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Abstract: River system is critical for the future sustainability of our planet but is always under the
pressure of food, water and energy demands. Recent advances in machine learning bring a great
potential for automatic river mapping using satellite imagery. Surface river mapping can provide
accurate and timely water extent information that is highly valuable for solid policy and management
decisions. However, accurate large-scale river mapping remains challenging given limited labels,
spatial heterogeneity and noise in satellite imagery (e.g., clouds and aerosols). In this paper, we
propose a new multi-source data-driven method for large-scale river mapping by combining multi-
spectral imagery and synthetic aperture radar data. In particular, we build a multi-source data
segmentation model, which uses contrastive learning to extract the common information between
multiple data sources while also preserving distinct knowledge from each data source. Moreover,
we create the first large-scale multi-source river imagery dataset based on Sentinel-1 and Sentinel-2
satellite data, along with 1013 handmade accurate river segmentation mask (which will be released
to the public). In this dataset, our method has been shown to produce superior performance (F1-
score is 91.53%) over multiple state-of-the-art segmentation algorithms. We also demonstrate the
effectiveness of the proposed contrastive learning model in mapping river extent when we have
limited and noisy data.

Keywords: river segmentation; contrastive learning; multi-source data

1. Introduction

River system plays a crucial role in global carbon circulation, as it delivers the carbona-
ceous matter within the global ecosystem and maintains the connection between ocean
and land [1,2]. Rivers are also important in many countries due to the increasing demand
to supply drinking water, irrigation and farming practices and power generation. Hence,
the capacity to accurately map large-scale rivers is urgently needed for making policy and
management decisions.

With the recent development of the space remote sensing technology, satellite images
become available over large regions (often at global scale), which enables large-scale surface
area monitoring [3,4]. Many existing methods utilize pre-defined water indices, such as
Normalized Difference Water Index (NDWI) [5] and Modified Normalized Difference
Water Index (MNDWI) [6], which are computed from a subset of spectral bands. These
indices are designed to enhance the water representation in contrast to other land covers
based on the reflectance characteristics.
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Recently, there is a growing interest in land cover mapping using machine learning
algorithms including Support Vector Machine (SVM) [7], Random Forest (RF) [8] and
deep learning-based image segmentation algorithms such as UNET [9] and Pspnet [10].
Compared with the water indices, these machine learning methods can better extract
informative non-linear combinations of reflectance values from all the spectral bands that
can reflect water extent [11,12]. Additionally, deep learning-based image segmentation
methods often outperform pre-defined water indices and traditional pixel-wise machine
learning algorithms due to their capacity to capture image-level information. In particular,
these deep learning models use receptive fields to capture spatial dependencies across
pixels and thus have a better chance at capturing informative patterns related to river
shapes, compactness and surrounding land covers [13,14].

However, large-scale river mapping still remains a challenge due to several reasons [15–18].
Firstly, we often have limited labeled training samples due to the high cost associated with
manual annotation through visual inspection. This become especially serious for training
advanced deep learning models. Second, rivers located in different regions can have differ-
ent water properties, catchment characteristics and surrounding land covers and thus show
different reflectance spectral value in the satellite imagery [19]. Traditional machine learning
methods that are trained from limited labeled samples collected from specific regions may
not be able to generalize to other regions [20,21]. Third, given the nature of remote sensing
imagery, the river area in the multi-spectral satellite images may be blocked by unpredictable
noise such as aerosol and clouds, leading to missing information during the river mapping
process [22,23].

To address these challenges, we propose a new machine learning method that com-
bines multi-spectral data and synthetic aperture radar (SAR) data to jointly map the extent
of rivers over large regions, the main idea of the proposed method is shown in Figure 1.
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Figure 1. The proposed contrastive learning based multi-source data segmentation structure. The
segmentation result is generated using the self-information and common information, extracting
from the multi-source data pair, including Data 1 and Data 2. For the common information extracting
process, the contrastive learning idea is to minimize the relevant image information embedding
between the same location multi-source data. Here, the relevant image information are extracted
from multi-source data pair of same location and the irrelevant image information are extracted from
multi-source data pair of different location. Thus, the common information path can be more focused
on the clear area of the image (without aerosol and cloud) and can guide the segmentation process,
along with the self-information extracted from each multi-source data.

The multi-spectral data can capture optical reflectance characteristics of different
land covers while SAR data is more sensitive to surface structures and also less impacted
by clouds and aerosols. We build a novel machine learning algorithm that can leverage
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supplementary strengths of these two types of data to improve the mapping performance.
Our major innovation and contributions can be summarized as follows:

• We present a contrastive learning based multi-source satellite data segmentation
structure for large-scale river mapping, as shown in Figure 1. To better extract repre-
sentative patterns from limited and noisy data, we include the contrastive learning
strategies, where the common information and self-information are extracted from the
multi-source data and fused for the river segmentation.

• We create a large-scale multi-source river imagery dataset, which, to the best of
our knowledge, is the first multi-source large-scale satellite dataset (with aligned
multi-spectral data and SAR data) towards river mapping. The dataset contains multi-
spectral data and SAR data for 1013 river sites that are distributed over the entire
globe and handmade ground truth masks for these river sites.

• On our dataset, we have demonstrated the superiority of the proposed multi-source
segmentation method over multiple widely used methods including water indices-
based method, traditional machine learning approaches and deep learning approaches.

2. Materials and Methods
2.1. Study Area and Data

Aiming at the large-scale river mapping task, we first create a large-scale multi-source
river imagery dataset, which to the best of our knowledge, is the first multi-source large-
scale satellite dataset toward river mapping. This dataset contains 1013 image pairs of
rivers based on Sentinel-1 and Sentinel-2 satellite and 1013 manually annotated river
ground truth masks. The annotation is conducted through visual inspection by referring to
both Seninel-1 and Sentinel-2 Satellite imagery. Table 1 shows the details of these available
satellite data sources.

Table 1. Key parameters of the multi-source satellite data within the dataset.

Satellite Sentinel-1 Sentinel-2

Temporal Resolution 12 days 10 days
Spatial Resolution 20 m 10/20/60 m

Imaging Range C-bands 0.04–0.24 µm
Spectral Bands 2 13

We show the details of the created multi-source river imagery dataset in Table 2. The
dataset contains the rich river imagery samples from different continents of the world,
covering the time period from January 2016 to December 2016.

Table 2. Key parameters of the proposed large-scale multi-source river imagery dataset.

Parameter Detail

Data source Sentinel-1, Sentinel-2
Samples Pairs 1013

Ground Truth Number 1013
Sample Size 96 × 96 pixels

Ground Truth Size 96 × 96 pixels
Covering Area of Each Sample 1 km2

Date Range January 2016 to December 2016

During the labeling process, the annotators carefully inspect both Sentinel-1 and
Sentinle-2 images on close dates. Here, the Sentinel-1 is Synthetic Aperture Radar style
imagery, which contains less noise information such as cloud and aerosol, but in low
resolution. In the meantime, Sentinel-2 is Multi-Spectral style imagery, which is high
resolution, but contains more cloud and aerosol. Thus, we may have a better chance at
obtaining accurate labels by leveraging the advantages of both types of the satellite imagery.
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Figure 2 shows an example of the multi-resource satellite imagery in our dataset. Here,
we select the VV bands of the Sentinel-1 data to generate the gray image and the Band #9
(Band name: Water vapour), #7 (Band name: Vegetation Red Edge) and #3 (Band name:
Green) of the Sentinel-2 data to generate the false color composite image for sample visualiza-
tion (the sample visualization shown in the rest paper follows same fashion). We manually
create the river segmentation mask according to the Sentinel-1 and Sentinel-2 imagery.

Remote Sens. 2021, 13, x FOR PEER REVIEW 4 of 18 
 

 

During the labeling process, the annotators carefully inspect both Sentinel-1 and 
Sentinle-2 images on close dates. Here, the Sentinel-1 is Synthetic Aperture Radar style 
imagery, which contains less noise information such as cloud and aerosol, but in low res-
olution. In the meantime, Sentinel-2 is Multi-Spectral style imagery, which is high resolu-
tion, but contains more cloud and aerosol. Thus, we may have a better chance at obtaining 
accurate labels by leveraging the advantages of both types of the satellite imagery. 

Figure 2 shows an example of the multi-resource satellite imagery in our dataset. 
Here, we select the VV bands of the Sentinel-1 data to generate the gray image and the 
Band #9 (Band name: Water vapour), #7 (Band name: Vegetation Red Edge) and #3 (Band 
name: Green) of the Sentinel-2 data to generate the false color composite image for sample 
visualization (the sample visualization shown in the rest paper follows same fashion). We 
manually create the river segmentation mask according to the Sentinel-1 and Sentinel-2 
imagery. 

 
Figure 2. Example of sample visualization and manual ground truth in the large-scale multi-source 
river imagery dataset: (a) false color composite image of Sentinel-2 satellite data; (b) false color com-
posite image of Sentinel-1 satellite data; (c) manually-created ground truth (yellow color indicates 
water extent). 

2.2. Proposed Method 
We propose a contrastive learning process to extract representative hidden features 

from multi-spectral data and SAR data. These hidden features are extracted by the pro-
posed deep learning models and contain the common information between the multi-
source data and the self-information of each type of the data. Here, we first describe the 
idea of contrastive learning used in our proposed method. 

Let x , x+  and x−  represent three samples within a dataset. Here, x  serves as 
an anchor sample and we consider the relationship between x  and x+  to be relevant, 
x  and x−  to be irrelevant. For example, 𝑥 can be a multi-spectral image patch from a 

specific region and 𝑥  can be a SAR image patch from the same region while 𝑥  is a 
SAR image patch from a different region. The goal of contrastive learning is to learn an 
embedding ( )f ⋅  that achieves higher score for the relevant pair ( , )x x+  and lower 

score for the irrelevant pair ( , )x x−  [24], which is shown as follows: 

Figure 2. Example of sample visualization and manual ground truth in the large-scale multi-source
river imagery dataset: (a) false color composite image of Sentinel-2 satellite data; (b) false color
composite image of Sentinel-1 satellite data; (c) manually-created ground truth (yellow color indicates
water extent).

2.2. Proposed Method

We propose a contrastive learning process to extract representative hidden features
from multi-spectral data and SAR data. These hidden features are extracted by the proposed
deep learning models and contain the common information between the multi-source data
and the self-information of each type of the data. Here, we first describe the idea of
contrastive learning used in our proposed method.

Let x, x+ and x− represent three samples within a dataset. Here, x serves as an anchor
sample and we consider the relationship between x and x+ to be relevant, x and x− to
be irrelevant. For example, x can be a multi-spectral image patch from a specific region
and x+ can be a SAR image patch from the same region while x− is a SAR image patch
from a different region. The goal of contrastive learning is to learn an embedding f (·) that
achieves higher score for the relevant pair (x, x+) and lower score for the irrelevant pair
(x, x−) [24], which is shown as follows:

score( f (x), f (x+)) >> score( f (x), f (x−)), (1)

where the function score() can be any similarity measure between two feature embeddings.
Here, we hypothesize that data in different modalities (e.g., SAR and multi-spectral images)
both contain key patterns that describe our detection target (i.e., water extent). The idea
behind contrastive learning is to better extract such relevant information that is shared
between multi-source input samples.
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In our problem, we further extend such standard contrastive learning approach to
improve the detection to extract both the relevant information shared across different data
sources and the self-information that is unique to each data source. The intuition is that
we not only make use of common knowledge from multi-spectral and SAR data, but also
leverage their supplementary strengths (e.g., land cover spectral characteristics by multi-
spectral data and surface textures and elevations by SAR) to improve the river mapping.
In particular, we use A = {a0, a1, . . .} and B = {b0, b1, . . .} to represent two different
types of data as input for the river segmentation task. We use the relevant pair (ai, bi) to
represent multi-source data samples (i.e., image patches) of two different data types taken
from the same geographical region. In the meantime, the irrelevant pair (ai, bj) represents
multi-source data samples of two different data types taken from different geographical
regions. The proposed algorithm in this paper contains three steps: (1) multi-source data
common information extraction, (2) multi-source data self-information extraction and
(3) information fusion-based segmentation.

2.2.1. Common Information Extraction

We develop a neural network structure to extract common information from multi-
source data input, as shown in Figure 3.
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Figure 3. The proposed common information extraction structure. Two dotted boxes represent the
information extraction path f (x), as mentioned in Equation (1). During the training process, the goal
of the model is to minimize the output of the ‘Distance’ layer with the same scene multi-source inputs.
The ‘Feature1’ and ‘Feature2’ layers are blocked during the model training process and is used for
further parameter transformation.

Here, we utilize the UNET staked convolutional and pooling layers in implementing
the neural network structure of f (x). The parameters in these neural network layers (used
to compute f (x)) can be trained based on the contrastive learning and will be further used
for model testing.
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During the training and testing process, we first train the proposed structure based
on pseudo-code in Algorithm 1 and Algorithm 2. Algorithm 1 shows the pseudo-code for
the model training. Here, we set up the training set with two different types of the sample
pairs which are marked with a flag variable. Here, the flag variables are manually obtained
during the multi-source sample pairs creation for common information extraction model
training. the training sample pair with flag = 1 represents the relevant pair (ai,bi) and the
training sample pair with f lag = 0 represents the irrelevant pair (ai,bj). Given two input
samples Input 1 (e.g., ai) and Input2 (e.g., bi or bj), the loss function for extracting common
information is defined as follows:

Loss(Input1, Input2, f lag) = Loss f lag=0 + Loss f lag=1 (2)

When flag = 0, the loss Loss f lag=0 is computed as follows:

Loss f lag=0 = 0.5 ∗ (1− f lag){max(0, m− Distance)}2 (3)

Algorithm 1. Training process of the common information extraction structure

Input: Multi-source training sample pairs (SAR and multi-spectral data), flag
(represents a multi-source training sample pair belongs to relevant or irrelevant
type)

Output: Distance
1: Block the ‘Feature1’ and ‘Feature2’ layers during the training process.
2: Enable the ‘Distance’ layer during the training process.
3: Set the ‘Input 1’ as the SAR sample input, the ‘Input 2’ as the multi-spectral sample

input.
4: for each multi-source training sample pairs do
5: Fine-tuning the network parameters using loss function Loss (Input1, Input2,

flag) defined in Equation (2).
6: end for

The m parameter is a constant, where m > 0. The m is the expected minimum
distance between f (Input1) and f (Input2). Here, Distance represents the distance between
embeddings of Input1 and Imput2 and its value can be calculated using the Euclidean
distance, as follows:

Distance=|| f (Input1)− f (Input2)||2 (4)

It can be observed that Loss f lag=0 and Distance are negatively correlated, as shown in
Equation (3). Thus, the goal of Loss f lag=0 is to maximize the Distance between irrelevant
pairs. Here, m denotes a threshold for distance penalty, i.e., we do not penalize an irrelevant
pair (ai, bj) if the distance of between them is greater or equal to m.

When flag = 1, the loss Loss f lag=1 is calculated as follows:

Loss f lag=1 = 0.5 ∗ f lag ∗ Distance (5)

It can be observed that Loss f lag=1 and Distance are positively correlated, as shown in
Equation (5). Thus, the goal of Loss f lag=1 is to minimize the Distance between relevant pair
(ai, bi). Thus, during the model training process, the model loss Loss(Input1, Input2, f lag)
can be simplified into Loss f lag=0 or Loss f lag=1 based on the vector flag of current input
training sample and could implement by the tensorflow platform.

Furthermore, Algorithm 2 shows the pseudo-code for the model testing. During the
testing process, the multi-sources testing samples are set as the input of the structure and
the common information matrices of the multi-sources testing samples are extracted from
the ‘Feature 1′ and ‘Feature’ layers and will be further used in the information fusion
process as described in Section 2.2.3.
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Algorithm 2. Testing process of the common information extraction structure

Input: Multi-source testing sample pairs (SAR and multi-spectral data)
Output: Common information at ‘Feature 1’ and ‘Feature 2’ layers
1: Enable the ‘Feature1’ and ‘Feature2’ layers during the testing process.
2: Block the ‘Distance’ layer during the testing process.
3: Set the ‘Input 1’ as the SAR sample input, the ‘Input 2’ as the multi-spectral sample

input.
4: for each multi-source testing sample pairs do
5: Achieve the common information matrices for multi-source testing sample pair

from the ‘Feature1’ and ‘Feature2’ layers, separately.
6: end for

2.2.2. Self-Information Extraction

We also build a self-information extraction structure for each type of input data (i.e.,
multi-spectral data or SAR data). Our model architecture is inspired by the multi-scale
feature extraction structure in UNET. As shown in Figure 4, the model is trained in a
supervised way using data from each single source as input to predict the segmentation
ground truth. We maintain two self-information extraction structures and have them trained
separately using two types of input data. In this way, the hidden representation obtained
from this extraction structure (e.g., the hidden layer before the final convolutional layers)
can encode discriminative information about water extent using each single-source data.

2.2.3. Information Fusion

In order to combine the extracted common information and self-information from
the multi-source data inputs and perform the river segmentation task, we build an infor-
mation fusion structure. We show the overall structure in Figure 5, which contains three
paths. Firstly, the common information path extracts the common information from the
multi-source data input. Secondly, the self-information path extracts the self-information
from each type of the data within the multi-source data. Thirdly, the information fusion
path concatenates the common information and self-information, then generates the final
segmentation result.

During the training process, the common information path and the self-information
path are trained separately. Then, the parameters of the common information path and the
self-information path are copied from the well-trained common information extraction model
and self-information extraction model to initialize respective components in the overall model
structure. Finally, the entire model will be trained using two types of inputs and training
labels in a supervised fashion. The Binary Cross Entropy Loss is used for supervised training.
Assuming we have n training samples and we use ŷ and y to represent predicted labels and
manually annotated labels, respectively, the loss function is defined as follows:

loss = −
n

∑
i=1

yi log ŷi + (1− yi) log(1− ŷi) (6)
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path. The weights of these paths are copied from well-trained the common information extraction
structure and self-information extraction structure, as mentioned in Figures 3 and 4.

3. Results and Discussion
3.1. Experiment Setup

The experiment is conducted with Window 10, Python 2.7 and GTX2080 hardware
environment. We also compare with several baseline segmentation methods including
a popular water index-based approach, traditional machine learning approaches and
state-of-the-art deep learning approaches.

Here, we setup several baselines in both single-source input style model and multi-
source input style model. In order to achieve the multi-source input style model, we
combine the SAR data (the sample size is 96 × 96 × 1) and multi-spectral data (the sample
size is 96 × 96 × 9), which finally becomes a multi-source style input (the sample size is
96 × 96 × 10). These baselines include:

• NDWI: Normalized Difference Water Index is widely used to map water extent. We
compute NDWI from multi-spectral imagery and threshold the obtained values of
different pixels to obtain the river map.

• SVM and RF: Support Vector Machine and Random Forest are popular machine
learning methods that have been widely used in remote sensing. Here, SVM-S2 and
RF-S2 train the SVM and RF model using only Sentinel-2 data (SAR data) as input,
separately. SVM-M and RF-M utilize the multi-source input as the model input during
the model training and model testing.

• UNET: UNet is a popular deep learning model for pixel-wise classification (or seg-
mentation) and was originally designed for medical image segmentation. Here, we
setup three baseline methods, including UNET-S1, UNET-S2, UNET-M. UNET-S1 train
the UNET model using only Sentinel-1 data (SAR data) as input. UNET-S2 train the
UNET model using only Sentinel-2 data (SAR data) as input. UNET-M utilize the
multi-source input as the model input during the model training and model testing.

• Non-contrastive: In order to verify the contribution of the common information
during the segmentation process, we design the non-contrastive baseline as a variant
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of the proposed method by removing the common information path in the proposed
structure. Here, the non-contrastive method utilized the multi-scale idea of the UNET
and further setup a convolutional path starting with the concatenate layer, which
could fusion the information from two self-information extraction path.

• We implement two versions of the proposed algorithm:
• Proposed Method A: The self-information extraction path and common information

extraction path both utilize same amount of training samples (for which we have
training labels) during the training process.

• Proposed Method B: The self-information extraction path is trained using labeled
training samples. The common information extraction path utilizes all the samples
(both labeled and unlabeled) since it can be trained in an unsupervised fashion. Finally,
the information fusion part is trained using only the labeled data.

• The key hyper-parameters for the baselines and proposed method are shown in Table
3. The Contrastive Loss in Table 3 are described in Section 2.2.1.

Table 3. Parameters for the baselines and proposed method.

Algorithm Parameter Type Parameter Set

NDWI Threshold 0.1

SVM
(SVM-S2, SVM-M) Kernel Type RBF

RF
(SVM-S2, SVM-M) Criterion Gini

UNET
(UNET-S1, UNET-S2,

UNET-M)
Learning Rate 0.0001

Loss Function Binary Cross Entropy

Non-contrastive Learning Rate 0.0001

Loss Function Binary Cross Entropy

Proposed Method A Learning Rate 0.0001

Loss function Contrastive Loss, Binary
Cross Entropy

Proposed Method B Learning Rate 0.0001

Loss function Contrastive Loss, Binary
Cross Entropy

3.2. Large-Scale River Mapping

We divide the entire dataset (1013 samples) by randomly selecting 60% samples as the
training set and the remaining 40% samples as the testing set. Then, we train the proposed
method and baselines using the training set and validate these methods on the testing set.
Here, the VV bands of the Sentinel-1 and the nine 10/20-m spatial resolution bands of the
Sentinel-2 data are used for training and testing process.

Figures 6 and 7 show the training curve for the proposed method. Firstly, we describe
the ordinate and abscissa including model accuracy, model loss and epoch. The epoch
represents the number of times that the model goes through the entire training dataset.
The model accuracy is calculated based on the consistency between the model prediction
and ground truth within a single epoch. The model loss represents the current loss value
within a single epoch. As shown in Figures 6 and 7, the accuracy and the loss reach the
plateau after 30–40 epochs, which demonstrates that the model can be efficiently trained to
achieve the convergence.
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Then, we evaluate the performance by measuring the F1-score, precision and recall
among different methods, by using the 10m spatial resolution ground truth mask. Here,
we briefly introduce the definition of these measures. Let TP represents the number of
pixels that have been correctly predicted among river pixels. FP represents the number of
pixels that have not been correctly predicted among river pixels. TN represents the number
of pixels that have been correctly predicted among land pixels. FN represents the number
of pixels that have not been correctly predicted among land pixels.

The precision is calculated by Equation (7):

precision = TP/(TP + FP) (7)

The recall is calculated by Equation (8):

recall = TP/(TP + FN) (8)
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After gathering the precision and recall values, the F1-score is calculated by Equation
(9). The F1-score is one of the widely used measuring methods and could convey the
balance between the precision and the recall.

F1− score = 2 ∗ precision ∗ recall/(precision + recall) (9)

The comparison between the proposed method and baseline methods segmentation
performance on the testing dataset is shown in Table 4. It can be observed that threshold-
based NDWI method produces low F1-score for the large-scale river mapping task, due to
the uncertainty in the reflectance spectral characteristics among different surface regions.
Hence, we may need to use different thresholds for rivers in different places. The pixel-
based machine learning method SVM and RF shows better performance on F1-score,
compared with NDWI method. UNET-S1 method can better segment the river based on
the concept of the receptive field idea, compared with SVM, RF and NDWI. Due to the
improved spatial resolution of Sentinel-2 data, UNET-S2 method shows better segmentation
result, compared with UNET-S1. Furthermore, the non-contrastive method outperforms
other baselines on the F1-score. Overall, the proposed method shows best segmentation
performance than other baselines. By comparing the proposed method A and the Non-
contrastive method, we confirm the effectiveness of incorporating the common information
extracted through contrastive learning in the final segmentation process. Furthermore, the
Proposed Method B slightly outperforms the Proposed Method A, which demonstrates
that the unsupervised common information model training process using more unlabeled
data could better help the river segmentation process.

Table 4. Comparison between the proposed method and baseline methods segmentation performance
on the testing dataset.

Algorithm F1-Score Precision Recall

NDWI 38.54 63.81 34.22
SVM-S2 67.99 66.57 71.43
SVM-M 68.33 67.90 69.03
RF-S2 69.62 68.19 72.40
RF-M 70.18 69.33 71.01

UNET-S1 70.97 68.64 71.11
UNET-S2 85.26 86.81 85.14
UNET-M 86.07 86.50 85.72

Non-contrastive 89.10 89.92 88.78
Proposed Method A 91.04 91.83 89.02
Proposed Method B 91.53 91.98 90.11

We further visualize the segmentation results among the proposed method and base-
lines, using noise samples and limit samples. Figure 8 shows examples of river mapping
results made by the proposed method and other state-of-the-art methods on large-scale
river segmentation using noise samples. Each sample is first visualized by the Sentinel-1.
Sentinel-2 and manually annotated ground truth, based on the proposed large-scale multi-
source river imagery dataset, as mentioned in Section 2.1. As shown in Figure 8, the aerosol
and cloud affect the river segmentation result among the threshold based NDWI method
and the pixel-based machine learning methods. Here, we compare the single-source input
style machine learning method RF-S2, SVM-S2 with multi-source input style machine
learning model RF-M, SVM-M.
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Figure 8. The performance of the proposed method and other state-of-the-art methods on large-scale
river segmentation, using noise image with cloud and aerosol. (a) test sample’s false color composite
image based on Sentinel-2 satellite data; (b) test sample’s false color composite image based on Sentinel-1
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satellite data; (c) test sample’s ground truth; (d) normalized difference water index(NDWI); (e) single-
source input style support vector machine based on Sentinel-2 (SVM-S2); (f) multi-source input
style support vector machine based on Senitnel-1 and Sentinel-2 (SVM-M); (g) single-source input
style random forest based on Sentinel-2 (RF-S2); (h) multi-source input style random forest based on
Senitnel-1 and Sentinel-2 (RF-M); (i) single-source input style UNET based on Sentinel-1 (UNET-S1);
(j) single-source input style UNET based on Sentinel-2 (UNET-S2); (k) multi-source input style
UNET based on Senitnel-1 and Sentinel-2 (UNET-M); (l) non-contrastive method is designed to show
the performance of the proposed method without the common information path, by blocking the
common information path in the proposed structure; (m) proposed method A; (n) proposed method
B. Each column represents a random selected testing sample from the testing dataset. The red circle
in each subfigure of the last row, represents the significate segmentation result improvement of the
proposed method, while comparing with other state-of-the-art methods.

It can be seen that simply combine the multi-source data as the input could not help
too much in the segmentation performance. UNET-S1 shows that the SAR data is able to
better handle the fog and cloud and thus could obtain good river shape. However, due to
the low resolution of the SAR data, the boundary of the segmentation result still need to be
improved. In addition, the SAR data only has one channel, which makes it challenging for
distinguishing the river content with many other different land covers. In addition, the
proposed method B shows better river segmentation performance, especially within the
noise part of the satellite image, compared with the baseline deep learning method UNET-
S1, UNET-S2 and UNET-M. Additionally, Proposed Method A and Proposed Method B
outperform the Non-contrastive method, which confirms the contribution of the common
information extracted by the contrastive learning concept. The red circle within column
(n) represents the significate improvement of the proposed method B, compared with
other baseline methods. The result demonstrates the proposed method B is able to achieve
better segmentation for large-scale surface area river mapping by using both labeled and
unlabeled information.

3.3. River Mapping with Limited Labels

In practice, we may not have sufficient training samples if we want to map rivers in a
specific year. Hence, we further evaluate the performance of our method and other existing
methods on large-scale river segmentation using 20/100/200/400 training samples from
the entire training set and present the F1-score performance among different methods in
Table 5.

Table 5. F1-Score Comparison between the proposed method and baseline methods segmentation
performance on the testing dataset using different amount of training samples.

Algorithm Training Samples

20 100 200 400

UNET-S1 21.64 47.21 59.03 68.79
UNET-S2 29.07 56.35 68.91 76.83

Non-contrastive 35.01 64.56 73.06 81.17
Proposed Method A 39.89 68.70 76.83 84.21
Proposed Method B 46.12 71.34 78.08 85.92

It can be seen that Multi-source input model Non-contrastive better segments the
river under limited training sample condition, compared with single source input model
UNET-S1 and UNET-S2. Furthermore, since the labeled data is often limited among many
real world cases, the Proposed Method B is able to utilized the unlabeled data through
offline training. Thus, the Proposed Method B performs better than the Proposed Method
A due to the additional information from the unlabeled training samples, especially under
limited labeled training sample conditions.
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In addition, we show an example of detected river extent in Figure 9. It can be observed
that the proposed method B shows better segmentation result among rest comparison
methods.
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(e) UNET for Sentinel-2; (f) non-contrastive method is designed to show the performance of the proposed method without
the common information path, by blocking the common information path in the proposed structure; (g) proposed method
A; (h) proposed method B. The red circle in (h) represents the significate segmentation result improvement of the proposed
method B, while comparing with other state-of-the-art methods.

We further explore the method performance under different cloud coverage percent-
age condition. Figure 10 shows the segmentation accuracy curves using different cloud
coverage samples. It can be observed that cloud coverage could highly influence the
segmentation performance among all methods, due to the missing information in the
foggy and cloudy satellite images. In addition, multi-source input model Non-contrastive
outperforms several single-source input models, such as NDWI, SVM, RF and UNET-S1
and UNET-S2. Moreover, the Proposed Method B shows better segmentation F1-score than
the Proposed Method A due to its ability to leverage unlabeled information during the
unsupervised common information path training process.

3.4. Long-Term River Monitoring

Finally, we can apply our proposed method for long-term river mapping, which can
be very useful for monitoring and managing water resources. Figure 11 shows an example
of the river monitoring over a two-year period. Figure 12 shows the river area estimation
based on the water pixels from the river segmentation results. We can observe that the river
regularly changes from season to season. In addition, it can be seen that the November’s
river area from 2015 to 2017 shows an increasing trend.
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4. Conclusions

In this paper we present a large-scale river mapping deep learning model based on
contrastive learning and multi-source satellite data. We also create a large-scale multi-
source river imagery dataset, along with handmade accurate river ground truth masks.
The experiments show that the proposed method outperforms the several state-of-the-art
segmentation methods and demonstrate that the proposed contrastive learning method is
able to better segment the river over large spatial regions. Moreover, the proposed method
shows better performance when multi-spectral satellite images are noisy (e.g., blocked by
clouds).

In the future work, we plan to further validate our method using other types of high-
resolution satellite data for longer term river monitoring and integrate these data sources
in our dataset. Moreover, since there could be existed pixel error within current version
of the proposed dataset when both optical and SAR images contain artifacts, we plan to
refine the labels by utilizing an independent satellite data source (such as DigitalGlobe or
WorldView). We will also study and extract temporal changes of water area in rivers, in
order to automatically detect river expansion or shrinkage.
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