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Abstract: In permafrost regions, active layer thickness (ALT) observations measure the effects of
climate change and predict hydrologic and elemental cycling. Often, ALT is measured through direct
ground-based measurements. Recently, synthetic aperture radar (SAR) measurements from airborne
platforms have emerged as a method for observing seasonal thaw subsidence, soil moisture, and ALT
in permafrost regions. This study validates airborne SAR-derived ALT estimates in three regions
of Alaska, USA using calibrated ground penetrating radar (GPR) geophysical data. The remotely
sensed ALT estimates matched the field observations within uncertainty for 79% of locations. The
average uncertainty for the GPR-derived ALT validation dataset was 0.14 m while the average
uncertainty for the SAR-derived ALT in pixels coincident with GPR data was 0.19 m. In the region
near Utqiaġvik, the remotely sensed ALT appeared slightly larger than field observations while in
the Yukon-Kuskokwim Delta region, the remotely sensed ALT appeared slightly smaller than field
observations. In the northern foothills of the Brooks Range, near Toolik Lake, there was minimal
bias between the field data and remotely sensed estimates. These findings suggest that airborne
SAR-derived ALT estimates compare well with in situ probing and GPR, making SAR an effective
tool to monitor permafrost measurements.

Keywords: active layer; permafrost; ground penetrating radar; synthetic aperture radar

1. Introduction

Warming of the Arctic is leading to intensification of hydrologic cycles, changes to
vegetation, increased river discharge, and elevated permafrost temperatures [1]. The
permafrost active layer—the near-surface portion of the soil column that thaws annually
in the summer—is at the nexus of change in the terrestrial Arctic system because it is a
key zone for lateral groundwater flow, hosts ecological communities, and serves as the
upper boundary of the permafrost [2]. Multi-scale quantification of the maximum depth
that suprapermafrost soil thaws annually—the active layer thickness (ALT), primarily
controlled by the maximum temperature achieved at a given location during the summer—
serves as a robust indicator of climate change impacts on the Arctic [3], at many scales
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across Arctic landscapes. Furthermore, the high spatial heterogeneity of ALT [4] is a
motivation to map ALT at high spatial resolution. This has inspired the development of a
variety of tools, based on remote sensing datasets or statistical relationships, to map ALT.

The Circumpolar Active Layer Monitoring (CALM) network has acquired ALT data
since the 1990s at over 200 sites in both hemispheres on 1 km2 or 1 ha grids using direct
manual push probe measurements [5]. However, the locations of CALM sites are biased
towards accessible places, and there is a need to estimate ALT across the vast remote
expanses of the Arctic. Other efforts have focused on making more spatially extensive maps
of ALT. Statistically and physically driven models have been used to produce catchment
and regional ALT maps [6,7]. Others have used statistical correlations in conjunction with
regional scale measurements to map ALT [8]. Recent approaches based entirely on remote
sensing measurements have shown that satellite Interferometric Synthetic Aperture Radar
(InSAR) data can be used to generate maps of ALT based on the seasonal subsidence of
the land surface due to freeze-thaw cycles in the active layer [9]. Alternative SAR-based
methods have used backscatter signals to estimate ALT [10,11].

Recently, the possibility has arisen of using aircraft-mounted SAR systems to ac-
quire datasets for ALT estimation similar to what had previously been observed using
satellites [12]. Although airborne SAR deployments have the disadvantage that they
are not placed into Earth orbit, whereas satellites in orbit for long durations can repeat
temporal measurements up to every 12 days in the Arctic [13]. On the other hand, air-
craft deployments have the positive characteristic that they can be tasked to meet specific
time-over-target objectives, and aircraft-mounted sensors can often achieve finer ground
resolution than spaceborne SAR platforms. Furthermore, aircraft missions are far less
costly than satellite missions and indeed may be more cost efficient on a per-square-meter
basis than field surveys for measuring ALT on the catchment- or regional-scales. In 2017,
as a part of NASA’s Arctic-Boreal Vulnerability Experiment (ABoVE) project, an airborne
SAR dataset was acquired using the L-band Uninhabited Aerial Vehicle Synthetic Aperture
Radar (UAVSAR) over Alaska and Western Canada with measurements collected in spring
(April to June) and fall (September to November). The objective of ABoVE was to reveal
environmental changes over large scales in the Arctic and boreal regions of North Amer-
ica. The airborne campaign included collection of UAVSAR data and P-band Airborne
Microwave Observatory of Subcanopy and Subsurface (AirMOSS) polarimetric synthetic
aperture radar (PolSAR) on 66 total flight lines covering >4 million km2 [14].

Our purpose is to validate airborne SAR-derived ALT measurements using calibrated
field geophysical data. We also present a limited comparison between remotely sensed soil
volumetric water content (VWC) estimates and VWC measured in the field. Specifically, our
objective is to show quantitative statistical validation of these remotely sensed products in
three characteristically different permafrost regions of Alaska. This validation demonstrates
the ability of the remotely sensed ALT measurements to match field-based observations
within uncertainty, enabling end users to have confidence in the utility of the airborne
SAR ALT product. We use probe-calibrated ground penetrating radar (GPR) data as a
well-established ground truth measurement of thaw depth that can efficiently acquire
data on km-scales needed to validate the remote sensing results. While the maximum
seasonal thaw, i.e., ALT, is not achieved until September or October each year, there is only
a slight additional downward advancement of the thaw front between late August and
October [11,15], and therefore, we treat GPR- and probe-measured thaw depth as a proxy
for ALT.

2. Materials and Methods

The Permafrost Dynamics Observatory (PDO) data product [16] estimates seasonal
subsidence, ALT, soil moisture, and uncertainties at 30-m resolution for 66 airborne flight
lines across the ABoVE domain [17] in Alaska and northwest Canada. Throughout the
rest of the text, we refer to the SAR-derived ALT product as “the PDO product”. The
PDO retrieval uses L-band Synthetic Aperture Radar (SAR) data acquired by UAVSAR and
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P-band SAR backscatter acquired by AirMOSS. As part of the ABoVE airborne campaign,
NASA flew all 66 lines in June and again in August 2017 [14]. The PDO product estimates
seasonal subsidence due to thawing of the active layer using InSAR of the two L-band
images acquired in June and August 2017. The PDO product estimates the vertical profile
of soil volumetric water content (VWC) from the seasonal subsidence and the P-band
backscatter from the August flights.

We focus on three SAR swaths in Alaska across a latitudinal gradient for this valida-
tion: Utqiaġvik/Barrow (BRW), Toolik (TOO), and the Yukon–Kuskokwim Delta (YKD)
(Figure 1). The abbreviations indicated in parentheses are consistent with naming schemes
used in the SAR dataset (i.e., barrow, toolik, and ykdelt) [16]. The BRW swath includes
a lowland coastal plain underlain by continuous permafrost and has a mean annual air
temperature (MAAT) of −11 ◦C and <200 mm of precipitation. The TOO swath includes the
rolling topography of the foothills of the Brooks Range underlain by continuous permafrost
and a MAAT of −7 ◦C and <400 mm precipitation. The YKD swath includes delta plain
lowlands underlain by discontinuous permafrost and a MAAT of −1 ◦C and <480 mm
of precipitation. The surface environmental conditions at all swaths are similar, being
dominated by moss, lichen, and forbs, and sporadic shrubs adjacent to surface water. The
mechanical probing and GPR validation datasets described below for BRW and TOO are
described by [18,19].

Figure 1. Airborne SAR swaths (black patches) and the permafrost classification across Alaska,
USA [20].

ALT was measured using GPR calibrated to mechanical thaw probe observations.
Thaw probing was done using a 1.5 m long, graduated steel rod that was inserted vertically
into the active layer until refusal at the ice-bonded permafrost table, following the CALM
protocol. The operator judged if the contact was permafrost or rock based on the feeling
and sound of the impact. Depending on the site, thaw probe measurements were made
sporadically (e.g., >100 m between probe locations) along the GPR transect to capture
the large-scale spatial variability in ALT and soil characteristics; however, in some cases,
high-density transects of probing at 1 m intervals were also measured to capture small-
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scale variability. Repeatability—the measurement of mechanical probing uncertainty—was
measured occasionally by measuring in triplicate within a 0.3 m diameter circle.

All GPR data used for validation were measured using the instrumentation, settings,
and protocol described by [19] with a Malå ProEx (GuidelineGeo, Stockholm, Sweden).
Data were processed using ReflexW (Sandmeier Geophysical Research, Karlsruhe, Ger-
many). The GPR transmits a radio-frequency electromagnetic (EM) pulse at a 500 MHz
center frequency that propagates downward into the ground. At the permafrost table,
where there is a contrast in dielectric permittivity between frozen and unfrozen materials,
the EM wave is reflected back towards the instrument, and the total travel time of the wave
is recorded as a waveform or ‘trace’. The resulting radargram images composed of many
adjacent traces are processed to remove low frequency noise and enhance late-time arrivals
before being manually interpreted to extract—or ‘pick’—the GPS-tagged reflection arrivals.
The GPR data was acquired in ‘tracks’ of semi-continuous measurements automatically
triggered every 0.3 s at walking speed resulting in a total of 1.9 × 105 data points across
all swaths (Figure 2). The approximate spatial measurement footprint is 0.3 m2, based
on the material properties and distance to the permafrost table. If the velocity is known,
travel time can be converted to ALT. Probe measurements of ALT co-located with GPR
observations of travel time allow for calculation of velocity. We calculated a velocity for
each co-located probe and GPR measurement within a swath and then used the average
velocity for that swath to perform the time-depth-conversion for all other points in that
swath. Uncertainty on ALT observations derived from GPR was estimated using the stan-
dard deviation of GPR velocity (σv) for each swath, i.e., supposing σv = 0.006 m ns−1, that
would correspond to ALT uncertainty of 0.065 m for a 0.5 m ALT. GPR data were measured
10–15 August 2013 for the BRW swath, 11–14 August 2014 for the TOO swath, and 13–16
August 2016 for the YKD swath. At locations where collocated GPR and thaw probe mea-
surements were available, the calculated velocity was converted to depth-integrated VWC
using an empirical equation calibrated for permafrost soils in AK [21]. We employed the
depth-integrated VWC because the GPR is sensitive to the total water content throughout
the active layer depth profile, in comparison to conventional soil moisture probes, e.g.,
time-domain reflectometry (TDR), that is limited to measurement over the length of the
probe’s waveguides (10 to 20 cm).

Figure 2. Ground penetrating radar (GPR) tracks displayed over the PDO product for the (a) BRW,
(b) TOO, and (c) YKD swaths. The locations of these swaths are indicated in Figure 1. White boxes
indicate locations shown in Figure 9. Latitude and longitude tick marks are in 5’ intervals. Dark
patches within the terrestrial landscape are water bodies.

Airborne SAR data were collected using UAVSAR and AirMOSS radars, with two
flights acquired along each swath during 2017: one near the onset of thaw, and another
towards the end of the thaw season. The subsidence estimated across each swath between
the L-band UAVSAR acquisitions is used to estimate ALT based on the principle that the
ground surface subsides when the water in the soil melts, resulting in a decrease in the pore
water volume [9]. The P-band AirMOSS backscatter is sensitive to soil dielectric properties
down to ~60 cm depth. The PDO product uses both L-band InSAR and P-band backscatter
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to estimate seasonal subsidence, ALT, and soil volumetric water content product at 30 m
pixel resolution. By estimating the water content, and assuming a typical subsurface
porosity profile, the required ALT to produce the measured subsidence is calculated in
a joint inversion framework [12]. Given that the SAR acquisitions are not precisely at
the beginning and end of the thaw period, an accumulated degree days of thaw (ADDT)
correction is applied to extrapolate the total seasonal subsidence (and therefore ALT) from
the measured subsidence, based on the ADDT experienced at each swath. Full details of
the postprocessing and joint retrieval can be found in [12]. The ALT product is masked to
eliminate pixels with heavy forest cover and InSAR coherence < 0.35 [12].

Given the approximate two orders of magnitude scale difference between the footprint
of the GPR and SAR pixel size, we averaged the GPR data in each PDO pixel. We used the
same 30 m grid that the SAR results are presented on [17] and calculated the mean, standard
deviation, and count of the GPR data within each pixel. Uncertainty on the averaged pixels
is estimated using Gaussian error propagation where the GPR measurement error described
above is added in quadrature to the scaling error (standard deviation of GPR measurements
in each pixel), and representation error accounting for the difference in time between the
SAR acquisition and the fieldwork, estimated as 0.045 m based on the average observed
interannual variability at all three swaths (https://www2.gwu.edu/~calm/, accessed on
25 June 2021). Given the tortuous path of the GPR track across the landscape, some pixels
have hundreds of ALT measurements, while others may have fewer than ten (the median
count was 74 GPR points per 30 m × 30 m pixel across all sites). To ensure a representative
ALT value for each validation pixel, we rejected any pixels that had fewer than 30 ALT
measurements, following the Central Limit Theorem. Once the GPR dataset is calibrated
for local wave velocity, upscaled to a 30 m grid, and reduced to eliminate pixels with low
data count, we refer to the final product as the ‘ALT validation dataset’. As detailed in [18],
we use the χ2 statistic that accounts for observational uncertainty to compare the remotely
sensed product to the validation dataset. χ2 at each pixel is calculated as:

χ2
n =

(
rn

ε0,n

)2
(1)

where rn is the residual between the PDO product and ALT validation dataset at pixel
n, and ε0,n is the uncertainty in the validation dataset at pixel n. Ideal matches occur if
both estimated values are within the uncertainty of each other. This means the difference
between the remotely sensed and GPR ALT is smaller than uncertainty, implying the two
are statistically identical. Good matches occur if the estimated ground measured value
is only within the uncertainty of the SAR measurement, a marginal match is when only
the uncertainties overlap, and all others are classified as ‘no match’. The overall χ2 is
calculated as:

χ2 =
1
N

N

∑
1

χ2
n (2)

where N is the total number of pixels where ALT is observed.

3. Results
3.1. Calibrated GPR Dataset

Here, we focus on the dataset measured within the YKD swath as a representative ex-
ample. This dataset was referred to by [22]; however, the details are first reported here. The
calibrated GPR datasets measured within the BRW and TOO swaths are detailed in [19,23],
respectively, and therefore we direct the reader to those publications for comprehensive
explanations of those datasets. The example processed radargram (Figure 3a) shows the
undulating, semi-discontinuous reflection from the permafrost table. The GPR pulse re-
flects at any boundary with a dielectric contrast, such as the thawed-frozen boundary at
the bottom of the active layer. This is a typical image where the reflection is clearly visible
along most of the line, though there are intermittent segments where no obvious reflection

https://www2.gwu.edu/~calm/
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is present (e.g., near trace 1450) perhaps due to poor coupling or variations in the dielectric
permittivity contrast [19]. Above the permafrost table reflection, there are moderately
continuous to discontinuous subparallel reflections. The earliest time reflections < 10 ns
may be associated with an interface between peat and mineral soil. The more horizontal
arrivals above the permafrost table may also be associated with instrument noise or an-
tenna ringing. Figure 3b shows a comparison between the probe data and GPR data after
calibration to the local average wave velocity, where probe uncertainties are calculated
as the standard deviation of three replicate probe measurements at the same location. A
perfect match between the probe and GPR data would fall exactly along a one-to-one line,
and deviation of points from the one-to-one line is primarily a result of spatial variability
in soil moisture that is not accounted for when using a site-wide velocity. The average
site-wide velocities for all swaths are shown in Table 1.

Figure 3. GPR results from within the YKD swath. (a) Processed radargram with time-depth-
conversion applied using site-calibrated wave velocity. The interpreted reflection from the permafrost
table is indicated in red. (b) Comparison between GPR-measured ALT and thaw probe data with
one-to-one line. (c) Location where the radargram in (a) was measured (white arrow), also showing
the SAR ALT product overlain on aerial imagery. The GPR track is shown in the southeast corner of
Figure 2c.

Table 1. Average (
−
x) and standard deviation (σ) for the SAR and validation (VAL) datasets and for

the GPR wave velocity, v.

−
xALT(SAR)

−
xALT(VAL) σALT(SAR) σALT(VAL)

−
xv σv

Meters Meters Meters Meters m ns−1 m ns−1

all 0.50 0.50 0.14 0.15 0.046 0.006
BRW 0.48 0.38 0.14 0.07 0.042 0.006
TOO 0.43 0.47 0.09 0.09 0.048 0.005
YKD 0.56 0.67 0.13 0.08 0.049 0.006

3.2. Comparison of Validation Dataset to Airborne SAR

A direct comparison of the validation dataset with the PDO product (Figure 4a) shows
BRW to have the thinnest active layer, TOO intermediate, and YKD as thickest. The TOO
result falls approximately around the one-to-one line, while the BRW results indicate that
the SAR product slightly overestimates ALT on average, while at YKD the SAR result
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slightly underestimates ALT on average. Despite these small biases, the error bars on the
average SAR results do overlap the one-to-one line. Visualizing the same data as a 2D
histogram (Figure 4b) illustrates that the relationship is somewhat linear when considering
the more frequent occurrence of points close to the one-to-one line. The overall root mean
squared error (RMSE) between the PDO product and validation dataset is 0.176 m, which
translates to 20–70% ALT uncertainty.

Figure 4. (a) ALT validation data compared against the collocated SAR result. Grey bars are
individual estimated uncertainties (vertical error bars indicate posterior uncertainty for the PDO
product; horizontal error bars indicate validation uncertainty from error propagation of the GPR
errors, scaling errors, and representation errors); large colored markers are the average and standard
deviations for each swath. (b) A 2D histogram, where grayscale indicates count, displaying the same
data as in panel (a). Black, BRW; red, TOO; blue, YKD.

3.3. Validation Results Based on Airborne SAR Coherence

Including only the highest quality pixels in the validation reduces the RMSE (Figure 5).
In Figure 4, we used all SAR pixels above the coherence threshold of 0.35. The magnitude of
the correlation is referred to as the “coherence” [24]. As coherence increases, the uncertainty
in the estimated ALT decreases, making it more difficult to reach the ideal match criteria in
the χ2 statistic. Nevertheless, the higher quality pixels with high coherence show reduced
RMSE. Setting a higher coherence threshold reduces the number of pixels in the validation
statistics. For example, if we set the coherence threshold to 0.65, the RMSE decreases to
0.09 m, 0.16 m, and 0.17 m for TOO, BRW, and YKD respectively, while reducing the number
of usable pixels in the validation statistics to about 300. Depending on the application, a
user of the PDO dataset could define their own coherence threshold to focus on the highest
quality pixels with the lowest uncertainties, at the cost of fewer usable pixels per swath
and less spatially continuous data coverage.

These results indicate that noise in the data influences the accuracy of the results,
as opposed to a problem with the retrieval. Coherence loss is driven by noise in the
interferogram, which in turn results from small differences in surface scattering between
the two scenes. The pixels with the least amount of noise tend to converge towards the
validation data, resulting in lower RMSE.
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Figure 5. The relationship between the number of pixels used for validation and the resulting RMSE,
showing that when SAR pixels are culled by coherence, a smaller RMSE can be achieved at the
expense of a smaller statistical population.

3.4. Uncertainty Assessment

Here we address the uncertainty of each measurement method. For probing measure-
ments, the only site where we have estimates of measurement repeatability is YKD. Given
that these distributions appear to be skewed (Figure 6), particularly the SAR, we report the
median rather than the mean. The probe measurements have the lowest uncertainty, likely
because the primary sources of error are simply the operators’ judgment of the ground
surface and the ability to read the 0.01 m graduations marked on the probe. The scaled GPR
data has around double the uncertainty of the probe data, due to both velocity uncertainty
and scaling. SAR uncertainty is two to three times larger than GPR due to errors both in
the measurement (as a result of having infrequent acquisitions from airborne platforms), as
well as assumptions in the conversion from subsidence to ALT. Please refer to [12] for more
details on SAR uncertainties.

Figure 6. Frequency distributions of ALT uncertainty for the (a) BRW, (b) TOO, and (c) YKD swaths.
Median values (M) are reported for each frequency distribution.

3.5. Evaluation of ALT Observations across Measurement Methods

Next, we illustrate a comparison of the ALT frequency distributions of each measure-
ment for each swath. Histograms indicate the SAR and GPR data are visually similar,
though statistically different (Figure 7). Although we do not expect the populations to
have equivalent distributions or even to exhibit Gaussian shape, we nonetheless tested
this possibility statistically using the nonparametric Kruskal–Wallis test [25]. This non-
parametric one-way analysis of variance (ANOVA) test on ranks compares whether all four
populations originate from the same distribution. Resulting p-values > 0.05 would indicate
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that they are not significantly different, however we found that the p-values were <0.05 in
all cases: pBRW = <10−6, pTOO = 0.0025, pYKD = <10−6. This mismatch is attributed to the
contrasting sampling area of each measurement: ~0.01 m2 for probing, ~0.3 m2 for GPR
and 900 m2 for SAR that each have the capacity to detect variability in ALT on different
spatial scales. At BRW (Figure 7a) there are notable shifts in the peaks of the histograms
between the total GPR dataset and the 30 m scaled validation GPR dataset. Although this
may seem counterintuitive given that both were derived from the same population, this
difference arises because many of the GPR points were not included in the scaled validation
product due to either failing to meet the 30 point-per-pixel threshold or because the GPR
measurement was in a location that was masked out of the SAR swath due to low SAR
coherence. In contrast, the frequency distributions for each measurement population with
the TOO and YKD swaths are approximately coincident.

Figure 7. Histograms of ALT for the (a) BRW, (b) TOO, and (c) YKD swaths.

3.6. Volumetric Water Content Comparison

While our primary focus is the validation of ALT estimates, here we provide a basic
comparison of VWC estimates from the joint retrieval against field measurements. We are
restricted to a limited comparison for VWC because our field measurements only observe
depth-integrated VWC when there are collocated probe and GPR measurements, and this
only occurs sporadically every few hundred meters along each GPR track. Therefore,
a single depth-integrated VWC observation that may not be representative of the local
average conditions would be compared to a 30 m SAR pixel. Furthermore, at BRW where
there are more probe data available, they are distributed across only 11 pixels, which is too
few to make a statistical argument. The histograms at BRW (Figure 8a) are different from
the SAR-estimated values substantially underestimating field measurements. Comparison
of the VWC histograms at TOO and YKD (Figure 8b,c) reveals that the populations are
similar with median differences of 0.03 m3 m−3 and 0.08 m3 m−3 respectively, suggesting a
close match between SAR-derived VWC and field conditions.

Figure 8. Frequency distributions of VWC for the (a) BRW, (b) TOO, and (c) YKD swaths. Population counts, n, indicate the
total number of individual depth-integrated VWC observations and the number of pixels for the field and SAR datasets
respectively. M indicates median.
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3.7. χ2 Classification Results

The χ2 classification quantifies how well SAR pixels match the field data within
uncertainty. These results are summarized in Table 2 for all observations and grouped by
swath. The positive bias at BRW indicates SAR overestimated ALT, while the negative
biases at the other swaths indicate SAR underestimated ALT. In total, 79% of all pixels were
either an ideal match or a good match with the validation dataset—ideal matches being
statistically identical. TOO had the highest percentage of good match or better (82%), while
YKD had the smallest percentage in those categories (77%).

Table 2. Results of χ2 classification. RMSE indicated root mean squared error, nSAR is the number of
SAR pixels available for validation.

X2 RMSE bias nSAR
Ideal

Match
Good
Match

Marginal
Match

No
Match

- Meters Meters - - - - -

all 9.93 0.176 0.00 829 25% 54% 10% 11%
BRW 11.86 0.176 0.10 354 16% 64% 11% 9%
TOO 6.89 0.144 −0.04 181 43% 39% 9% 9%
YKD 9.49 0.194 −0.11 294 26% 52% 9% 14%

To illustrate how the χ2 classified pixels are distributed across the landscape, we
present pixels along representative GPR tracks from each swath in Figure 9a–c. The tracks
do not appear spatially continuous for two reasons: (1) we rejected SAR pixels with less
than 30 validation ALT measurements, and (2) SAR pixels with coherence less than 0.35
are not used in the validation. Residuals are plotted spatially in Figure 9d–f. There are no
obvious spatial patterns in either the classifications or the residuals (i.e., spatial patterns
χ2 are approximately random), except that the residuals appear to be more positive in
BRW and more negative in YKD, corresponding to the overall observed bias (Table 2). The
approximate randomness of χ2 spatial patterns suggests that cases of marginal match or
no march likely result from random noise than a systematic bias or problems with the
PDO retrieval.
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Figure 9. χ2 classifications for (a) BRW, (b) TOO, and (c) YKD with corresponding residuals (d–f).

4. Discussion
4.1. Evaluation of Validation Data

ALT may vary substantially even over short distances on the scale of meters (e.g.,
Figure 3a). Using the minimum threshold of 30 GPR-measurements-per-pixel produces
a statistically representative ALT observation for each pixel, corresponding to a data
density of 3 measurements per 100 m2. The median point density across all of our sites
is 8 measurements per 100 m2, and the maximum is 54 measurements per 100 m2. For
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comparison, the data density at a 1 km2 CALM grid is around 0.01 measurement per
100 m2.

We found the median uncertainty on the direct manual thaw probe measurements in
the YKD swath to be 0.03 m (Figure 7c) based on triplicate measurements within a 0.3 m
radius. This is equivalent to the 0.03 m uncertainty reported within the BRW swath [18], and
similar to the 0.04 m uncertainty reported for sandy arctic soils [10]. Given this consistency
in mechanical probe uncertainty, we judge this level of uncertainty to be appropriate to
apply to probing data for all of our study areas.

The direct comparison of probe measurements to coincident calibrated GPR obser-
vations (Figure 3b) highlights the effectiveness of GPR for noninvasively measuring an
interface between thawed and frozen soil. Similar comparisons have been made [18,19]
illustrating the overall linearity of the relationship, but also some expected spread of the
data away from the one-to-one line due to spatial variation in VWC. While the variation
in VWC (i.e., proportional to permittivity or wave velocity) is clear from Figure 3b, across
the datasets from all three sites, there is relatively low variation in the mean wave velocity
(Table 1). This may be useful information for other studies that cannot perform detailed
calibrations.

Obtaining coincident measurements in time remains a substantial challenge, particu-
larly when coordinating aircraft and ground teams. The aircraft may acquire data across the
whole state of Alaska in the time it takes the field team to acquire validation measurements
at a single site. There are related restrictions when attempting to coordinate the measure-
ment timing with natural processes such as the maximum depth of thaw corresponding
with ALT. As described, it was impossible to acquire contemporaneous field validation
datasets, and indeed our field measurements were in some cases years different from the
aircraft flights. Based on available timeseries data, we accounted for this representation
error to the best of our ability, however, we nonetheless acknowledge that ALT experiences
interannual variability that cannot entirely be accounted for in our approach, which may
have resulted in some false positives and false negatives in our χ2 classification.

While our field ALT measurements were made in August rather than the end of
the thaw season in September or October, we assume these measurements approximate
maximum thaw due to the deceleration of the thaw front late in the season. While we do
not have detailed models or timeseries data exactly at our swaths, we consider previously
presented modeling results [11,15] that modeled active layer thaw dynamics at 70◦N
latitude. The results of these studies indicated that between August 14 (approximately the
time of measurement of our field data) and the onset of freezing, the permafrost table only
advanced 0.01–0.03 m, which is within the uncertainty of both our probing and GPR data.
Therefore, we judge the seasonal timing of our data collection to have a negligible effect on
the validation results.

Although our VWC validation is limited due to the low data density of field measure-
ments, we nonetheless highlight the importance of using depth-integrated VWC obtained
from GPR observations. For typical soil moisture probes—e.g., TDR and similar dielectric
approaches—the VWC is measured as an average along the length of the waveguides.
While there is nothing physically incorrect about this, if a user is attempting to make mini-
mally invasive observations (i.e., not digging a pit) by inserting the waveguides vertically
into the ground surface this will only sample the top, partially saturated portion of the soil
column. Such measurements are not representative of the soil water content throughout
the active layer as demonstrated by the lack of correlation between depth-integrated VWC
measurements and TDR probes [26]. In contrast, time-consuming soil pits disturb the
tundra sufficiently to prevent future re-measurement, and soil pits likely influence the in
situ soil moisture distribution. Furthermore, it is impractical to dig a large enough number
of soil pits to achieve the spatial representativeness we seek herein.
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4.2. Comparison of Large-Scale ALT Estimates

Two general approaches for making large scale maps of ALT are (1) remotely sensed
observations of active layer properties and processes, or (2) discrete or indirect observations
extended to large scales using spatial statistics. The first group is further divided into
observations from either airborne or spaceborne sensor platforms. Given that satellites in
orbit are continuously acquiring images at the same location on an approximately 12 day
interval, ALT estimates from spaceborne SAR sensors have an advantage of long duration
continuous deployment, meaning that ALT estimates may be derived from data measured
multiple times per thaw season for several consecutive years [9]. In contrast, airborne
platforms have the potential flexibility to target specific observation times and provide
measurements at finer spatial resolution and possibly at multiple radar frequency bands.

Previously calculated satellite-based ALT estimates within the BRW swath were found
to underestimate ALT by 0.02 m compared to field data [18], which is smaller than the 0.10 m
overestimate in the PDO product we found using airborne measurements (Table 2) at similar
pixel size. The difference in native spatial resolution (i.e., the intrinsic instrument resolution
before spatial averaging) between airborne and spaceborne SAR could be responsible for
this observed bias [12]. Furthermore, the spaceborne InSAR dataset was composed of many
more SAR scenes than the airborne dataset [18]. The bias (0.10 m) observed in the airborne
dataset is similar to the airborne-ALT uncertainty (+/−0.14 m), the validation dataset
uncertainty (+/−0.07 m) (Table 1), and the spaceborne-ALT uncertainty (+/−0.19 m) [18].
The spaceborne-ALT results within the BRW swath were found to achieve a χ2 category of
either ideal match or good match at 74% of validation pixels, similar to the 80% of pixels in
the same category for the airborne-ALT measurement (Table 2). Within the YKD swath,
previously calculated satellite-ALT observations revealed that 66% of pixels were either
ideal or good matches [22], compared to 78% in the same categories for the airborne-ALT
observations (Table 2).

An example of a large-scale ALT estimate made using spatial statistics is available
in the Yukon Flats region [8]. This area is closest to the TOO swath, although the Yukon
Flats region is on the border between continuous and discontinuous permafrost and has
different geologic substrate and landscape history, so we do not intend to draw a direct
comparison between these two sites. Nonetheless, we observe that statistically predicted
ALT around Ft. Yukon had a bias of approximately −0.09 m for a 30 m × 30 m pixel
size [8], similar to the bias of −0.04 m we observed at the TOO swath (Table 2). A different
statistical ALT estimate approach of the 26,000 km2 Kuparuk River basin which partially
includes the TOO swath found a bias of 0.02 m for estimates on a 300 m × 300 m pixel size,
though the validation set was limited to 12 points scaled up from the 121-point CALM
grids [6]. Even larger scale estimates of ALT have been attempted on the Russian Arctic
drainage basin using climate inputs as drivers and assumptions about soil variables in a
Stefan equation framework [7]; however, the extremely sparse direct observations make
this scale of ALT product challenging to compare with our validation, though the modeled
ALT is reported to be underestimated. SAR Backscatter-derived ALT estimates on the
Yamal peninsula, Russia, achieved an RMSE of 0.2 m for ALT ranging from 0.8 to 1.4, or
uncertainty of 14–25% [10].

4.3. Value and Limitations of Airborne SAR Estimates of ALT and VWC

There are several potential areas where airborne-SAR estimates of ALT may provide
particular advantages compared to other large-scale ALT mapping methods. Perhaps most
notable is the potential to retrieve subsurface VWC estimates concurrently with ALT due to
the implications for developing a more complete understanding of hydrology and energy
balance if both parameters are available [26]. Our present validation of VWC is limited,
though it suggests promise for the accuracy of the VWC parameter (Figure 8). Currently, it
is not possible to directly estimate VWC from spaceborne-ALT measurements for the whole
active layer depth from spaceborne microwave instruments due to limited penetration
depth, and existing spatial statistical models have not attempted to include this property
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directly. Another potential value of airborne-derived ALT estimates is the possibility of
recovering finer-scale ALT variability. Although in this study we used 30 × 30 m pixels,
this was a choice driven by the objective of using a standardized grid to enable different
science datasets to be integrated and analyzed easily [17]. Using a different flight plan
and a more frequent intra-seasonal measurement interval could allow for ALT and VWC
retrieval at 10 m resolution.

One limitation of airborne-estimated ALT is that measurements can only be acquired
when flights are tasked to do so. Therefore, SAR analysis may need to be conducted on
fewer datasets than might be available from spaceborne platforms, resulting in the need to
use spatial averaging and upscaling from the native resolution to achieve an acceptable
signal-to-noise ratio in the SAR data. While 30 m pixel resolution may be acceptable when
considering a swath that covers nearly 2500 km2, it is also important to recognize that ALT
varies substantially on the meter-scale (Figure 3a).

Although our comparison is limited to three swaths, the data (Figure 4) may suggest
that airborne SAR may overestimate ALT when the true value is thinner (northern latitude)
and underestimate ALT when the true value is thicker (southern latitude). While the three
swaths detailed herein do represent a wide range of latitude, a detailed examination of
more swaths within the latitude gradient would help to reveal if this bias is limited to
BRW, TOO, and YKD or if it is systematic and linked to some aspect of the data acquisition
or processing [12]. Additionally, based on the field VWC measurements (Figure 8), soil
moisture is greatest in BRW and least at YKD, raising the possibility that limitations in
the ability to retrieve ALT VWC may be partially responsible for the bias in Figure 4. The
surface characteristics of all sites are similar, with low typical tundra vegetation and no
trees, and therefore we anticipate this is not a key factor in the bias shown in Figure 4.

4.4. Future Research on Validating Remotely Sensed Active Layer Products

GPR-derived ALT datasets [19,23] have been successfully demonstrated as a field
survey technique for validating SAR-estimated ALT products [18,22] due to the capability
of GPR to acquire tens of thousands of ALT data points in large scale transects at acceptable
uncertainty levels. Here we have further bolstered confidence in this approach and added
important details related to scaling such as a minimum validation point density threshold
and propagation of scaling uncertainty to the validation product. Illuminating the linkages
and correspondence between SAR, GPR, and probe-measured ALT and study sites features
is a key future research task. There are additional refinements that could be made to
improve future validations.

First, it would be valuable to have more spatially extensive VWC field data to validate
the VWC component of the joint retrieval. This is particularly challenging because each
point where VWC is estimated requires 1–2 min of measurement and recording time at a
minimum to complete the direct probing. So-called ‘high-density’ transects of 100 m total
length and 1 m spacing between VWC measurements have been explored [23] with the
objective of capturing some of the fine-scale spatial variability in ALT and VWC. However,
in the best case, one high-density transect only could be used to validate up to three 30 m
SAR pixels. Although this approach would approximately meet our criteria of validating
SAR pixels only if there are >30 field data points within the pixels, the high-density surveys
are a large time investment for a limited amount of validation. It would be useful to
explore the spatial correlation length scales for VWC that may help to justify tolerance of
<30 field data points per pixel. Furthermore, soil pits would be useful for characterizing
the porosity profile [11] to allow for saturation calculations, and improved site-specific
dielectric-VWC transforms may enable higher precision VWC estimates. To that end, we
also emphasize the importance of acquiring depth-integrated VWC measurements, either
in addition to or instead of conventional soil moisture probe (waveguide) measurements
because depth-integrated VWC has been demonstrated to have the strongest correlation
with active layer physical processes [27].
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Another area of work would be the extension of the continuous multi-offset GPR
approach for measuring ALT [27]. This simultaneously retrieves velocity and travel time,
thereby eliminating the need for probe measurements beyond quality assurance/quality
control. This multi-offset approach would have the additional advantage of resolving the
challenge of spatially sporadic VWC measurements described above. Past efforts at this
approach have been limited to simple, flat surface microtopography due to complications
that arise with GPR antenna positioning on rough surfaces, and distinct subsurface layering
(e.g., peat over mineral soil). It is possible that coupling a multi-layer GPR inversion [28]
with the multi-offset acquisition scheme and using a ridged antenna sled that slides across
the tundra vegetation may help to overcome these limitations.

4.5. Implications for Monitoring Thaw, Mapping ALT and Model Parameterizations

Monitoring ALT is valuable for understanding how permafrost landscapes are chang-
ing in response to climate warming—currently, this is primarily achieved through the
network of CALM sites [4]. While this network of sites is extremely valuable for permafrost
monitoring, the 1 km2 manually-probed site scale cannot capture the dynamics of all
landscape features. Therefore, the PDO product validated herein provides a useful baseline
against which future observations may be compared. While it may not be possible to re-fly
all swaths annually, a decadal resurvey of the measured swaths may reveal landscape-scale
patchiness or other changes to ALT outside the resolution of the CALM grids.

Permafrost hydrology modeling relies on ALT because this is the primary zone for
water dynamics—e.g., lateral flow—in continuous permafrost landscapes. Distributed
hydrologic models use ALT as an input parameter that defines the depth to the impervious
layer [29]. ALT is similarly important to permafrost carbon (C) modeling because this depth
defines the boundary between bioavailable C and permafrost-sequestered C that may be
released to the atmosphere under future warmer climate scenarios [30]. The validated
PDO product is at an ideal scale for watershed hydrology or C cycling models—either
as input parameters or to validate the results if ALT is calculated physically within the
model [15,31].

5. Conclusions

We have demonstrated that 79% of the airborne-derived ALT values PDO product
pixels are either an ideal match or good match χ2 classes in comparison with the field
validation dataset. Overall, the RMSE between the PDO product and validation dataset
is 0.176 m, which equates to a deviation in ALT between the two datasets of 20–70%.
Considering the χ2 and RMSE results together, the airborne SAR-derived ALT products
exhibit accuracies similar to previously-reported large-scale ALT estimation methods,
and therefore we conclude that the airborne SAR-derived ALT products are successfully
validated within uncertainty.
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