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Abstract: The leaf area index (LAI) is an important vegetation biophysical index that provides
broad information on the dynamic behavior of an ecosystem’s productivity and related climate,
topography, and edaphic impacts. The spatiotemporal changes of LAI were assessed throughout
Ardabil Province—a host of relevant plant communities within the critical ecoregion of a semi-
arid climate. In a comparative study, novel data from Google Earth Engine (GEE) was tested
against traditional ENVI measures to provide LAI estimations. Moreover, it is of important practical
significance for institutional networks to quantitatively and accurately estimate LAI, at large areas in
a short time, and using appropriate baseline vegetation indices. Therefore, LAI was characterized for
ecoregions of Ardabil Province using remote sensing indices extracted from Landsat 8 Operational
Land Imager (OLI), including the Enhanced Vegetation Index calculated in GEE (EVIG) and ENVI5.3
software (EVIE), as well as the Normalized Difference Vegetation Index estimated in ENVI5.3 software
(NDVIE). Moreover, a new field measurement method, i.e., the LaiPen LP 100 portable device (LP 100),
was used to evaluate the accuracy of the derived indices. Accordingly, the LAI was measured in
June and July 2020, in 822 ground points distributed in 16 different ecoregions-sub ecoregions
having various plant functional types (PFTs) of the shrub, bush, and tree. The analyses revealed
heterogeneous spatial and temporal variability in vegetation indices and LAIs within and between
ecoregions. The mean (standard deviation) value of EVIG, EVIE, and NDVIE at a province scale
yielded 1.1 (0.41), 2.20 (0.78), and 3.00 (1.01), respectively in June, and 0.67 (0.37), 0.80 (0.63), and
1.88 (1.23), respectively, in July. The highest mean values of EVIG-LAI, EVIE-LAI, and NDVIE-LAI in
June are found in Meshginshahr (1.40), Meshginshahr (2.80), and Hir (4.33) ecoregions and in July are
found in Andabil ecoregion respectively with values of 1.23, 1.5, and 3.64. The lowest mean values of
EVIG-LAI, EVIE-LAI, and NDVIE-LAI in June were observed for Kowsar (0.67), Meshginshahr (1.8),
and Neur (2.70) ecoregions, and in July, the Bilesavar ecoregion, respectively, with values of 0.31, 0.31,
and 0.81. High correlation and determination coefficients (r > 0.83 and R2 > 0.68) between LP 100
and remote sensing derived LAI were observed in all three PFTs (except for NDVIE-LAI in June
with r = 0.56 and R2 = 0.31). On average, all three examined LAI measures tended to underestimate
compared to LP 100-LAI (r > 0.42). The findings of the present study could be promising for effective
monitoring and proper management of vegetation and land use in the Ardabil Province and other
similar areas.

Keywords: LaiPen; management tools; remote sensing; vegetation indices; spatiotemporal changes

1. Introduction

Leaf area is the main component in the exchange of matter and energy between tree
canopies and the atmosphere, and is considered an important ecological and biological
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indicator [1–3]. Since the ecological values of vegetation in natural ecosystems have a
particular priority in regional security supply, the study of leaf production added to the
soil every year plays an essential role in soil quality improvement [4–6]. Therefore, it is
necessary to be aware of the changing pattern of the leaf area index (LAI) in different
ecosystems to choose the right land management strategy [7,8]. The vegetation structure
strongly influences the net primary production and regulates the light, temperature, wind,
and humidity, locally [9,10].

The LAI shows the amount of leaf matter in the ecosystem and is geometrically
defined as the area of one side of photosynthetic tissue of leaf per unit land area [11]. The
green leaf area could account for the largest part of the plant canopy, which is one of the
key factors in the net primary production of the ecosystem, and the exchange of energy
between the Earth’s surface and the atmosphere [11]. It also fundamentally affects the
canopy reflectance [11]. For this reason, it is also considered one of the main structural
variables of the forest and rangeland ecosystems. Therefore, LAI measurement is essential
to understand the interactions between plant growth and the environment [12].

Two main methods—direct and indirect—are used to estimate LAI. Both methods were
compared in terms of their theoretical background, sensors, errors, and sampling strategies
in a vast number of studies (e.g., [13–17]. Jonckheere et al. [14] assigned the leaf collection
(through destructive sampling and the model tree method or by non-harvesting litter
traps) and the leaf area determination (planimetric or gravimetric) techniques to the direct
methods for LAI measurements. The leaf collections can further serve as reference data to
calibrate models by which LAI can be indirectly assessed. The indirect contact (i.e., inclined
point quadrat and allometric techniques) and indirect non-contact LAI measurement (i.e.,
optical) methods are also used for LAI estimation. A broad range of instruments can
be used for the LAI measurement, including passive and active optical methods. Direct
methods provide reliable values for LAI evaluation. In the direct methods (i.e., destructive
methods), the leaves are separated from the plant, and the measurements are made using
tools, such as surveyors, in small plants with a small number of leaves [18]. The direct
method is generally hindered by the large spatial extent of survey regions and its high
labor costs, including the travel to difficult-to-reach areas. For this reason, in most countries
today, indirect methods such as specific photographic cameras [19], aerial photographs [20],
allometric regression models [21,22], or light spectrum reflection in satellite images [23], are
used to estimate the LAI. Estimation of LAI through new remote sensing methods also has
some sound advantages, including non-destructive measurements and extensive spatial
coverage. In the indirect methods, leaf area is observed using different variables, such
as the geometric position of the canopy, the amount of light interception, and the length
and width of the leaf [24]. Since the field measurement of LAI is very time-consuming
and costly, remote sensing serves as a useful alternative to estimate and monitor LAI at
various scales, utilizing large samples that can be rapidly collected and automatically
processed [14].

One of the most common indirect methods based on remote sensing in LAI estimation
is establishing an experimental relationship between LAI and various vegetation indices,
including Enhanced Vegetation Index (EVI), Soil Adjusted Vegetation Index (SAVI), and
Normalized Difference Vegetation Index (NDVI) [8]. The most widely used vegetation
index is the NDVI, which is suitable for estimating vegetation cover, plant production,
and vegetation segregation. Although this index estimates the LAI appropriately at values
less than three—in LAI values greater than three, it loses its sensitivity to the greenness
changes or becomes saturated [25,26]. The EVI provides complete information on the
spatial and temporal variations of vegetation and reduces some of the NDVI problems (e.g.,
its capability to overcome the dust effects on vegetation) [27]. The Google Earth Engine
(GEE) system has also been introduced in recent years as one of the most used methods
in calculating LAI. The system is capable of spectral processing on a local to global scale
using free satellite imagery. GEE is a cloud system that allows analyzing various satellite
images on a local to global scale. This system is an extensive database of radiometric and
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atmospheric corrected images worldwide that can be easily used [28]. The ENVI software
is also frequently used as a platform for the estimation of vegetation indices and LAI from
different satellite images. A successful application of this software requires a preprocessing
of the images and further classifications. Recently, the GEE [29,30] simplified these steps by
providing a single platform for server-side image acquisition, preprocessing, processing,
and visualization. Moreover, the methodology in the GEE platform enables online tests
and modifications. Nevertheless, Landsat data from GEE have not been applied in LAI
mapping, although this platform is highly applicative for institutional networks in remote
areas and with limitations in computational power.

Recently, the LaiPen LP 100 (LP 100) was designed and introduced as one of the field
methods of LAI estimation. This device quickly eliminates the disadvantages of direct
methods and can be used for the shrub, bush, and tree species [31]. The LP 100 has a lower
weight and a higher measurement speed than other devices used to measure LAI in natural
ecosystem species (for example, digital plant canopy imager). An additional advantage
of LP 100 is that it works under light conditions (lighting hours), i.e., cloud cover is not
required, such as with other similar tools [27]. A high sensitivity, an integrated sensor for
measuring foliage inclination, and different angles measurement are further benefits of the
LP 100. For fast, convenient, and repeatable measurements with instant readings, light is
measured by LP 100 from five different zenith angles, and LAI is then calculated using a
radioactive transfer model in vegetative canopies.

There are various results concerning the accuracy assessment of different methods in
LAI estimation. The similar reliability, accuracy, and methodology of LP 100 and LAI-2200
PCA as the “world standard” is confirmed by several studies [2,32–34]. The accuracy of
LAI derived from Landsat 7 (ETM+) and Landsat 8 (OLI) was assessed in [35] using the
LI-COR LAI-2200 Plant Canopy Analyzer and field data from loblolly pine plantations in
the USA. Results showed an R2 of 0.32–0.83 for and a root mean square error (RMSE) of
0.41–1.10 for when LAI estimates were derived from various vegetation indices. Campos-
Taberner et al. [36] derived the LAI on a global scale using MODIS products of GEE. Their
results verified the consistency of the GEE-MODIS products in the estimation of biophysical
variables, such as LAI. According to the literature, no study compared the accuracy of
LP 100 and remote sensing data of Landsat simultaneously with the direct measurement.
Moreover, no study has yet been conducted on the accuracy assessment between GEE
and LP 100. Consequently, the present study will demonstrate new facilities using the
Landsat product of GEE and the LP 100, especially when the study area is large, the budget
is limited, and/or the time is limited.

Although plant functional types (PFTs) have relatively similar spectral properties (high
absorption in RED and high reflection in NIR), they have specific properties in different
ecoregions depending on the vegetation canopy structure. The spatial and temporal vari-
ability of spectral properties and, consequently, LAI, are verified for different ecosystems
of the world, such as in Niger [37], China [38,39], Switzerland [40], and Australia [41]. The
LAI estimates are affected by the environmental conditions and mainly through climatic
(e.g., precipitation and temperature), environmental stressors (e.g., insect damage, drought,
weeds, and nutrient deficiency), and phenological conditions. For example, Meng et al. [39]
reported the interrelation of vegetation greenness based on LAI estimation with climatic
and hydrological variables. They verified the enhancement of vegetation greening due
to the wetting climate in northern China is also stated by previous studies (e.g., [38]).
Spatiotemporal variations are also reported in the canopy reflectance and differences in
plant performance [42,43]. Variations in plant canopy and leaf structure, as well as pigment
and water content, can result in changing reflectance properties, even between closely
related species [42,44,45]. It is known that the spectral properties of plant species depend
on plant physiology, morphology, or anatomy [43].

Various studies have been performed to estimate LAI using vegetation indices through-
out the world [2,8,21,45–55]. For instance, Goswami et al. [47] showed that the NDVI for
six key species in Alaska has a very high correlation with production (R2 = 0.83) and LAI
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(R2 = 0.70), but where the production value was more than 100 g m−2 and LAI more than 2,
the NDVI was saturated. A high correlation (R2 = 0.88) between LAI and production was
also confirmed. A weak relationship (p > 0.05) between LAI and vegetation indices during
the flowering period was reported by Qiao et al. [8]. Towers et al. [46] also reported the
inadequate sensitivity of NDVI in the LAI estimation. Lovynska et al. [50] estimated LAI
by direct and indirect methods in the steppe regions of northern Ukraine in Scottish pine
trees. Their results showed that the LAI obtained by the direct method was, on average,
8.8% higher than that calculated by the indirect method. In addition, Mani et al. [49]
used the LaiPen device in their studies to calculate the LAI of teak trees in India and
the statistical relationship between the terrestrial data and vegetation indices obtained
from Landsat 8 and Advanced Wide Field Sensor (AWiFS) satellite images. Their results
showed a positive relationship between terrestrial data and spectral reflectance of the NIR
band and an inverse relationship with the red band. The validation of the model, based
on ground-based LAI, showed that Landsat 8 and the AWiFS model derived LAI image
showed better correlation and lower RMSE, and indicated a strong correlation between the
measured and estimated LAI. In Iran, Behbahani et al. [51] investigated the possibility of
using vegetation indices derived from ASTER-L1B sensor data to determine the canopy
cover percentage of single trees in arid woody rangelands. The results indicated significant
correlations. Among the indices, NDVI and the Modified Soil-Adjusted Vegetation Index
(MSAVI) presented a stronger statistical correlation than the other indices with the crown
cover area, having a correlation coefficient of 0.61 and a standard error of 5.58. Adl [21] also
calculated the LAI of two species of oak (Quercus brantii) and pistachio (Pistacia atlantica) in
forests of Yasuj County, southwestern Iran. The gravimetric method was used to calculate
the leaf area index in which the relationship between “leaf area” and “dry weight” was
used as criteria for estimating the total area of the tree leaves. The mean LAI in the study
forests was estimated to be 1.2. Asadi et al. [52] compared different spectral vegetation
indices for remote sensing of LAI of winter wheat in Mashhad, northeast Iran. The results
showed higher accuracy in estimating wheat LAI using the NDVI and SAVI based on
the exponential functions than the linear model. Moreover, the highest accuracy in LAI
estimation was observed using the combination of the greenness (G2) index or SAVI and
EVI due to the greater sensitivity of the G2 index to medium and high LAI than NDVI.

According to the literature review, it could be concluded that the LAI analysis using
modern rapid assessment methods, such as GEE and LP 100, is highly important to plan,
monitor, and manage critical natural capitals. However, Ardabil Province, located in north-
western Iran, enjoys diverse ecological natural ecosystems; there are no comprehensive
reports on the spatial and temporal changes of LAI. Accordingly, the major goals of the
present study were: (i) to examine the applicability of different remote sensing indices to
analyze the LAI in different PFTs of various ecoregions of Ardabil Province; (ii) to compare
the LAI values in two months (June and July 2020) according to the growing conditions
of the study areas; and (iii) to assess the accuracy of LAI derived from remote sensing
indices using modern equipment of LP 100. Since, the present study is the first endeavor
to quantify the LAI using different vegetation indices and estimation tools in the critical
ecoregions of Ardabil Province, located in Iran (western Asia), the findings will be vital to
the land planning and policy-making at local, regional, national, and international levels.

2. Materials and Methods
2.1. Study Area

The study ecoregions of Ardabil Province included Andabil, Bilesavar-Khoroslo,
Darband Hir, Germi, Hashtjin, Hatam Meshasi forests, Khalkhal forests, Kowsar highlands,
Namin highlands, and Neur Lake highlands (Figure 1, Table 1). There were three PFTs,
i.e., shrub, bush, and tree. In this study, the shrub was a small- to medium-sized perennial
woody plant, less than 50 cm height; the bush was considered the plant with many small
branches growing either directly from the ground or a hard stem, from 50 cm to less than
seven meters in height; the tree was a woody perennial plant, having a single (usually
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elongated) main stem, generally with few or no branches on its lower part, with a height of
over seven meters.
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Table 1. General characteristics of the study ecoregions in Ardabil Province.

No. County (Time of
Sampling) Ecoregions Dominant Plant Functional

Types (PFTs; Replications)
Altitude Range

(m a.s.l.)
Mean Annual
Rainfall (mm)

1 Ardabil (June) Darband Hir Tree (55) 2000–2100 286.80
2 Ardabil (June) Neur Bush (48), tree (10) 2000–2100 350.70
3 Bilesavar (July) Bilesavar- Khoroslo Bush (9) 120–200 267.20
4 Germi (July) Germi Bush (13), tree (16) 800–900 297.50
5 Khalkhal (July) Andabil Shrub (13), bush (13), tree (49) 1100–1600 384.60

6 Khalkhal (July)
Hashtjin

(two sub-ecoregions:
Aghdagh, Berandagh)

Shrub (13), bush (10), tree (121) 1100–2000 324.60

7 Khalkhal (July)

Khalkhal
(five sub-ecoregions:

Isbo, Jafarabad, Majareh,
Dilmadeh, Shormineh,

Chenarlagh)

shrub (28), bush (10), tree (73) 1100–2000 324.60

8 Kowsar (June)
Kowsar (one

sub-ecoregion:
Mashkoul)

Shrub (26), tree (61) 1300–1800 336.40

9 Meshginshahr (June) Hatam Meshasi Shrub (15), bush (5), tree (70) 1600–1900 296.20
10 Namin (June) Namin Highlands Shrub (65), bush (9), tree (90) 1400–1600 336.40

Ardabil Province is situated in a cold region of northwestern Iran with an area of
17,952 km2, about one percent of the total area of the country. Its mean altitude is 1400 m
above sea level (m a.s.l.). The lowest inner point with a height of 20 m a.s.l. is in Parsabad
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and Bilesavar counties, and Sabalan, with an elevation of 4811 m a.s.l., is the highest peak
of the province. The maximum and minimum annual temperature in Ardabil Province
varies from 14.3 to 20.5 ◦C and 1.5 to 9.7 ◦C, respectively. Ardabil Province has diverse
ecological and climatic conditions due to the complexity of natural conditions, geological
and geomorphological diversity, and the diversity of factors affecting its climate. The north-
ern part of the province has a temperate climate due to its low altitude. The province’s
climate mainly depends on four factors: altitude, latitude, water resources, and moving air
masses. Other factors, such as vegetation, small-scale industrial, mining, and agricultural
activities are affected by climate [54]. Daddeh et al. [55] verified the rainfall seasonality
in Ardabil Province and reported winter as the main rainfall season for almost the entire
Ardabil Province. In addition, some parts of the center and south of the province expe-
rience the highest rainfall during the spring season, and very small parts in the east and
west stations had a humid autumn season. A positive correlation with seasonal rainfall
(autumn and winter) for shrub growing around Meshginshahr, was found by Sharifi and
Akbarzadeh [56], who stated that the maximum correlation between vegetation variations
of the bush was attributed to the autumn rainfall. The response of the shrub species of the
Khalkhal ecoregion to seasonal and annual rainfall changes is slow, which means that this
PFT, in addition to using rainfall at the time of its fall, also uses the moisture stored deep in
the soil throughout the year by its deep roots. The soil moisture storage of this rangeland
(with sandy loam to loamy texture) compensates for rainfall fluctuations for shrub species,
so that during the year, the shrubs have access to the required moisture [57,58].

To verify the results of the remote sensing results, it was essential to choose similar
months for LP 100 measurements, while considering some critical conditions (maximum
greenness, availability of images without cloudiness, and on-site measures). Two months
consideration (i.e., June and July) in this studywas attributed to the large area of the study
province (i.e., 17,952 km2); it was impossible to sample all study ecoregions in one month.
The climatic properties (Table 2) of the Ardabil Province’s synoptic stations (Figure 1)
showed that, in June, the rainfall was higher, and the temperature was lower than in July
throughout the province.

Table 2. Climatic properties of Ardabil Province synoptic stations.

Climatic Variable Month/Year
Synoptic Station (Locations Are Shown in Figure 1)

Ardabil Sareyn Bileh
Savar Germi Khalkhal Kowsar Meshginshahr Parsabad

Elevation (m) - 1332 1632 749 749 1796 1186 1568 32
Mean Precipitation (mm;

1986–2020)
June 16.10 20.10 270 31.30 16.70 7.40 40.10 21.90
July 6.90 11.70 9.40 9.80 10.80 9.10 20.00 8.30

Annual Precipitation (mm) 2020 278.20 362.34 426.79 395.53 373.23 325.72 390.72 276.87
Mean Temperature (◦C;

1986–2020)
June 16.40 17.00 24.80 22.60 16.60 23.70 18.50 24.60
July 18.20 19.50 27.60 25.10 19.40 26.10 20.60 27.20

Annual Temperature (◦C) 2020 9.27 8.57 15.38 13.63 8.37 13.91 10.35 15.16

2.2. Methodology

In the present study, LAI was calculated using (i) EVI in the GEE system (hereafter
called EVIG-LAI); (ii) EVI and NDVI in the ENVI5.3 software (hereafter called EVIE-LAI,
and NDVIE-LAI, respectively); and (iii) LP 100 device (hereafter called LP-LAI). The
flowchart of these calculations is depicted in Figure 2.

2.2.1. Satellite Images Used and Processed

Image data from only two months, June and July, were selected for the LAI estima-
tion due to a number of reasons. First, this period covers the growing seasons; second,
cloudiness is usually more likely during the summer; and third, due to a consequence of
field-collected data with selected images for accuracy assessment. To calculate the LAI
in the GEE system, 22 radiometrically and atmospherically corrected Landsat 8 satellite
images covering all areas of the Ardabil Province, related to June and July 2020, were used
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(the detailed information can be found at https://code.earthengine.google.com/d3ca8
8dea99bcbf166ec3505df2f2c2c; accessed on: 1 June 2021). Furthermore, to calculate the LAI
in the ENVI 5.3 software, the Landsat 8 images of June and July 2020 were downloaded
from the USGS website (https://www.usgs.gov/; accessed on: 1 June 2021; Table 3). Then,
the image processing, including geometric, radiometric, and atmospheric correction, was
done. The radiometric and atmospheric corrections were performed with the radiometric
calibration and flash algorithm in ENVI 5.3 software [59].
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Table 3. Specifications of Landsat 8 satellite images used in the present study.

Satellite and Sensor Date Path Row Solar Azimuth Angle (◦) Considered for Study Month

Landsat 8 OLI

21 May2020 167 33 132.90
June28 May 2020 166 34 126.99

04 May 2020 167 34 125.91
21 May 2020 167 34 124.22

July25 May 2020 166 33 121.89
25 May 2020 167 34 122.85

2.2.2. Calculation of Vegetation Indices and LAI

Spectral indices in remote sensing refer to inter-band equations, in which two or
more bands with different reflectance shapes in connection with a phenomenon are used.
Spectral indices are applied to detect biophysical and biochemical parameters in satel-
lite images [5]. Using the three bands of Blue, Red, and near-infrared (NIR) of Landsat
8 satellite images, the vegetation indices of EVI and NDVI were calculated as expressed in
Equations (1) [60] and (2) [61].

EVI = 2.5 × (NIR − Red)/(NIR + 6 × Red − 7.5 × Blue + 1) (1)

NDVI = (NIR − Red)/(NIR + Red) (2)

In the GEE system, the LAI map was prepared by calculating the EVI and coding the
LAI equation (Equation (3)). The average LAI values for each ecoregion were considered,
as well.

https://code.earthengine.google.com/d3ca88dea99bcbf166ec3505df2f2c2c
https://code.earthengine.google.com/d3ca88dea99bcbf166ec3505df2f2c2c
https://www.usgs.gov/
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Two indices of EVI and NDVI were also used to calculate the LAI in the ENVI5.3
software as given in Equations (3) [62] and (4) [63].

LAI = 3.618 × EVI − 0.118 (3)

LAI = 0.57 × exp (2.33 × NDVI) (4)

2.2.3. LP 100 Device (Field Measurements)

To evaluate the accuracy of LAI estimated by remote sensing indices in ecoregions
of Ardabil Province, 822 ground truth points (Table 1; Figure 3) that included PFTs of the
shrub, bush, and tree were systematically selected for LAI measurement using LP 100.
Different replications were used for each PFT and ecoregion dependent on the frequency
of each PFT and the total area of the study ecoregions (Table 1; Figure 3). The operating
instructions of LP 100 for LAI measuring are followed as entirely explained in the LP
100 Manual and User Guide [64]. This device is equipped with two sensors of LAI and
photosynthetically active radiation (PAR). For this study, the LAI sensor located below the
device cap was used. This sensor measures the irradiance of the blue part of solar radiation
(400–500 nm, ALAI) as the most important part of the spectrum absorbed by green leaves.
The revised Lambert–Beer extinction law [64] was used to determine the LAI based on the
ALAI transmittance as presented in Equation (5):

LAI = −Ln
(

I
I0

)
/K (5)

where, I and I0, respectively, represent the radiation intensity in the lower and upper parts
of the vegetation. The ratio of I to I0 expresses the ALAI transmittance. K is the extinction
factor dependent on the vegetation canopy shape, orientation, and position [15]. The
reference value measurements for ALAI were also done in an open space. The Darband
Hir, Neur, Kowsar, Meshginshahr, and Namin ecoregions (Figure 1) were subjected to LP
100 application in June 2020, and the rest of the ecoregions were considered in July 2020. In
total, the collection period for LP 100 ranged from 13 June to 25 July 2020.

Remote Sens. 2021, 13, x FOR PEER REVIEW 9 of 22 
 

 

 
Figure 3. Location of ground truth points (Left) and LP 100 application for ALAI calculation in the study area (right; e.g., 
Namin highlands). 

2.2.4. LP 100 Device Validation 
VitiCanopy App was applied for LP 100 validation (detailed information provided 

in [65,66]). To this end, six repetitions from each PFT were subjected to VitiCanopy and 
LP 100, simultaneously, and the LAIs were calculated. Moreover, Babaei Kafaki et al. [67], 
studied the LAI of Quercus macranthera using the direct method in the 278-hectare forest 
located northeast of Khalkhal, the LAI was obtained 3.33, which was considered as an 
additional basis for LP 100 validation. 

2.2.5. Geographic Information System (GIS) Application 
The ArcGIS 10.8 was used to show the spatial distribution of the sampled points 

recorded by the global position system and LP 100 throughout the field survey. In addi-
tion, the base maps (pixel size = 30 m) of elevation, land use [53], vegetation indices, and 
LAIs were finalized in this environment. To provide the base data for scatter plots of 
comparisons, the “extract by points” and the “zonal statistics” functionalities in GIS were 
also used to derive the vegetation indices and LAIs of the produced maps, from ENVI 
and GEE for all points recorded by LP 100. To facilitate appropriate comparison between 
field and remote sensing, the LAI data of LP 100 in each homogeneous pixel size of 30 m 
were averaged and then used for the accuracy assessment.  

2.2.6. Statistical Analysis and Accuracy Assessment 
The correlation coefficient (r) was used to examine the relationship between the two 

datasets of the LAI field measurements and the estimates via remote sensing. To mitigate 
spatial misalignments, the LAI estimates from the aerial images were extracted with pixel 
size resolutions for each PFT, and subsequently averaged for each ecore-
gion/sub-ecoregion. To evaluate the performance of the data obtained from satellite im-
ages compared to the ground data, five error assessment criteria were used [6,68] (Equa-
tions (6) to (10)): 

1. Mean bias error (MBE) indicates the difference between the mean of remote 
sensing (LAIRS) and LP 100 (LAILP) derived LAIs (Equation (6). Although this criterion is 

Figure 3. Location of ground truth points (Left) and LP 100 application for ALAI calculation in the study area (right; e.g.,
Namin highlands).



Remote Sens. 2021, 13, 2879 9 of 21

2.2.4. LP 100 Device Validation

VitiCanopy App was applied for LP 100 validation (detailed information provided
in [65,66]). To this end, six repetitions from each PFT were subjected to VitiCanopy and
LP 100, simultaneously, and the LAIs were calculated. Moreover, Babaei Kafaki et al. [67],
studied the LAI of Quercus macranthera using the direct method in the 278-hectare forest
located northeast of Khalkhal, the LAI was obtained 3.33, which was considered as an
additional basis for LP 100 validation.

2.2.5. Geographic Information System (GIS) Application

The ArcGIS 10.8 was used to show the spatial distribution of the sampled points
recorded by the global position system and LP 100 throughout the field survey. In addition,
the base maps (pixel size = 30 m) of elevation, land use [53], vegetation indices, and
LAIs were finalized in this environment. To provide the base data for scatter plots of
comparisons, the “extract by points” and the “zonal statistics” functionalities in GIS were
also used to derive the vegetation indices and LAIs of the produced maps, from ENVI and
GEE for all points recorded by LP 100. To facilitate appropriate comparison between field
and remote sensing, the LAI data of LP 100 in each homogeneous pixel size of 30 m were
averaged and then used for the accuracy assessment.

2.2.6. Statistical Analysis and Accuracy Assessment

The correlation coefficient (r) was used to examine the relationship between the two
datasets of the LAI field measurements and the estimates via remote sensing. To mitigate
spatial misalignments, the LAI estimates from the aerial images were extracted with pixel
size resolutions for each PFT, and subsequently averaged for each ecoregion/sub-ecoregion.
To evaluate the performance of the data obtained from satellite images compared to the
ground data, five error assessment criteria were used [6,68] (Equations (6) to (10)):

1. Mean bias error (MBE) indicates the difference between the mean of remote sensing
(LAIRS) and LP 100 (LAILP) derived LAIs (Equation (6). Although this criterion is the
average bias error of the overall remote sensing method, and not a good error measure—it
primarily facilitates seeing how much remote sensing methods overestimate or underesti-
mate the LAI values. Negative and positive MBE indicates underestimation and overesti-
mation, respectively. Where the MBE is zero, there is validity, and it shows the desirable
LAI estimation.

MBE = ∑N
i=1(LAIRS − LAILP)/N (6)

2. The multiplicative bias (MBias) is expressed as the ratio of the LAIRS to LAILP
(Equation (7)). MBias values of one, less than one, and more than one, respectively, indicate
perfect, low, and high estimation of LAI using remote sensing methods.

MBias = ∑N
i=1 LAIRS/ ∑N

i=1 LAILP (7)

3. The relative bias (RBias) addresses the systematic bias of remotely sensed LAIs and
behaves the same as MBE. The systematic bias is commonly associated with sensor systems
and methods used in the LAI generation process (Equation (8)).

RBias = (∑N
i=1(LAIRS − LAILP)/ ∑N

i=1 LAILP) ∗ 100 (8)

4. Mean absolute error (MAE) is a measure of dispersion that gives the average
magnitude of estimated errors. Due to its low sensitivity to distant outliers and being less
subject to interpretation, it is preferred by many researchers. MAE is always positive. The
closer the MAE and MBE criteria are to zero, the more accurate the method indicates.

MAE = ∑N
i=1|LAIRS − LAILP|/N (9)
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5. Root mean square error (RMSE) is defined as the square root of the square mean of
all of the errors. RMSE is one of the most widely used performance criteria. The lower it is
(close to zero), means the lower the error.

RMSE =

√
∑N

i=1(LAIRS − LAILP)
2
/N (10)

3. Results

The results of LP 100 validation through the VitiCanopy app (Table 4) verified the
LP 100 application (r > 0.91; R2 > 0.83; RMSE < 0.51). In addition, in the preliminary, the
results of the vegetation indices used for LAI assessment and the LAI extracted maps for
the Ardabil Province are depicted in Figures 4 and 5. The results of LAI analysis based
on remote sensing methods for different sampling months and PFTs are also given in
Tables 5 and 6. Scatter plots of remote sensing-based and LP 100 LAIs for different PFTs
and months are shown in Figures 6 and 7. Furthermore, the relationships between remote
sensing vegetation indices and LP-LAIs for different PFTs and sampling months were
analyzed, as shown in Figures 8 and 9, respectively. Finally, the results of the accuracy
assessment for each study month and PFT are summarized in Table 7.

Table 4. Results of LP 100 validation through the VitiCanopy (VC) application.

Plant Functional
Types (PFTs) LP-LAI VC-LAI p-Value r R2 MBE MBias RBias MAE RMSE

Shrub 2.27 3.00

p < 0.01 0.91 0.83 0.48 1.18 18.48 0.48 0.51

Shrub 2.24 2.80
Shrub 2.80 3.00
Shrub 2.85 3.20
Shrub 2.12 2.60
Shrub 3.25 3.80
Bush 3.57 3.80

p < 0.01 0.98 0.97 0.26 1.07 6.92 0.26 0.30

Bush 4.50 4.80
Bush 2.22 2.69
Bush 4.70 4.75
Bush 3.60 4.00
Bush 3.80 3.90
Tree 0.66 0.77

p < 0.01 0.95 0.90 0.17 1.05 4.81 0.43 0.50

Tree 4.28 4.49
Tree 3.85 4.50
Tree 4.37 3.60
Tree 5.06 5.65
Tree 2.97 3.20

Table 5. Remote sensing LAI values for different sampling months.

LAIs

Months June July

Maximum Average Minimum Maximum Average Minimum

EVIG-LAI 1.40 0.90 0.67 1.20 0.68 0.31
EVIE-LAI 2.88 2.30 1.84 1.56 0.81 0.31

NDVIE-LAI 4.33 3.17 2.77 3.64 1.73 0.81

Table 6. Remote sensing LAI values for different PFTs.

LAIs

PFTs Shrub Bush Tree

Minimum Average Maximum Minimum Average Maximum Minimum Average Maximum

EVIG-LAI 0.88 0.35 1.49 0.27 0.73 1.44 1.95 0.82 0.27
EVIE-LAI 0.37 1.48 2.98 0.23 1.23 3.19 3.20 1.45 0.10

NDVIE-LAI 1.23 2.62 4.43 0.79 1.23 3.49 4.28 2.23 0.73
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Figure 6. Scatter plots of remote sensing-based and LP 100 LAIs for different PFTs of (a) shrub, (b) bush, and (c) tree.
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Figure 7. Scatter plots of remote sensing-based and LP 100 LAIs in (a) June and (b) July.
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Figure 8. Scatter plots of remote sensing vegetation indices and LP-LAIs for different PFTs of (a) shrub, (b) bush, and (c) tree.
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EVIE-LAI −0.52 0.18 −82.19 0.52 1.42 

NDVIE-LAI −0.4 0.42 −58.01 0.41 1.14 

PFTs  

Shrub 
EVIG-LAI −0.54 0.18 −82.20 0.54 1.59 
EVIE-LAI −0.45 0.31 −69.14 0.48 1.46 

NDVIE-LAI −0.04 0.54 −46.41 0.36 1.13 

Bush 
EVIG-LAI −0.18 0.27 −73.09 0.20 0.77 
EVIE-LAI −0.14 0.45 −54.91 0.21 0.80 

NDVIE-LAI −0.09 0.62 −37.55 0.20 0.71 

Tree 
EVIG-LAI −0.50 0.21 −79.30 0.50 1.39 
EVIE-LAI −0.40 0.37 −63.49 0.43 1.22 

NDVIE-LAI −0.28 0.56 −43.64 0.32 0.94 
MBE: mean bias error, MBias: multiplicative bias, RBias: relative bias, MAE: mean absolute error, RMSE: root mean 
square error. 
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Figure 9. Scatter plots of vegetation indices and LP-LAIs in (a) June and (b) July.
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Table 7. Results of accuracy assessment for each study month and PFTs.

Error Statistics MBE MBias RBias MAE RMSE

Sampling
month

June
EVIG-LAI −0.36 0.28 −72.01 0.36 1.21
EVIE-LAI −0.21 0.57 −42.57 0.27 0.95

NDVIE-LAI −0.13 0.74 −25.88 0.22 0.8

July
EVIG-LAI −0.54 0.15 −84.81 0.54 1.45
EVIE-LAI −0.52 0.18 −82.19 0.52 1.42

NDVIE-LAI −0.4 0.42 −58.01 0.41 1.14

PFTs

Shrub
EVIG-LAI −0.54 0.18 −82.20 0.54 1.59
EVIE-LAI −0.45 0.31 −69.14 0.48 1.46

NDVIE-LAI −0.04 0.54 −46.41 0.36 1.13

Bush
EVIG-LAI −0.18 0.27 −73.09 0.20 0.77
EVIE-LAI −0.14 0.45 −54.91 0.21 0.80

NDVIE-LAI −0.09 0.62 −37.55 0.20 0.71

Tree
EVIG-LAI −0.50 0.21 −79.30 0.50 1.39
EVIE-LAI −0.40 0.37 −63.49 0.43 1.22

NDVIE-LAI −0.28 0.56 −43.64 0.32 0.94

MBE: mean bias error, MBias: multiplicative bias, RBias: relative bias, MAE: mean absolute error, RMSE: root mean square error.

4. Discussion
4.1. Vegetation Indices

According to the produced maps of EVI using GEE and ENVI 5.3 (hereafter called
EVIG and EVIE, respectively), and NDVI using ENVI 5.3 (hereafter called NDVIE), there
are high spatial variations throughout the Ardabil Province. The EVIG, EVIE, and NDVIE,
respectively, ranged from 0.06 to 0.77, 0.05 to 0.72, and −0.72 to 1.00 in June and 0.01
to 0.74, 0.02 to 0.70, and −0.51 to 1.00 in July (Figure 4). As shown in Figure 4, there
is also a high spatial and temporal heterogeneity in the province in the viewpoint of all
vegetation indices. This heterogeneity is partly attributed to large change patterns in land
cover and land use governing the Ardabil Province (Figure 1), the difference in rainfall and
temperature (Table 1), and partly related to environmental changes (e.g., soil moisture).
In June, the growing season is ongoing (or: “just started”), but due to higher rainfall
and a lower temperature, the drought stress is reduced, and the photosynthesis rates are
increased. Hence, the vegetation indices in June were higher than in July [69,70].

The spatial distribution of vegetation indices showed that the small regions in the
north and south and main parts of the center of the province have better vegetation cover
levels, demonstrating the high photosynthetic activity and biomass accumulation. From
north to center, mainly, but some parts of the south have low values of vegetation indices.
The land cover types in Ardabil Province are diverse, covering the sparse vegetation,
trees, bushes, shrubs, grassland, meadow land, wetlands, residential, industrials lands,
dry farming lands, irrigated farming lands, and horticulture (Figure 1). In addition, the
elevation is also very high, and it reaches more than 4700 m a.s.l. (Figure 1). Similar results
were found by Matsushita et al. [26], who verified the spatial variation of vegetation indices
in Japan. They also noted that the EVI is more sensitive to topographic conditions of the
mountainous areas covered by a high-density Japanese cypress plantation than the NDVI.
Moreover, Silveira et al. [71], for Cerrado, deciduous, and semi-deciduous forest in the
north of Minas Gerais, Brazil, revealed an agreement between vegetation indices and the
monthly precipitation pattern. In the Central Valley in Costa Rica, Martín-Ortega et al. [46]
also verified a strong correlation between illumination conditions and vegetation indices
of EVI and NDVI calculated by GEE. Since this study is the first effort to calculate LAI
at a vast spatial scale covering different vegetation, the obtained maps and database of
vegetation indices are very useful for the modeling and monitoring of land use changes, as
well as for the conservation of critical ecoregions of the Ardabil Province.
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4.2. Remote Sensing-Based LAI

LAI distribution maps showed that LAI values extracted from various methods
differed in the Ardabil Province (Figure 6) and their temporal variations were consistent
with plant phenology (Figure 6, Tables 5 and 6). The lowest EVIG-LAI, EVIE-LAI, and
NDVIE-LAI levels were observed for some parts from west and north in June. The rest of
the province is characterized by a moderate and high level of LAIs. As shown in Figure 7,
the behavior of LAIs in July differed from the previous month. The mean values of EVIG-
LAI, EVIE-LAI, and NDVIE-LAI, respectively, were 0.90, 2.30, and 3.17 in June and 0.68,
0.81, and 1.73 in July (Table 6). This finding is also in agreement with Zhu et al. [72], who
found significant effects of measurement seasons on LAI values (p < 0.001) in subtropical
forests, southern China.

In Figure 6c (tree), the low R2 associated with the linear model of the LP 100-EVIE-LAI
(0.18); and higher R2 for EVIG-LAI (0.75) verified the appropriate efficiency of integration of
GEE with EVI as a base for LAI estimation. In general, as can be seen from the total results,
the LAI derived from the integration of EVI and GEE showed relevant and reliable results.

Whereas the minimum values of all study LAI methods were similar and close to
zero, the maximum LAI values showed considerable differences. The maximum value for
EVIG-LAI, EVIE-LAI, and NDVIE-LAI was respectively 1.40, 2.88, and 4.33 in June, and 1.20,
1.56, and 3.64 in July. In total, the LAI derived from the June vegetation indices were higher
than those for July. This was because of the higher greenness of the dominating vegetation
cover in this period. In addition, the range between minimum and maximum LAI in
July was lower than in June, indicating the similar ecological variation of critical regions
of the Ardabil Province. The obtained temporal variations of LAI in Ardabil Province
provide useful information for sampling approaches to accurately estimate LAI based on
the indirect measurements. Because of higher greenness and vegetation cover due to more
rainfall and less drought stress in June, the LAI was higher than in July, irrespective of the
study PFTs.

This study also extracted the LAI in pixel scale for each PFT. As reported in Table 1,
different PFTs are dominant in some ecoregions of Ardabil Province; the values of EVIG-
LAI, EVIE-LAI, and NDVIE-LAI for each PFT are summarized in Table 6. The results
indicate the different behaviors of LAIs for the study of PFTs of the shrub, bush, and tree.

4.3. Results of Statistical Analysis and Accuracy Assessment

The mean of the remote sensing LAI range was plotted against the measured LAI
by LP 100 for each PFTs (Figure 7). In all cases, this expected LAI was linearly related to
and slightly underestimated the LP-LAI (r > 0.42). The results showed that the correlation
between remote sensing estimations and terrestrial data was positive in the tree PFT and
negative in the bush and shrub PFTs (Figures 6 and 7). This was because, the trees generally
provided a uniform and dense coverage, while the coverage of the shrub and bush plots
was rather sparse and showed a higher heterogeneity. Given that the satellite imagery
calculates the LAI from plant reflections and the LP 100 calculates the LAI based on light
passing through the leaves of trees, it is speculated that the LP 100 LAI measurements in
the tree PFT was affected by the shadow of the trees, and it performed similar to the remote
sensing method. These contrary results could be related to ecological or biological functions
of the study of PFTs and would need further investigation and additional experiments that
would fall beyond the scope of this work.

The EVIE-LAI for the bush and tree, respectively, received the most and the least
correlation and determination coefficients (Figure 6). In addition, for the bush, the EVIE-LAI
showed higher correlation and determination coefficients concerning LP-LAI rather than
NDVIE-LAI and EVIG-LAI. Adversely, for shrub and tree PFTs, the EVIG-LAI represented
better correlation (r > 0.86) and determination (R2 > 0.75) coefficients. These results are also
verified by the correlation analysis conducted individually for each month. A negative
relationship was observed between remote sensing LAIs and LP-LAIs for the bush and
shrub. However, in July, due to the dominant PFT of trees in the study areas, the terrestrial



Remote Sens. 2021, 13, 2879 17 of 21

LAI values were positively correlated with remote sensing indices (Figure 7). The results
(Figure 7) showed high correlation and determination coefficients between terrestrial
and remote sensing derived LAI in all three PFTs (r > 0.83 and R2 > 0.68) (except for
NDVIE-LAI in June with r = 0.56 and R2 = 0.31). Usually, trees with different heights have
different functions to maximize their photosynthetic efficiency in different environmental
conditions [73].

To clarify the behavior dependence between remotely sensed vegetation indices and
extracted LAIs with LP 100 results, the LP-LAIs were plotted against the used vegetation
indices for each PFTs and months (Figures 8 and 9). The results (Figure 8) verified the sound
correlation (r > 0.47) and determination coefficients (R2 > 0.55, except for EVIE (R2 = 0.22))
between LP-LAI and vegetation indices. The results showed a positive correlation between
remote sensing vegetation indices and LP-LAI in both study months (Figure 9). A similar
trend was found for vegetation indices and LAI-extracted versus LP-LAI for all PFTs (except
EVI-E). In addition, the un-similar and similar behavior of vegetation indices and LAI-
extracted versus LP-LAI were confirmed, respectively, in June and July. To interpret these
somehow conflicting results, it is suggested to record the species types of each monitored
PFT in the future. Distinguishing the stand types of each PFT could also be helpful for our
future research.

The accuracy assessment of the generated LAI maps was checked using MBE, MBias,
RBias, MAE, and RMSE. Information on these methods is presented in Table 7. The
calculated MBE and RBias for all remote sensing LAI in different months and PFTs were
negative (−0.54 < MBE < −0.04; −84.81 < RBias < −25.88), indicating underestimation of
the LP-LAI. The range of MBias values is between 0.15 and 0.74, indicating an acceptable
agreement between the remote sensing and terrestrial measurement data [73]. Moreover,
the MAE less than 0.54 and RMSE less than 1.59 indicated reliable results for study months
and PFTs.

5. Conclusions

In the present study, the capability of the Landsat 8 Operational Land Imager (OLI)
images processed using Google Earth Engine (GEE) and ENVI5.3 environments was evalu-
ated in the Leaf Area Index (LAI) estimation. The accuracy was checked with LAI measured
by LP 100 as a modern device. The advantages of the LP 100 device, in LAI estimation,
in contrast to complicated and time-consuming methods, is it is user-friendly, has high
accuracy, and takes less time in LAI estimation (in a large scale of studies). In our study,
822 ground truth points were collected from 10 different ecoregions in two months (June
and July) and three PFTs (bush, shrub, and tree). The Enhanced Vegetation Index (EVI)
and Normalized Difference Vegetation Index (NDVI), as widely used vegetation indices,
were extracted. Then, the LAI was provided from EVI in the GEE system (EVIG-LAI),
EVI, and NDVI in the ENVI5.3 software (EVIE-LAI, and NDVIE-LAI, respectively), and
LP 100 (LP-LAI).

The main results could be summarized as below:

- In terms of vegetation indices and their extracted LAIs, the spatial and temporal
variations were confirmed throughout the Ardabil Province.

- Similar trends were found for vegetation indices and LAIs in spatial and tempo-
ral scales.

- The lowest vegetation indices and LAIs were extended from north to center and a
small part from south of the province.

- The results confirmed the applicability of remote sensing data to LAI estimation of
ecoregions of the Ardabil Province.

- High correlation was found between LAI values of remote sensing and LP 100 in June
and July (r > 0.83 and R2 > 0.68; except for NDVIE-LAI in June with r = 0.56 and R2 = 0.31).

- The most and least correlation and determination coefficients were attributed to the
EVIE-LAI for the bush and tree, respectively.
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- Concerning LP-LAI for bush PFT, the higher correlation and determination coefficients
were related to the EVIE-LAI rather than NDVIE-LAI and EVIG-LAI.

- The Multiplicative Bias (MBias) between 0.15 and 0.74, the mean absolute error (MAE)
less than 0.54, and root mean square error (RMSE) less than 1.59 verified an acceptable
agreement between the remote sensing and LP 100 measurements of LAI. The scrutiny
of the estimation method for LAI, with higher precision, is a problem that should
be dealt with in future research. Accordingly, further research needs to be carried
out to explore the relationships between environmental variables on the behavior of
vegetation indices in the province. Furthermore, due to the novelty of LP 100 in the
LAI study, more insightful investigations with other devices are recommended as
complementary research to be considered in the future.
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