. Summary of different metrics used to measure the classifiers’ performance on the test dataset.

Model Acc. Label Precision Recall F1-Score ROC-AUC N

ResNet18 0.836
school 0.744 0.801 0.771

0.77
236

not_school 0.891 0.855 0.873 449
ResNet18

Anti-Aliased
0.844

school 0.738 0.847 0.789
0.74

236
not_school 0.913 0.842 0.876 449

MobileNetV2 0.839
school 0.710 0.903 0.795

0.78
236

not_school 0.940 0.806 0.868 449
MobileNetV2
Anti-Aliased

0.841
school 0.724 0.869 0.790

0.78
236

not_school 0.923 0.826 0.872 449

3.3. Clustering of Satellite Image Tiles

To gain deeper insights into the inner workings of our Convolutional Neural Network
(CNN), we performed a clustering analysis on the images that were classified as having
a “school” by our model (1304 total images). The clustering was performed on the repre-
sentation obtained for each image in the last layer of the network (the embedding), and
different clustering algorithms were tried, including K-means, Gaussian Mixture Models
(GMM), and Spectral clustering [42,43]. All the embedding vectors (X) were transformed
by scaling each value to a range between 0 and 1 as follows:

X_scaled = (X− X.min) / (X.max− X.min)

Then Principal Component Analysis (PCA) [44] was evaluated as a dimensionality
reduction technique. In practice, the dimension of the embedding was reduced from 512
down to 64 using PCA, where the number of features was selected by choosing the point
of maximum curvature, with 88.31% of explained variance.

Depending on the clustering method, different approaches were used to find the
optimal number of clusters (k), such as the Elbow method, Silhouette Coefficients, or
Akaike Information Criterion(AIC) [45,46]. The Silhouette Coefficient is a measure of how
similar elements within the same cluster are to each other and how dissimilar they are
to elements outside their own cluster. The coefficient ranges between −1 and 1: a higher
value indicates a good clustering, where a low value indicates a bad grouping of elements
and is calculated by taking into account the mean intra-cluster distance and the mean
nearest-cluster distance for each data point [47]. The Silhouette Coefficient was calculated
using the mean intra-cluster distance (dic) and the mean nearest-cluster distance (dnc) for
each sample as follows:

(dnc − dic) / max(dic, dnc)

The optimal number of clusters was finally selected using the Elbow method [48],
which finds the inflection point on the curve based on the inertia values, which is the
sum of squared distances of samples to the nearest cluster center from k-means clustering
with different cluster numbers. Clusters were visually inspected to identify any distinctive
characteristics. Having obtained the clusters, we compared the accuracy of the CNN at
identifying school buildings within each cluster. The accuracy was calculated for each
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cluster and separately for images belonging to the train dataset and images belonging to
the test dataset. The accuracy for each dataset and cluster was calculated following widely
used methods to assess classification accuracies [49] as:

accuracy = school observations\school predictions

where:

school predictions = school observations + not-school observations

3.4. Socioeconomic Covariates Analysis

For each cluster, we calculated the distribution of eight socioeconomic covariates:
distance to a road (log-transformed), distance to waterway (log-transformed), distance
to IUCN areas, VIIRS night-time light data (which is often used as a proxy for wealth),
elevation of the area, slope of the area, female population between 5 and 10 years, and male
population between 5 and 10 years.

4. Results and Discussion
4.1. Model Performance

Among the different deep learning models that we tested, anti-aliased ResNet18 demon-
strated the best accuracy overall. Table 1 shows the test results by different algorithms.

The anti-aliased ResNet18 model achieved an overall accuracy of 84%, which is rela-
tively higher when compared to recent studies [50] and considering the complexity of the
task and the simplicity of the approach. For the test set, the performance of the model was
assessed, taking into account two possible labels “school” (236 images) and “not-school”
(449 images). Figure 2 shows the learning curve of the anti-aliased ReseNet18 model.

Remote Sens. 2021, 13, x FOR PEER REVIEW 7 of 21 
 

 

distance for each data point [47]. The Silhouette Coefficient was calculated using the mean 
intra-cluster distance (𝑑 ) and the mean nearest-cluster distance (𝑑 ) for each sample as 
follows: (𝑑 − 𝑑 ) / 𝑚𝑎𝑥(𝑑 , 𝑑 )  

The optimal number of clusters was finally selected using the Elbow method [48], 
which finds the inflection point on the curve based on the inertia values, which is the sum 
of squared distances of samples to the nearest cluster center from k-means clustering with 
different cluster numbers. Clusters were visually inspected to identify any distinctive 
characteristics. Having obtained the clusters, we compared the accuracy of the CNN at 
identifying school buildings within each cluster. The accuracy was calculated for each 
cluster and separately for images belonging to the train dataset and images belonging to 
the test dataset. The accuracy for each dataset and cluster was calculated following widely 
used methods to assess classification accuracies [49] as: 

accuracy = school observations\school predictions 

where: 

school predictions = school observations + not-school observations 

3.4. Socioeconomic Covariates Analysis 
For each cluster, we calculated the distribution of eight socioeconomic covariates: 

distance to a road (log-transformed), distance to waterway (log-transformed), distance to 
IUCN areas, VIIRS night-time light data (which is often used as a proxy for wealth), ele-
vation of the area, slope of the area, female population between 5 and 10 years, and male 
population between 5 and 10 years. 

4. Results and Discussion 
4.1. Model Performance 

Among the different deep learning models that we tested, anti-aliased ResNet18 
demonstrated the best accuracy overall. Table 1 shows the test results by different algo-
rithms. 

The anti-aliased ResNet18 model achieved an overall accuracy of 84%, which is rela-
tively higher when compared to recent studies [50] and considering the complexity of the 
task and the simplicity of the approach. For the test set, the performance of the model was 
assessed, taking into account two possible labels “school” (236 images) and “not-school” 
(449 images). Figure 2 shows the learning curve of the anti-aliased ReseNet18 model. 

 
Figure 2. Accuracy and loss graph of the anti-aliased ResNet18 model. 

The model accuracy for “school” labels was 0.84, and for images labeled “not-
school”, it was 0.74. Analogously, we found that the precision was 0.74 and 0.91, respec-
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The model accuracy for “school” labels was 0.84, and for images labeled “not-school”,
it was 0.74. Analogously, we found that the precision was 0.74 and 0.91, respectively, the
recall was 0.87 and 0.84, respectively, while the F1-score was 0.79 and 0.87, respectively.
The precision and F1-scores for the “not-school” label were better than those for the
“school” label, i.e., the classifier was more likely to fail when predicting the “school” label
rather than the “not-school.” Table 2 shows the confusion matrix between school and
not-school samples.

Table 2. Confusion matrix of the classification results from anti-aliased ResNet18 model.

Truth\Prediction School Not School Sum

School 200 36 236
Not-School 71 378 449

Sum 271 414 685
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Even if the classifier correctly classifies an image as “school”, it is possible that what
the neural network learned were some other characteristics common to all the samples in
the dataset. To ensure that the classifier was actually detecting school buildings, we used
Gradient-Weighted Class Activation Mapping (Grad-CAM), which showed where in the
satellite image tile the model was looking at [51]. A visual explanation of what the model
does is depicted in Figure 3 (each blue-yellow-red map to the right of the satellite image).
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Figure 3. Gradient class activation heatmap of the trained convolutional neural network over a
“school” labeled satellite image tile. The point shows the school’s real location while the red color
shows where the model looked in the image to predict “school”.

We found that nearly 83% of the model’s predictions located the correct building. The
later analysis was performed manually, visually inspecting the regions obtained from the
gradient class activation and comparing them against the ground truth (the real images
with a dot on top of the school building). From the accuracy assessment and Grad-CAM,
we confirmed that the model was correctly identifying the vast majority of school buildings.

An assumption about our model was that it may work differently in different places.
To test the assumption before a further analysis on different socioeconomic contexts, we
summarized the result of the classification to show the differences in the accuracies between
an urban area and rural area (Table 3). For the distinction between urban and rural areas,
we used the data and definition from the Global Human Settlement Layer [52]. From the
comparison between the results for urban and rural areas, we found a very high difference
in the model accuracies (diff: 0.236) between subsets. The model accuracy was better for
the rural subset than the urban one. Further analysis of the confusion matrix for urban and
rural areas revealed more detailed insights on the performance of our model (Table 4).

Table 3. Summary of the classification results by urban and rural areas.

Model Acc. Subset Label Precision Recall F1-Score N

ResNet18
Anti-

Aliased

0.696 Urban
school 0.720 0.853 0.781 163

not_school 0.625 0.426 0.506 94

0.932 Not-
urban

school 0.782 0.836 0.808 73
not_school 0.966 0.952 0.959 355

In urban areas, our model performed much less effectively when predicting the not-
school class. This implies that in the urban class compared to school areas, the model was
biased towards schools and making over-predictions. Contrarily, the model performed
with very high accuracy (recall: 0.952, F1-score: 0.959) for the not-school label in the rural
subset. However, Figure 4 shows that there were many images without buildings in the
rural subset, making it easy for the classifier to detect the lack of buildings as not-schools
and produce higher accuracy metrics.
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Table 4. Confusion matrix of the classification results for urban and rural areas.

Urban Area

Truth\Prediction School Not School Sum

School 139 24 163
Not-School 54 40 94

Sum 193 64 257

Rural Area

Truth\Prediction School Not School Sum

School 56 17 73
Not-School 16 339 355

Sum 72 356 428

Remote Sens. 2021, 13, x FOR PEER REVIEW 9 of 21 
 

 

summarized the result of the classification to show the differences in the accuracies be-
tween an urban area and rural area (Table 3). For the distinction between urban and rural 
areas, we used the data and definition from the Global Human Settlement Layer [52]. 
From the comparison between the results for urban and rural areas, we found a very high 
difference in the model accuracies (diff: 0.236) between subsets. The model accuracy was 
better for the rural subset than the urban one. Further analysis of the confusion matrix for 
urban and rural areas revealed more detailed insights on the performance of our model 
(Table 4). 

Table 4. Confusion matrix of the classification results for urban and rural areas. 

Urban Area 
Truth\Prediction School Not School Sum 

School 139 24 163 
Not-School 54 40 94 

Sum 193 64 257 
Rural Area 

Truth\Prediction School Not School Sum 
School 56 17 73 

Not-School 16 339 355 
Sum 72 356 428 

In urban areas, our model performed much less effectively when predicting the not-
school class. This implies that in the urban class compared to school areas, the model was 
biased towards schools and making over-predictions. Contrarily, the model performed 
with very high accuracy (recall: 0.952, F1-score: 0.959) for the not-school label in the rural 
subset. However, Figure 4 shows that there were many images without buildings in the 
rural subset, making it easy for the classifier to detect the lack of buildings as not-schools 
and produce higher accuracy metrics. 

 
Figure 4. Random sample of images on the test dataset by urban and rural subsets. 

4.2. Clustering 
Having a model able to identify school buildings, we continued to identify sub-types 

of school images using clustering methods. We tested different clustering algorithms, dif-
ferent numbers of possible clusters and finally used the Silhouette Coefficient to evaluate 
the results obtained. 

Figure 4. Random sample of images on the test dataset by urban and rural subsets.

4.2. Clustering

Having a model able to identify school buildings, we continued to identify sub-types
of school images using clustering methods. We tested different clustering algorithms,
different numbers of possible clusters and finally used the Silhouette Coefficient to evaluate
the results obtained.

From Figure 5, we can observe that k-means with PCA dimensionality reduction gave
the best results based on the Silhouette Coefficient [45]. The coefficients from different
clustering methods with and without applying Principal Component Analysis (PCA) were
comparatively low, which means a relatively high overlap between clusters [47]. Based
on this observation, k-means with PCA was chosen as the method for clustering. Then,
using the heuristic Elbow method [53], we obtained the optimal number of clusters of four.
Figure 6 shows the number of clusters chosen using Elbow and Silhouette methods, with a
visualization of clusters in two-dimensional space using T-distributed stochastic neighbor
embedding (t-SNE).

We labeled the four clusters with numbers ranging from 0 to 3: C0 (529 elements), C1
(273 elements), C2 (330 elements), and C3 (172 elements). We visually investigated each
cluster for any noticeable patterns. From this, we concluded that clusters were largely
decided by the characteristics of landscape (amount of vegetation, urban versus rural)
in the area where the school buildings were located rather than by the features from the
school buildings themselves.
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Figure 6. Top left: finding the number of components based on the point of maximum curvature from
the Principal Component Analysis. Top right: using the Elbow method to determine the k number of
clusters. Bottom left: Silhouette Coefficients. Bottom right: two-dimensional color visualization of
the CNN feature embedding after t-SNE, clustered according to the k-means algorithm.

In Figure 7, we can observe three images sampled for each cluster together with their
respective Grad-CAM heatmap. The color of the border around each image indicates if a
school was present or not in the image. Each group of four images corresponds to a cluster,
with its corresponding label on top. From inspecting the images in each cluster, we can
observe that cluster C2 was mostly urban, while cluster C3 was mostly rural. Clusters
C0 and C1 had a larger diversity with mixed urban and rural images in them. The three
images depicted for each cluster follow a specific logic. The two images on the top (with
the green border) are the most representative images in each cluster that were at the same
time true positives (contained a school building and were classified as schools). In this
case, the most representative image was measured using the highest value of the Silhouette
Coefficient. On the other hand, the picture in the bottom with the red border with the
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least representative image in the cluster was a false positive (it did not have a school but
was classified as having one). The color of the border in Figure 7 indicates whether our
classification algorithm correctly predicted a school or not. A green border represents an
accurate prediction, while a red border indicates an incorrect one.
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Having described the four clusters and their characteristics, we delved into the main
question of the paper: is there an intrinsic bias in the model? To tackle this unknown, we
studied the performance of the model per cluster instead of looking at the aggregate result.

Table 5 shows training and testing accuracies by each cluster. Clusters C0 and C3,
which had characteristics of rural areas, showed a relatively lower test and train accuracy
compared to clusters C1 and C2, which were mostly urban. The numbers presented above
clearly show that the schools in the clusters with urban characteristics could be identified
much better. The number of red and green borders in Figure 7 is not representative of the
accuracy of each cluster. Those representatives were obtained by random sampling from
each cluster. Since urban areas are typically wealthier than their rural counterparts, we
tried to understand if the bias in the clusters was correlated to socioeconomic covariates
and, therefore, if the model was negatively biased towards poorer communities.

Table 5. Training and testing accuracies obtained with the different clusters.

Dataset\Cluster C0 C1 C2 C3

Train 0.717 0.972 0.952 0.776
Test 0.672 0.898 0.785 0.571

4.3. Socioeconomic Covariates Analysis

The distribution of various socioeconomic values within each cluster is presented in
Figure 7. The most noticeable and clear findings from the socioeconomic covariate analysis
was that cluster C3 was located in the most rural and remote regions with the lowest
income level and the smallest child population, as shown in Figure 8.

The high slope values observed for cluster C3 also represent a characteristic of the im-
poverished areas in general [48]. We have identified that the accuracy of the deep learning
model was lowest in the cluster C3 (0.78 and 0.57 for the train and test dataset, respectively),
and these findings confirm our original assumption and previous studies [21–23] that DNN
would be less effective in the context of landscape linked with vulnerability. More detailed
accuracy matrices are shown in Figures A1 and A2.

Figure 8 also reveals differences between clusters in multiple dimensions, which we
could not recognize from a simple visual inspection using the natural color composite
of optical remote sensing data. From the visual inspection using satellite imagery, C3
and C0 looked similar, both showing the typical characteristics of rural areas (Figure 7).
However, when the two clusters were compared for the distribution of night-time light
values, which is commonly used as a proxy for economic status [54], C0 showed a much
wider distribution of values and a higher mean value compared to C3. This implies the
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income level in C0 would be comparatively higher than C3, which might have resulted in
forming the physical characteristics of school buildings in the cluster. In terms of distance
to road and water, C0 showed a similar distribution and mean values with the urban
clusters C1 and C2. This reaffirms the difference between clusters C0 and C3, which might
have caused the difference in model performance. In contrast, C1 and C2 showed higher
accuracy and were linked with characteristics of well-developed and well-connected urban
areas, as shown in Figure 8, which supports our original assumption. However, differences
between those two clusters were also identified in the distributions of socioeconomic
covariates. While C2 showed a typical characteristic of densely populated city area with the
highest level of night-time light values, short distance to road and water, the largest child
population, and the overall highest level of elevation [55], C1 showed the characteristics of
sub-urban area with a proximity to infrastructures but with low population density. The
slightly different model accuracy between C1 and C2 seems to have been driven by such a
difference between the two clusters. More details on each socioeconomic variable can be
found in Appendix B (Figures A3–A10).
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In this study, we could typify schools in Colombia in different contexts using cluster
analysis based on feature information extracted from a deep learning algorithm model
trained from satellite imagery to identify school buildings. This allowed us to understand
how the algorithm performed in heterogeneous socioeconomic contexts. While we could
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confirm our initial assumption that the model accuracy is lowest in the places where the
most vulnerable populations are, there are some limitations that need to be addressed in
future studies.

We clustered school image tiles into four clusters and later interpreted each as a
type of school. However, the results of clustering seem widely based on the context of
landscapes in which the schools were located, and we could not identify features directly
from the school building itself. Urban, wealthy, and closely located schools were much
better identified by DNN. This may be related to some quantifiable physical characteristics
of school buildings, such as size, color, and material. In this study, we did not measure such
attributes of school buildings directly. We envision that such variables about individual
school buildings can be used to typify school buildings better.

Geospatial variables were selected considering their availability and relevance to
the characteristics of the landscape, which we assumed would have been linked to the
performance of the deep learning model. That is to say that socioeconomic covariates,
which we assumed to be related to vulnerability and representativeness, such as poverty
and child population, were selected and proved to have a strong relationship with the
model’s performance. Nevertheless, we admit that the list of socioeconomic variables
used in this study is far from inclusive from the list of all potential factors linked with
the contexts of landscapes and land use characterization. Furthermore, we are aware of
the potential measurement bias that arises from our choice of covariates as proxies. One
difficulty in the process of covariate selection was that there is virtually no previous study
that tried to prove the relationships between DNN’s performance to characterize land
use and the socioeconomic context of landscapes where the subjects of the models are
located. This study has benefited enormously from the socioeconomic geospatial dataset
from WorldPop [39]. Such public repositories providing up-to-date and disaggregated
geospatial datasets are essential for such an approach as taken by our study.

Retraining the model with a new, balanced dataset of tiles would be the next step to
obtaining greater accuracy and minimizing bias. While we recommend our framework to
assess biases and to make strategies to rectify them, it should be noted that sampling for a
new training dataset based on an analysis of a limited number of covariates is not desirable
before a comprehensive analysis of them. For example, one may normally expect that the
values of a covariate most present in cluster C3 are those less represented in the dataset
since it was the cluster with the worst accuracy (Figure 8). Nevertheless, this was not the
case for the female and male child population and night-time light data (Figure 8). In fact,
the low range values for those covariates, which were mostly seen in cluster C3, were well
represented in the training dataset.

It is also worth mentioning that the DNN used in this study was fine-tuned and not
trained from scratch. Since it is well known that some datasets used to pre-train these
networks are biased (such as ImageNet [56]), some bias found can be due to the original
bias in the pre-trained network, of which development was heavily concentrated on the
developed world [18]. Given the case, it would be important to devise a procedure to
understand and reduce the pre-existing biases before proceeding to train the model with
one’s own data.

5. Conclusions

At the beginning of this article, we argued that because of the lack of explainability
and biases in the DNN base model for land use classification, it would demonstrate worse
efficacy for the most vulnerable communities. Explainability is one of the most crucial
factors of AI algorithms if they are to be applied to real-world problems, but unfortunately,
not many advances have been seen in the field of LULCC, especially for the applications
on land use classification. Through a novel combination of techniques ranging from DNN
to clustering algorithms, we explored and identified biases in AI, rendering the process of
automatic identification of schools more transparent and explainable.
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Through our study, we identified three possible sources of bias in the DNN base
models: the socioeconomic covariates used as a proxy for socioeconomic development,
the bias from the sample of images used to train the model, and the bias introduced by
the original dataset used to pre-train our deep neural network. One of the most critical
findings from this study is that DNN based models could be least effective for the most
vulnerable communities. This finding is important when the DNN based results are used
in a project to solve real-world issues because such biases in DNN models can significantly
undermine the effectiveness of development projects which are increasingly dependent on
data and insights produced using DNN. As such, we envision that the framework of our
study could be applied to enlighten the errors and biases in DNN based models adopted
in various types of humanitarian operations.

We have identified some lines of future work that could improve the bias detection
framework presented in this paper. First, we may increase the number of clusters with more
training samples to detect the more nuanced differences from the school buildings. Second,
another approach worth considering would be to extract the identified school from each
image (using the class activation gradient) and then train a new model with less noise only
on the most important section of the image: the building itself. Furthermore, an ensemble
model [57] could be used to take both kinds of features: the type of buildings and the
landscape that surrounds them. It would also be fruitful to pursue further research about
the relationship between a Deep Neural Network’s performance and the socioeconomic
context of the landscapes where the subjects of the models are located, aiming to discover
more geospatial variables linked with the performance of the model.

Finally, we hope that our study contributes to enhancing the awareness of the impor-
tance of the explainable and equitable algorithms for the development sector.
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Appendix A

Table A1. Details of the satellite imagery tiles used in this study.

Attribute Values

Bands R,G,B—natural composite
Resolution 60 cm per pixel

Size 224 × 224 pixels
Sensor Worldview3

Table A2. Hyperparameters for model training.

Parameter Values

Batch size 16
Learning rate 0.0001
No. epochs 25

Dropout 0.5
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Table A3. Data augmentations used for the images.

Method Values

Random flip Horizontal, vertical
Random rotation Between 1–179 degrees

Random scale Between 1.01 and 1.20
Random brightness Between 0.8 and 1.2

Table A4. Socioeconomic variables and sources.

Variable Resolution Source (All accessed on 23rd July 2021)

Distance to major roads 100 m https://www.worldpop.org/geodata/summary?id=17346
Distance to major waterways 100 m https://www.worldpop.org/geodata/summary?id=17844

Distance to IUCN areas 100 m https://www.worldpop.org/geodata/summary?id=18093
VIIRS night-time lights 100 m https://www.worldpop.org/geodata/summary?id=18582

SRTM elevation 100 m https://www.worldpop.org/geodata/summary?id=23313
SRTM slope 100 m https://www.worldpop.org/geodata/summary?id=23064

Female population between 5 and 10 years 100 m https://www.worldpop.org/geodata/summary?id=16823
Male population between 5 and 10 years 100 m
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Appendix B.1. Distance to Major Roads

We observed that the distances to major roads values seemed to be higher in C3 (the
most rural cluster) with an average distance of 4.820 km and lower in C2 (the most urban
cluster) with an average distance of 0.410 km. C0 had a higher average distance to major
roads than C1: 1.01 km vs. 0.886 km, respectively.
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Appendix B.2. Distance to Major Waterways

We observed that the distances to major waterways values seemed to be higher in C3
(the most rural cluster) with an average distance of 2.729 Km and lower in C2 (the most
urban cluster) with an average distance of 1.116 Km. C1 had a higher average distance to
major waterways than C0: 2.030 Km vs. 1.492 Km, respectively.
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Appendix B.3. Distance to IUCN Strict Nature Reserve and Wilderness Area Edges

We observed that the distances to IUCN strict nature reserve and wilderness area
edges were similar for C0, C1, and C3 with 501 km, 506 km, and 481 km average values,
respectively. The distances were slightly lower for C2 (the most urban), with an average
value of 451 km.
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Appendix B.4. VIIRS Night-Time Lights

We observed that the VIIRS night-time lights values seemed to be very low for C3
(the most rural cluster), with the lowest average value of 2.827 nanoWatts/cm2/sr. Higher
values were observed in C2 (the most urban cluster), with the highest average value
of 36.065 nanoWatts/cm2/sr. C0 had a higher average value compared to C1: 30.110
nanoWatts/cm2/sr vs. 15.927 nanoWatts/cm2/sr, respectively.
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Appendix B.5. SRTM Elevation

The average elevation for all clusters were similar, except for C2 (the most urban
cluster) with a higher average value: C0 = 1259 m, C1 = 1132 m, C2 = 1643 m, and
C3 = 1288 m.
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Appendix B.6. SRTM Slope

The average slope for all clusters were similar, except for C3 (the most rural cluster)
with a higher average value: C0 = 3.5 degrees, C1 = 4.5 degrees, C2 = 3.0 degrees, and
C3 = 8.3 degrees.
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Appendix B.7. Female Population between 5 and 10 Years

The average female population between 5 and 10 years in a 100 m cell for clusters C3
and C1 were lower than C2 and C0 with 0.29, 1.27, 3.45, and 2.42, respectively.
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Appendix B.8. Male Population between 5 and 10 Years

The average male population between 5 and 10 years in a 100 m cell for clusters C3
and C1 were lower than C2 and C0 with 0.30, 1.33, 3.59, and 2.53, respectively.
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