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Abstract: The goafs caused by coal mining cause great harm to the surface farmland, buildings, and
personal safety. The existing monitoring methods cost a lot of workforce and material resources.
Therefore, this paper proposes an inversion approach for establishing the locations of underground
goafs and the parameters of the probability integral method (PIM), thus integrating distributed scatter
interferometric synthetic aperture radar (DS-InSAR) data and the PIM. Firstly, a large amount of
surface deformation observation data above the goaf are obtained by DS-InSAR, and the line-of-sight
deformation is regarded as the true value. Secondly, according to the obtained surface deformations,
the ranges of eight goaf location parameters and three PIM parameters are set. Thirdly, a correlation
function between the surface deformation and the underground goaf location is constructed. Finally,
a particle swarm optimization algorithm is used to search for the optimal parameters in the range
of the set parameters to meet the requirement for minimum error between the surface deformation
calculated by PIM and the line-of-sight deformation obtained by DS-InSAR. These optimal parameters
are thus regarded as the real values of the position of the underground goaf and the PIM parameters.
The simulation results show that the maximum relative error between the position of the goaf and
the PIM parameters is 2.11%. Taking the 93,604 working face of the Zhangshuanglou coal mine in
the Peibei mining area as the research object and 12 Sentinel-1A images as the data source, the goaf
location and PIM parameters of the working face were successfully inverted. The inversion results
show that the maximum relative error in the goaf location parameters was 16.61%, and the maximum
relative error in the PIM parameters was 26.67%.

Keywords: DS-InSAR; goaf location inversion; probability integral model; PSO; deformation

1. Introduction

Coal is currently the main energy source in China, and coal mining has led to the
existence of a large number of abandoned goafs. This often results in the reduction of
ground elevation, which can cause serious ecological and environmental problems includ-
ing farmland inundation, soil salinization, and desertification. It can also be detrimental to
the safety of people’s lives and property [1,2]. Research examining mining subsidence has
played a positive role in reducing surface subsidence disasters and economic losses [3–6].
With the efforts of experts and scholars worldwide, a series of research methods have been
established to investigate this problem, including the typical curve method, the profile
function method, and the probability integral method (PIM). The latter of these has become
a relatively mature method to research the relationship between coal mining and land
subsidence [7]. Inversion research on mining subsidence has two main aspects. Firstly,
the PIM parameters are obtained by inversion from the underground mining information
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and surface subsidence observation data, and the mining subsidence caused by the other
working faces can be predicted by the PIM [8]. Secondly, using the known PIM model
parameters and surface subsidence observation values, the goaf positions in the mining
area can be obtained by inversion [9].

In the process of realizing the inversion of PIM parameters related to goafs or geology,
observed values of surface deformation need to be used; the establishment of surface move-
ment observation stations therefore plays an important role in promoting research examin-
ing mining subsidence. Leveling, GPS, interferometric synthetic aperture radar (InSAR),
and other technologies are widely used in mining subsidence monitoring [10,11]. Due to its
large coverage, all-weather capability, and high monitoring accuracy [12], InSAR is widely
used to measure deformations in glaciers [13,14], volcanoes [15,16], earthquakes [17,18],
and other landscapes, as well as urban and general land surface deformations caused by
resource exploitation. Scholars worldwide have also tried to apply InSAR technology to
the observation of surface deformations caused by mining activities [19,20].

In most existing goaf-location inversion methods, the PIM parameters are given based
on experience [21–24], which leads to large errors. To obtain more accurate model parame-
ters, information should be known about the goaf to invert the model parameters [25–27].
However, the existing research still has the following shortcomings: (1) generally, PIM
parameters are difficult to obtain accurately; at present, they are mainly given based on
experience, which can be arbitrary and may lead to large errors. (2) Even if the PIM param-
eters are retrieved from surface observation station data, the calculated model parameters
are not necessarily reliable due to errors in the monitoring data and the underground work-
ing face information. (3) Most previous studies have used differential InSAR (D-InSAR)
and leveling and GPS observations from surface movement observation stations to obtain
the surface deformation; however, D-InSAR is affected by temporal and spatial incoherence
and atmospheric delay, so it is difficult to use this for obtaining accurate deformation
information and the point density required for the inversion of underground goaf locations.
(4) Most of the existing research cases are related to shallow or horizontal mining, and the
influence of the coal seam dip angle is generally ignored; however, when the coal seam
is deeply buried, the center coordinate offset is large, and the influence of the dip angle
cannot be disregarded.

According to these shortcomings, this paper puts forward the following improvements.
Firstly, aiming at shortcomings (1) and (2), both the goaf location parameters and the main
PIM parameters are regarded as unknown parameters to participate in the inversion
simultaneously; this means that the results are closer to the real values and avoid the large
errors caused by the use of empirical values. Secondly, due to the influence of spatial–
temporal decoherence, it is difficult to extract high-density surface monitoring points from
D-InSAR. This work therefore used the current frontier technology of earth observation:
distributed scatter (DS)-InSAR [28]. The core idea of this method is to treat objects (such
as bare land, beach, and Gobi) with medium temporal coherence and continuous spatial
distribution as homogeneous points. According to the statistical characteristics of these
homogeneous points, the phase of distributed objects is optimized and the influence of
noise on them is reduced; the density of point objects in non-urban areas is improved,
and surface deformation observation values with higher order and accuracy are obtained.
Thirdly, in the inversion model, the influence of the coal seam inclination angle and the
mining depth on the center coordinate offset are considered. Finally, in view of the fact that
there are many inversion parameters, resulting in a high-dimensional nonlinear continuous
parameter model, a particle swarm optimization (PSO) algorithm, which has advantages
in solving high-dimensional problems, is used for inversion.

The structure of the remainder of this paper is as follows. Section 2 introduces the
basic principles and research methods; the results of simulations, and experiments with
real data, are presented in Section 3, and a discussion of the inversion errors is given.
Conclusions are presented in Section 4.
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2. Materials and Methods
2.1. DS-InSAR Method

Recognition of homogeneous points and phase optimization are the prerequisites for
extracting the deformation phases of distributed targets. The common homomorphic point-
recognition methods mainly include two types: nonparametric and parametric hypothesis
testing methods. Among these, the fast statistically homogeneous pixel selection (FaSHPS)
method [29], which is a parametric test, has the advantage of small heterogeneity and a
fast recognition speed, and it has been widely used.

According to the characteristics that the single-look SAR amplitude image obeys
Rayleigh distribution in homogeneous regions, and their coefficients of variation are
constants, the confidence interval based on the amplitude mean can be constructed as
described in the FaSHPS method:

P
{

µ(L)− z1−α/2 ·
0.52 · µ(L)√

N
< A(L) < µ(L) + z1−α/2 ·

0.52 · µ(L)√
N

}
= 1− α (1)

where P{·} is the probability, µ(L) is the expectation value of pixel L, Z1−α/2 is the (1 − α/2)
quantile in the standard normal distribution, N is the number of SAR images in the time
series, and A(L) is the mean value of SAR image amplitude.

According to the above formula, we only need to calculate the average amplitude of a
SAR image pixel in a time series and then establish whether the value falls into the above
confidence interval to judge whether it belongs to the set of homogeneous points.

After the identification of homogeneous points, our approach uses the coherent matrix
decomposition method [30] to optimize the phase. In this method, the eigenvalues of the
pixel covariance matrix of time-series SAR data are used to separate different scattering
signals. The eigenvector corresponding to the largest eigenvalue is regarded as the main
scatterer, and the eigenvectors corresponding to the other eigenvalues are regarded as noise.
The phase component of the dominant scattering mechanism is separated to optimize the
phase. The model is expressed as

T̃ = T̃signal + T̃noise = λ1 · µ1 · µ1
H +

n

∑
i=2

λi · µi · µi
H (2)

where T̃signal and T̃noise are the main scatterer signal and the noise signal, respectively;
the eigenvector µ1, corresponding to the maximum eigenvalue λ1, is the optimized phase
of the distributed target; λi are the n eigenvalues of the coherence matrix; and µi is the
eigenvector corresponding to the different eigenvalues λi and thus corresponding to
different scattering mechanisms.

The processing flow of DS-InSAR is as follows: (1) the interferometric pairs are set
up according to the small spatio-temporal baseline, and the differential interferograms
are generated by removing the flat and terrain phase based on satellite orbit parameters
and external DEM. (2) The homogeneity points are identified by the amplitude images,
and the phases of the differential interferogram are optimized. Then, the spatio-temporal
coherences of the homogeneous points are calculated by the optimized phase, and the DS
points are obtained by setting the threshold. (3) The phase unwrapping of DS is carried out,
and the observation equation among DS and deformation rate, DEM error and residual
phase is established. (4) The singular value decomposition (SVD) is used to estimate
the surface deformation phase and DEM residual phase. Then, the atmospheric phase,
nonlinear deformation and noise phase are separated by the spatio-temporal filtering
method. (5) The linear deformation and nonlinear deformation are added to obtain the
time series of LOS subsidence [31].

2.2. Probability Integral Model

As shown in Figure 1, in the coal seam coordinate system, sO1t corresponds to the
surface coordinate system xOy; in the surface coordinate system, xOy is the projection
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of sO1t in the coal seam coordinate system. If a unit B(s, t) is exploited at (s, t), the land
subsidence value of A(x, y) at any point on the surface caused by this micro unit is:

dW(x, y) = We(x− s)We(y− t)ds =
1
r2 e−π

(x−s)2+(y−t)2

r2 ds (3)

Figure 1. Schematic diagram of surface subsidence prediction at any point in unit mining.

If the strike length of the mining working face is D1 and the dip length is D2, the land
subsidence value of point A(x, y) caused by coal mining of the whole working face is:

W(x, y)A =
W0

r2

∫ l−x

−x
e−π( x

r )
2
dx
∫ L−y

−y
e
−π(

y
r1(2)

)
2

dy =
1

W0
W0(x)W0(y) (4)

with

W0 = mqcosα (5)

W0(x) =
mqcosα

2
(er f (

√
π

x · tanβ

H
)− er f (

√
π
(x− l) · tanβ

H
)) (6)

W0(y) =
mqcosα

2
(er f (

√
π

y · tanβ

H1
)− er f (

√
π
(y− L) · tanβ

H2
)) (7)

where m is the average mining thickness of the working face; q is the subsidence coefficient;
α is the inclination angle; tanβ is the tangent of the main influence angle; H, H1, and H2
are the mining depths of the strike main section, the lower boundary of the working face,
and the upper boundary of the working face, respectively; l is the calculated length of
the working face strike, l = D1 − S1 − S3; and L is the calculated length of the working
face dip, L = (D2 − S2 − S4) sin(θ + α)/sinθ, in which S1, S2, S3, and S4 are the offset
distances in the left, down, right, and upper directions and θ is the propagation angle of
the mining influence.

The horizontal movement U(x, y, ϕ) of any point A(x, y) on the surface in the ϕ
direction (an angle value that rotates counterclockwise in the positive direction of the x
axis to the specified direction), can be expressed as:

U(x, y, ϕ) = br(
∂W(x, y)

∂x
cosϕ +

∂W(x, y)
∂y

sinϕ) + W0(y)cotθ (8)

where r is the main influence radius and b is the coefficient of horizontal movement.
According to Equation (8), when ϕ is an angle value in the north–south direction, the
calculated horizontal movement is UN. When ϕ is an angle value in the east–west direction,
the calculated horizontal movement is UE.
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It can be seen from Figure 2 that the surface deformation caused by the working face
is biased to the inclination direction of the coal seam, and the offset value is

∆Y = Hcotθ (9)

Figure 2. Schematic diagram of center coordinate offset.

From Equation (3), we know that the working face contains eight working face param-
eters and eight model parameters. These are recorded as M = [D1, D2, Xc, Yc, H, ϕn, α, m, q,
b, tanβ, θ, S1, S2, S3, S4] due to a connection between the parameters{

si = k1H
θ = 90◦ − k2α

(10)

where k1 and k2 are proportional constants.
By introducing Equation (10) into Equations (4) and (8), M can be simplified as

M = [D1, D2, Xc, Yc, H, ϕn, α, m, q, b, tanβ], and Equations (4) and (8) can be simplified as{
W(x, y) = fW(x, y, M)
Uϕ(x, y) = fϕ(x, y, M)

(11)

2.3. Establishment of Inversion Model

The LOS surface deformation obtained by DS-InSAR is recorded as DLOS; the LOS de-
formation is calculated by PIM according to the relationship between the three-dimensional
surface deformation W, UN, and UE, and this is recorded as Dlos. The model for this is

Dlos = Wcosθ − sinθ[UNcos(αh − 3π/2) + UEsin(αh − 3π/2)], (12)

where θ is the incident angle of the SAR satellite radar beam and αh is the satellite head-
ing angle.

The DLOS obtained by DS-InSAR is taken as the true value, and the Dlos calculated by
PSO and PIM each time is taken as the observed value. When the error is less than a given
threshold, the calculated goaf location and PIM parameters are taken as the final results:

v =

√√√√√ k
∑

j=1
(DLOSj − Dlosj

)2

k
(13)

where Dlosj
is the LOS deformation of surface point j obtained by inversion using

Equation (12), DLOSj is the LOS deformation of surface point j calculated by the SAR
technique, k is the number of surface points involved, and v is the output of the final
fitness value.
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3. Results
3.1. Simulations
Numerical Simulations

In this work, the simulated mining depth was 900 m, the length was 1000 m, the width
was 500 m, the mining thickness was 6 m, and the dip angle was 25◦. In the simulations, the
scale constants were k1 = 0.1 and k2 = 0.6, and the horizontal resolution of the model block
was 20 m × 20 m. Figure 3 shows the surface subsidence and LOS deformations caused
by this simulated coal mining. It can be seen that the maximum settlement point is in the
center of the basin, and the maximum settlement value is 2.8 m. Due to the influence of the
inclination angle and the coal seam burial depth, the center coordinate of the working face
deviates from the settlement center.

Figure 3. Results from simulation of surface deformation. The black rectangle indicates the working
face, the red rectangle shows the projection surface of the working face, and the cyan lines show the
main section of the observation. The upper panel in the three-dimensional view shows subsidence
and the lower panel shows LOS deformation.

Figure 4 shows settlement and horizontal movement plots of the main section based
on Figure 3. It can be seen from Figure 4a that the horizontal movement between the
boundary of the subsidence basin and its inflection point increases gradually; it is the
largest at the inflection point of the subsidence curve, and it then decreases gradually from
the inflection point to the point of greatest subsidence, where the horizontal movement
is zero; the second half of the curve is a symmetrical reflection of the first. The difference
between Figure 4a,b is that the horizontal movement of the coal seam in the downhill
direction is greater than that in the uphill direction, and the curve is asymmetric. It can be
seen from Figure 4 that the surface burial depth is large, and it is not easy to realize full
mining after mining.

Based on the simulated underground goaf data in the previous section and the model
parameters determined by geological conditions, the subsidence W of each point on the
surface was generated by the PIM, providing the horizontal movement UN in the north–
south direction and the horizontal movement UE in the east–west direction. Simulated
InSAR surface deformation observation values were generated using Equation (12) and
recorded as DLOS, and taking the underground goaf data and PIM parameters as unknown
values, an inversion experiment was carried out. The inversion results were compared
with the simulated values, and the inversion values of each parameter were obtained. The
absolute and relative errors are shown in Table 1.
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Figure 4. Settlement and horizontal movement curves of main sections: (a) subsidence and horizontal movement curve in
strike direction; (b) subsidence curve and horizontal movement curve in dip direction. The red dots indicate inflection points.

Table 1. Inversion results and errors of goaf and PIM parameters.

Parameter Simulated Estimated Absolute Error Relative Error

D1 (m) 1000 999.75 0.25 0.03%
D2 (m) 500 501.67 1.67 0.33%
Xc (m) 1013 1010.70 2.30 -
Yc (m) 1000 999.20 0.80 -
H (m) 900 893.50 6.50 0.72%
ϕn (◦) 90 90.00 0.00 -
α (◦) 25 24.47 0.53 2.11%

m (m) 6 5.93 0.07 1.21%
q 0.75 0.75 0.00 0.42%
b 0.35 0.35 0.00 0.33%

tanβ 2.24 2.23 0.01 0.45%

The following can be seen from Table 1. (1) Among the length parameters (D1, D2, Xc,
Yc, H, m), the maximum relative error is 1.21% in the coal seam thickness m, the absolute
error is 0.07 m, and the maximum absolute error is 6.5 m in the coal seam depth H. (2) The
maximum absolute error and the maximum relative error of the two angle parameters
appear in the inclination angle α, and the maximum absolute error and the maximum
relative error are 0.53◦ and 2.11%, showing that the two angle parameters have a good
inversion effect and can better approximate the true value. (3) For the PIM parameters
(q, b, tanβ), the maximum relative error and absolute error appear at the tangent of the
major influence angle tanβ; in this example, the absolute error is 0.01 and the relative error
is 0.45%, which is similar to the angle parameters and can better approximate the real
parameters. (4) The parameters (Xc and Yc, D1 and D2) have the same levels of error under
the conditions of using simulated data for inversion. At the same time, the errors of Xc
and D2 are slightly larger than those of Yc and D1, which is caused by the complexity of
tendency calculation model being greater than that of the trend, which is more consistent
with the actual situation.

These simulations show that the proposed method is feasible. For areas with unknown
PIM parameters and underground goafs, the time-series surface deformation field is first
obtained by InSAR imaging, and the inversion of the PIM parameters and the locations of
goafs can then be obtained simultaneously.
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3.2. Experiments with Real Data
3.2.1. Study Area

The surface of the Zhangshuanglou coal mine in the Peibei mining area (Figure 5)
belongs to the Yellow River alluvial plain, which has ground elevations of 37–39 m. The
terrain is high in the west and low in the east, and the surface water system is dense.
Long-term and high-intensity underground coal mining has resulted in a large area of
surface subsidence and even collapse, which not only affects the ecological environment
of the area but also endangers the lives and property of residents. The coal seam in this
area is stable and of medium thickness, with an average total thickness of 5.82 m, and the
surface of the region is mostly covered by vegetation. It is difficult to obtain high-precision
and long time-series surface deformations using the D-InSAR method. The shape of the
93,604 working face from April 2017 to July 2018 is shown in Figure 5. The coal seam in the
north of 93,604 has not been mined, and the geology there is stable. The southern coal seam
was mined in July 2016, and the surface deformation has been stable; this will therefore not
affect the deformation monitoring of the 93,604 working face.

Figure 5. Scope of goaf. The black rectangle in the lower-right panel is the final goaf to be inverted in
this paper. The working face was mined from November 2017 to March 2018, and the mining length
was 437 m.

3.2.2. SAR Data Processing

Twelve repeatable-track sentinel images were selected for the experiment, and the
pixel sizes in the distance and azimuth directions were 2.33 m and 13.91 m, respectively.
The parameters of the observation time, vertical baseline, and time baseline of the images
are shown in Table 2.
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Table 2. Image parameters.

Serial Number Date Vertical Baseline/m Time Baseline/Day

1 4 November 2017 0 0
2 16 November 2017 21.33 12
3 28 November 2017 90.05 24
4 10 December 2017 49.24 36
5 26 December 2017 42.51 48
6 3 January 2018 59.73 60
7 15 January 2018 1.00 72
8 27 January 2018 38.52 84
9 8 February 2018 99.09 96
10 20 February 2018 87.94 108
11 4 March 2018 71.14 120
12 28 March 2018 36.35 144

To reduce the computation time, the images were first cropped to 2400 × 500 pixels.
The surface deformations obtained by the accumulated phase based on DS-InSAR are
shown in Figure 5. In this experiment, the mask threshold was 0.4, and the multi-view ratio
was 4:1 in the range and azimuth directions. A total of 78,605 high-coherence points were
selected. The maximum surface deformation value generated by DS-InSAR was about
323 mm.

The locations of the mining subsidence basins can be judged according to the mon-
itoring results in Figure 6. It can be seen that there are three areas with obvious surface
deformation. In this experiment, it is necessary to verify the accuracy of three PIM pa-
rameters and eight goaf location parameters. Therefore, two groups of experiments were
designed. (1) The cyan area was used to obtain accurate PIM parameters [8]; the aim of this
group of experiments was to provide the PIM parameters of this area for the second exper-
iment to verify the experimental results. (2) The red was used to obtain the positioning
parameters and PIM parameters of the underground goaf to verify the feasibility of the pro-
posed method. To reduce the effect of decoherence, SAR data obtained in spring and winter
was used to ensure that the study area would not be covered by large-scale vegetation.

Figure 6. LOS deformation obtained by DS-InSAR.
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3.2.3. Inversion of Goaf Parameters

The real values of the goaf parameters (D1, D2, Xc, Yc, H, ϕn, α, m) can be accurately
obtained from the mining map, and the errors in these data can be ignored. The parameters
of the PIM model (q, b, tanβ) related to the geological mining conditions need to be obtained
by geological survey, and they are often measured as the mean value of parameters in a large
range of the region. Although this value is appropriate for general practical applications,
it is not good enough for small-scale geological inversions due to the complexity of the
geological environment. Therefore, in this work, we used the area indicated by the cyan
frame in Figure 6 to obtain the PIM parameters of the area using accurate goaf parameters
and surface observations of deformation obtained by InSAR. The inversion method is
shown in [8], and the inversion result was q = 0.83, b = 0.3, tanβ = 1.8.

To evaluate the accuracy of this experiment, the absolute and relative errors between
the inversion parameters and the real values were calculated, and the calculation results
are shown in Table 3.

Table 3. Inversion results and errors in goaf and PIM parameters.

Parameter Simulated Estimated Absolute Error Relative Error

D1 (m) 437 461.90 24.90 5.70%
D2 (m) 160 186.57 26.57 16.61%
Xc (m) 395 351.97 43.03 -
Yc (m) 265 229.02 35.98 -
H (m) 946 951.89 5.89 0.62%
ϕn (◦) 254 262.04 8.04 -
α (◦) 23 22.25 0.75 3.28%

m (m) 2.75 2.74 7.89 0.29%
q 0.83 0.79 0.04 4.56%
b 0.3 0.22 0.08 26.67%

tanβ 1.8 1.35 0.45 24.98%
Note: the table does not show the actual coordinates.

The following can be observed from Table 3. (1) In the inversion results of the goaf
parameters (D1, D2, Xc, Yc, H, ϕn, α, m), the maximum relative error is 16.61%, and the
absolute error is 26.57 m, which appears on the dip length D2. (2) Despite being the same
type of parameters, the absolute error and relative error of the strike and dip length D1
and D2 are quite different. The main reason for this is that in PIM, the dip length needs
to be projected onto the horizontal plane to calculate the horizontal distance, and in this
process the parameter is also affected by the parameters α, H, while the strike length is only
affected by the parameter H. (3) The absolute and relative errors of the angle parameter
ϕn and α are small. This is because these two parameters are highly correlated with the
surface deformation morphology, and the surface deformation morphology obtained by
DS-InSAR technology can easily determine the approximate value range. (4) The inverted
position of the center of the inclined coal seam and the deformation center observed by
DS-InSAR deviates by ∆Y in the dip direction, as shown in Equation (9). Due to the offset
considered in PIM, the inversion parameters Xc and Yc can approach the real values with
better accuracy.

Figure 7 shows a projection of the real LOS deformation (upper layer) and the actual
position of the mining working face on the horizontal plane (lower layer). The limited
differences between the two rectangles indicates that the inverted result is similar to the
real working face in terms of shape; the position deviation is small, and this demonstrates
a good inversion effect.
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Figure 7. Comparison of inversion results: upper layer shows the LOS deformation observed by
DS-InSAR; lower layer shows the LOS deformation calculated by inversion of the goaf. The red and
black rectangles show the real and inverted mining working faces, respectively.

4. Discussion
4.1. Goaf Inversion with Known PIM Parameters

Most previous studies have used known PIM parameters to invert the goaf position.
In this section, we make a comparison of this approach with the method of this paper. To
ensure that the experimental data are not affected by other errors, the LOS deformation
observed by InSAR was generated based on the simulated data in Table 1 and Equation (12).
Since the LOS deformation has no errors, when the PIM parameters are assumed to be
known, the inverted goaf position parameters should be consistent with the simulated
values. Based on this assumption, the inversion results were compared with the simulation
results in this paper to explore the interaction between the PIM parameters and the goaf
position. The inversion results are shown in Table 4.

Table 4. Inversion results and errors in goaf parameters.

Parameters Simulated Estimated Absolute Error Relative Error

D1 (m) 1000 999.88 0.12 0.01%
D2 (m) 500 499.23 0.77 0.15%
Xc (m) 1013 1013.45 0.45 -
Yc (m) 1000 1000.08 0.08 -
H (m) 900 901.15 1.15 0.13%
ϕn (◦) 90 90.00 0.00 -
α (◦) 25 25.21 0.21 0.85%

m (m) 6 0.03 0.03 0.53%

Comparing Tables 1 and 4, we can establish the following. (1) Assuming that the PIM
parameters related to the geological conditions are known, the accuracy of the inverted
parameters (D1, D2, Xc, Yc, H, m, α) is improved compared with the results in Table 1, but
this improvement is not obvious. (2) For the parameter ϕn, the two inversion methods have
the same effect and can obtain an accurate final result, which shows that this parameter
has strong robustness. (3) Comparing the results of the two groups of simulation data, we
can see that whether the PIM parameters (q, b, tanβ) are known or not has a little effect on
the inversion accuracy of the goaf position parameters; the relative and absolute errors
decrease slightly, which shows that the research method in this paper is feasible.

4.2. Influence of the LOS Deformation Obtained by DS-InSAR

There are many factors influencing DS-InSAR observations, including DEM errors,
orbit errors, atmospheric delay, phase unwrapping errors, and noise. The final deformations
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generated by DS-InSAR may thus contain observation errors. To theoretically analyze the
influence of LOS observation errors on the results of parameter inversion, deep coal seam
data was used in simulations to verify the method in this paper. To observe changes in
the parameters, random errors from −0.4 m to 0.4 m with an average interval of 10 mm
were added to LOS observations without errors. Scatter plots of the variations in the
11 parameters with different error levels are shown in Figure 8.

Figure 8. Influence of random LOS errors on the parameter inversion.

The following can be seen from Figure 8. (1) The parameters D1, D2, Xc, Yc, ϕn, α, q, b,
and tanβ change linearly with increasing LOS error; the inversion errors of parameters H
and m do not change synchronously with the LOS error, but rather they fluctuate around
the zero axis. (2) The LOS deformation errors directly affect the inversion parameters, so
the LOS observations used should be highly accurate. This is why DS-InSAR was used
here to provide high-quality observations.

5. Conclusions

This paper presents a method to simultaneously retrieve the parameters of the position
and PIM parameters of underground goafs using DS-InSAR data. The method improves the
target density of points in non-urban areas by reducing the influence of noise on distributed
targets using DS-InSAR. It then establishes a correlation model between underground
mining and surface deformation. Finally, a PSO algorithm is used to quickly optimize the
parameters. The following conclusions were reached.

(1) The amount of surface deformation data used is very important to constrain the
inversion model. Therefore, DS-InSAR is applied to reduce the influence of spatio-
temporal incoherence, and this can effectively increase the density and accuracy of
the field-observed deformations.

(2) For mining subsidence caused by exploitation of deep coal seams, the center of the
surface deformation deviates from the position of the underground goaf due to the
coal seam dip angle. Thus, the center deviation caused by inclined coal seams in
the model must be considered, or the inversion error in the center coordinate will
be larger.

(3) Simulation results show that it is feasible to use the PIM parameters as unknown
parameters in goaf inversion, and the inversion errors are relatively small. Experi-
ments with real data verified the results of the simulations. In the case of the PIM
parameters being involved in the inversion, the goaf position parameters can still be
obtained with a high accuracy. Because the PIM parameters are difficult to obtain
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accurately, the method in this paper avoids the need for their selection according to
experience in goaf location inversion.

(4) The maximum relative error of the simulations was 2.11%, the maximum relative
error in the experiments with real data was 26.67%, and the errors in other inversion
parameters were relatively small. The experimental results show that the method has
a good effect on the inversion of underground goaf locations and has the advantage
of a large range of non-contact measurements.
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