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Abstract: Quantifying the spatial, seasonal (phenological), and inter-annual variations of gross pri-
mary productivity (GPP) in the Arctic is critical for comprehending the terrestrial carbon cycle and its
feedback to climate warming in this region. Here, we evaluated the accuracy of the MOD17A2H GPP
product using the FLUXNET 2015 dataset in the Arctic, then explored the spatial patterns, seasonal
variations, and interannual trends of GPP, and investigated the dependence of the spatiotemporal
variations in GPP on land cover types, latitude, and elevation from 2001 to 2019. The results showed
that MOD17A2H was consistent with in situ measurements (R = 0.8, RMSE = 1.26 g C m−2 d−1). The
functional phenology was also captured by the MOD17A2H product (R = 0.62, RMSE = 9 days) in
the Arctic. The spatial variation of the seasonal magnitude of GPP and its interannual trends is partly
related to land cover types, peaking in forests and lowest in grasslands. The interannual trend of
GPP decreased as the latitude and elevation increased, except for the latitude between 62◦~66◦ N
and elevation below 700 m. Our study not only revealed the variation of GPP in the Arctic but also
helped to understand the carbon cycle over this region.

Keywords: GPP; carbon cycle; arctic; phenology; photosynthesis

1. Introduction

Climate change is causing permafrost melting [1], shrub cover expansion, growing
season lengthening, and consequently, carbon flux changes in the Arctic [2]. Furthermore,
the carbon cycle is also influenced by changes in vegetation phenology [3]. GPP, which is
considered the biggest carbon flux of terrestrial ecosystems [4], not only plays a vital role in
offsetting the concentration of greenhouse gases and mitigating global warming to a certain
extent [5] but also builds a bridge between terrestrial and air carbon. In the context of
the Arctic, the rate of climate warming is almost twice the global average, a phenomenon
known as Arctic amplification [2,6–10]. Therefore, quantifying the spatial, seasonal (pheno-
logical), and inter-annual variations of Arctic GPP is critical for comprehending the carbon
cycle and its feedback to climate warming.

Quantifying global or local GPP has received a great deal of attention in recent studies.
Utilizing satellite-based near-infrared reflectance (NIRv) as the proxy of GPP and the re-
vised light-use-efficiency model (i.e., EC-LUE model), Wang et al. [11] and Zheng et al. [12]
explored the global spatial patterns of GPP with a spatial resolution of 0.05 degrees. How-
ever, the annual average estimates of GPP were not consistent during the same period.
Wang et al. [11] reported a range of 128.3 ± 4.0 Pg C year−1 while Zheng et al. [12] reported
a range of 106.2 ± 2.9 Pg C yr−1. Some studies have detected the GPP in the Arctic, but
most paid attention to specific ecosystems (e.g., streams and moss communities) [13,14]
and few efforts [12,15] have been devoted to investigating the specific situation of the
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Arctic GPP. Here, the MOD17A2H product was selected because it is one of the major
official GPP products and has been most widely used in detecting the carbon cycle of
terrestrial ecosystems [4,16]. Additionally, its finer resolution (500 m) can reveal detailed
GPP variations in the Arctic.

Satellite products generally suffer from the uncertainty that results from complex data
acquisition processes and limitations of retrieval algorithms. For this reason, different
datasets lead to disparate results. MOD17 is based on the light-use-efficiency (LUE) concept,
which is difficult to parameterize since it is influenced by land cover types, phenophases
and different types of environmental stress. Furthermore, the maximal values of LUE are
specified in the look-up tables for the same biota types, which might introduce uncertainties
in GPP [17]. Although MOD17A2H, the v.6 product of MOD17, has overcome the limitation
of the proposed year and filling method, the core issues caused by its algorithm still
exist. In addition, MODIS (Moderate Resolution Imaging Spectroradiometer) products are
inferred based on surface reflectance, which is only available when the relative accuracy of
MODIS reflectance products can be determined [18]. Therefore, evaluating its performance
is necessary before characterizing the spatiotemporal pattern of GPP. There have been
many validation studies regarding the performance of MODIS GPP products at the global
scale [19–22] and their accuracies over different biomes (e.g., grassland and forest) have
been quantified [23]. However, the validation pixels belonging to specific biomes are often
combined together and there are few specialized studies that quantify the accuracy of
MOD17A2H in the Arctic. In fact, the performance of the MODIS GPP algorithm shows
reasonable variations with climate regions and factors [18,19], species [24], and latitude [25].
Furthermore, the phenology (e.g., the peak timing of GPP) derived from satellite products
is often mismatched in scale with in situ data [26]. Several studies have assessed the
performance of phenological patterns of MOD17A2H in different regions or biomes [17,27].
However, it is unclear whether MOD17A2H is suitable for the Arctic. Therefore, there is a
pressing need to investigate the accuracy of MOD17A2H in the Arctic.

The objective of this work was to utilize MOD17A2H to explore the spatial distribution
and phenological characteristics of GPP in the Arctic. In particular, the goal was to (1) eval-
uate the performance of MOD17A2H in different conditions in the Arctic; (2) identify the
spatial distribution and phenological characteristics of GPP, and detect the variation of
GPP with land cover types, latitude, and elevation; and (3) detect the interannual trends
of GPP in the Arctic and its relation with land cover types, latitude, and elevation. This
article begins by describing the study area and the experimental data (Section 2). Section 3
explains the validation and trend detection methods. Section 4 provides the results and
discussion of validation, spatial distribution, and phenological characteristics, as well as
interannual trends of GPP. Finally, Section 5 presents a brief conclusion.

2. Study Area and Experimental Data
2.1. Study Area

The study region covers the area from 50◦ N to 90◦ N and is characterized by long
cold winters and short summers. There is very little precipitation and the temperature is
low. As a result of the harsh environments, there are few vegetation types in the Arctic.
As shown in Figure 1a, water occupies more than half of the area in the Arctic, and the
dominant vegetation type are shrubland (dominated by woody perennials), savannas (tree
cover 10–60%), and grasslands (dominated by herbaceous annuals (<2 m)). Savannas are
distributed in relatively low latitudes, while most of the shrublands are located at high
latitudes. Grasslands are mainly scattered west of Greenland. The average altitude of
the Arctic is below 1000 m. Areas with higher elevations are mainly distributed in the
northwestern region of Canada, the northeastern region of Russia, as well as the Greenland
Island and surrounding areas.
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Figure 1. (a) Location of the FLUXNET sites used in this study. The description of these sites is
provided in Table 1. The base map is the land cover types of the Arctic. (b) The elevation distribution
of the Arctic.

Table 1. Basic information regarding the FLUXNET sites of the Arctic.

Site_ID Site_Name Country Latitude (◦ N) Longitude (◦ E) Land Cover N

FI-Lom Lompolojankka Finland 67.9972 24.2092 WET 71
GL-NuF Nuuk Fen Greenland 64.1308 −251.3861 WET 105
GL-ZaF Zackenberg Fen Greenland 74.4814 −20.5545 WET 42
RU-Che Cherski Russia 68.6130 161.3414 WET 33
SJ-Adv Adventdalen Svalbard and Jan Mayen 78.1860 15.9230 WET 23
US-Atq Atqasuk USA 70.4696 −157.4089 WET 88
US-Ivo Ivotuk USA 68.4865 −155.7503 WET 68
FI-Sod Sodankyla Finland 67.3624 26.6386 ENF 371

US-Prr Poker Flat Research Range
Black Spruce Forest USA 65.1237 −147.4876 ENF 98

GL-ZaH Zackenberg Heath Greenland 74.4733 −20.5503 GRA 137
RU-Cok Chokurdakh Russia 70.8291 147.4943 OSH 107
SJ-Blv Bayelva, Spitsbergen Svalbard and Jan Mayen 78.9217 11.8311 SNO 13

WET: wetlands; ENF: evergreen needleleaf forests; GRA: grasslands; OSH: open shrublands; SNO: permanent snow and ice. N means the
numbers of the data points of the sites after quality control.

2.2. Data
2.2.1. FLUXNET Data

FLUXNET 2015 is the latest version of the FLUXNET dataset. Compared with previous
datasets, FLUXNET v.2015 improves the protocols of data quality and the pipeline of
data processing [28]. The Net Ecosystem Exchange (NEE) in the FLUXNET 2015 dataset
was gap-filled with the marginal distribution sampling (MDS) method [29]. It was then
partitioned into Ecosystem Respiration (RECO) and GPP using the daytime fluxes method
(_DT) [30] and the nighttime fluxes method (_NT) [29]. The quality flags in FLUXNET
2015 are given values ranging from 0 to 1, indicating the percentage of high quality
gap-filled and measured data [12]; 1 represents the highest quality and 0 represents the
poorest quality [31].

As shown in Table 1, there are 12 sites in the FLUXNET datasets located in the study
area, including 7 wetland sites, 2 forest sites, a grassland site, a shrublands site, and
a permanent snow and ice site. This study used GPP (GPP_NT_VUT_REF) estimated
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from the night-time method with a daily temporal scale. The selection of GPP followed
two criteria: (1) the quality flags were larger than 0.5; and (2) the difference between the
GPP derived using the night-time method (GPP_NT_VUT_REF) and the day-time method
(GPP_DT_VUT_REF) was lower than 50%. After filtering the data based on the two criteria,
daily GPP were temporally aggregated to generate the 8-day averaged GPP, matching the
temporal resolution of MOD17A2H.

2.2.2. Satellite Data

MOD17A2H (Collection 6) is a standard satellite product with a spatial resolution of
500 m and a temporal resolution of 8 days. It is calculated based on the light use efficiency
(LUE) approach by Monteith [31]:

GPP = ε × fPAR × PAR (1)

where ε, fPAR, and PAR denote the radiation use efficiency coefficient (RUE), the frac-
tion of incident PAR absorbed by the surface, and photosynthetically active radiation,
respectively [32].

According to Running et al. [32], the GPP values of MOD17A2H refer to the sum of
the GPP during an 8-day period. In this study, we averaged the total GPP to generate the
8-day averaged GPP.

2.2.3. Land Cover

The MCD12Q1 product provides global land cover type data at a spatial resolution of
500 m at an annual time step from 2001 to 2019. It is based on the supervised classification
of MODIS reflectance data with six different classification schemes, including the IGBP
(Annual International Geosphere-Biosphere Programmer), which was widely utilized due
to its high accuracy and widespread acceptance [33]. Thus, the IGBP classification method
was utilized in this study. The land cover data from 2001 to 2019 were chosen to produce
a spatially continuous dataset via mosaic. The filling data of MCD12Q1 was removed to
reduce their effect on the results. Evergreen needleleaf forests, evergreen broadleaf forests,
deciduous needleleaf forests, deciduous broadleaf forests, and mixed forests were grouped
into forests. Closed shrublands and open shrublands were grouped together as shrublands.
Woody savannas and savannas were combined into savannas.

2.2.4. DEM (Digital Elevation Model)

Multi-Error-Removed Improved-Terrain (MERIT) DEM is an improvement of SRTM3
(Shuttle Radar Topography Mission v.3) DEM, with a spatial resolution of 3 arc-second
(~90 m). It removes multiple error components from the SRTM3 DEM, including stripe
noise caused by the sensor error, speckle noise of surface reflectance, absolute bias derived
from the limited control points of the ground, and tree height bias where the canopies
were incorrectly classified as the land surface [34,35]. MERIT was chosen because its
accuracy is higher than that of SRTM and NASADEM (NASA Digital Elevation Model) [36]
and because of the data availability in the Arctic. In order to match the resolution of
MOD17A2H, the DEM dataset was resampled to 500 m using the bilinear method.

3. Methods
3.1. Accuracy Assessment

Although the validation based on in situ leaves issues of scale unresolved, which
might introduce uncertainties to the verification, it is still an important method in regions
lacking long-term validation data [37–39]. Here, the direct comparison method was uti-
lized because it is simple and easy to implement. To avoid the influence of data noise,
geometric mismatch, and spatial heterogeneity on the validation results, the average of the
3 × 3 pixels of MOD17A2H centered around tower coordinates in situ was used to match
with in situ as suggested by Ueyama et al. [40].
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Statistical indices, including the coefficient of correlation (R), root mean square error
(RMSE), and Bias were used to indicate the accuracy of MOD17A2H [41]. R measures
the consistency between MOD17A2H and in situ data, while RMSE measures the average
absolute error of the MOD17A2H over a single in situ. Bias describes the average deviation
between MOD17A2H and in situ measurements:

R = ∑h
l=1

(
Pl − P

)(
Ol − O

)
/
√

∑h
l=1

(
Pl − P

)2 ∑h
l=1

(
Ol − O

)2, (2)

RMSE =

√
∑h

l=1(Pl − Ol)
2/h, (3)

Bias = ∑h
l=1(Pl − Ol)/h (4)

where Pl and Ol are the MOD17A2H and in situ-based GPP on the l th time period,
respectively. P and O are the averaged value of the MOD17A2H and in situ-based GPP
time series, respectively. h is the total number of time periods.

The assessment was twofold. First, the performances of the MOD17A2H product were
assessed separately over each site. Second, by combining the data points of all sites within
each specific land cover type, the accuracies of MOD17A2H over different land cover types
were assessed and compared.

3.2. Comparison of Phenological Patterns between In Situ and MOD17A2H

The phenological patterns in ecosystem GPP are important in the terrestrial carbon
cycle and have significant ecological implications. To understand if the MOD17A2H
satellite GPP product can capture the functional phenology, which has been defined as
the interaction and close association between plant functional traits and phenology [42],
of in situ GPP, we first filled the data gap in the original 8-day GPP time series using
a linear interpolation method. The gap-filled GPP time series was further smoothed using
the Savitzky-Golay (SavGol) filter with a window size of 9 time steps and a second-order
polynomial, which not only eliminated noise but also preserved the basic phenological
attributes [43]. Finally, we extracted the timing of maximum GPP (day of year, DOY) during
the photosynthetically active period for each site from both the in situ and MOD17A2H data.
Agreement between the peak timings extracted from the in situ GPP and those extracted
from the MOD17A2H was used as an indicator of the performance of the MOD17A2H GPP
product in representing the functional phenology patterns of arctic ecosystems.

3.3. The Spatial Distribution Characteristics Identification and Trend Detection

The spatial distribution of GPP was explored. First, the pixel-wise multiyear averaged
monthly GPP was calculated to check the GPP spatial distribution and the phenology
patterns in different months. Second, the annual-maximum and annual-averaged GPP
were identified to detect the distribution of GPP in the Arctic.

A pixel-based simple linear regression, in which time is the independent variable
and GPP is the dependent variable, was applied to detect the trend of GPP. In addition,
the significance of the interannual trend was evaluated utilizing the Mann–Kendall (MK)
test [44], and the significant trends (p < 0.025) of the Arctic were retained.

In this study, both MOD17A2H data and the linear regression function were pro-
vided by Google Earth Engine (GEE), which is a cloud-based computing platform for
planetary-scale data analysis, mapping, and modeling, providing free access to numerous
global datasets and advanced computational capabilities [45]. GEE was employed for the
following reasons: it provides easy access to the MOD17A2H datasets and other related
datasets such as land cover types and elevation; it enables rapid exploration of long time
series datasets without downloading them; and it provides a library of functions such as
linear regression function, which are applied for data analysis and result display.
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4. Results and Discussion
4.1. Validation MOD17A2H Based on In Situ

The results of in situ and MOD17A2H GPP were compared in different land cover
types. Figure 2 shows the time series of MOD17A2H and the in situ-based GPP over
wetlands; their scatter plots are presented in Figure 3. As shown in Figure 2, missing data
occurs frequently in the time series, especially in winter and early spring. This is attributed
to the weak photosynthetic activity of vegetation and the lower data coverage during this
period. Both MOD17A2H and in situ-based GPP show reasonable seasonal and annual
variability over wetlands (Figure 2). However, the agreement between them is significantly
different from site to site.
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The comparison results over wetlands can be divided into two groups according to the
performance of MOD17A2H: (1) FI_Lom, US_Atq, GL_ZaF, and SJ_Adv; and (2) GL_NuF,
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RU_Che and US_Ivo. MOD17A2H was found to underestimate in group (1) and overesti-
mate in group (2). Nevertheless, the degree of underestimation varies significantly from
site to site and is low for FI_lom and US_Atq, both in magnitude and temporal variation
trend (Figure 2a,c), with RMSEs of 1.12 and 0.69 g C m−2 d−1 and R of 0.9 and 0.86, re-
spectively (Figure 3a,c). For GL_ZaF and SJ_Adv, the agreement is worse, as the RMSEs
are 2.01 and 1.79 g C m−2 d−1, respectively (Figure 3e,g), and the bias is very large, with
values of −1.54 and −1.21, respectively. The large discrepancy between MOD17A2H and
in situ GPP may be caused by their spatial scale mismatch. Furthermore, it should be noted
that the data points (less than 50) over these two sites are very limited. For the second
group, MOD17A2H is generally consistent with in situ measurements, with the RMSEs of
0.74, 1.22, and 1.0 g C m−2 d−1, and R of 0.86, 0.82, and 0.86 over GL_NuF, RU_Che, and
US_Ivo, respectively.

As indicated by Figure 3, the MOD17A2H performs well over wetlands when ex-
cluding the sites with limited data points (i.e., GL_ZaF and SJ_Adv). One interesting
observation was that the latitudes of GL_ZaF and SJ_Adv are higher than 74◦ N while
those of the other sites are lower than 74◦ N. In addition, the GL_NuF site where the
best agreement between MOD17A2H and in situ occurs has the lowest latitude of all the
wetland sites. Therefore, it can be inferred that the accuracy of MOD17A2H may be related
to latitude, as it is higher over low latitudes but lower over high latitudes. When it comes
to the overall performance of MOD17A2H over wetlands (Figure 3h), the overall RMSE
and R are 1.17 g C m−2 d−1 and 0.76, respectively. MOD17A2H slightly underestimates
GPP, with a bias of −0.19. Based on the results above, MOD17A2H can be considered
capable of revealing the spatial distribution characteristics and the temporal trend of GPP
over wetlands in the Arctic.

Figures 4 and 5 show the evaluation results of MOD17A2H over forest sites (i.e.,
FI_Sod and US_Prr). MOD17A2H underestimates GPP at FI_Sod but overestimates GPP at
US_Prr. The extent of misestimation differs between the two sites and is weak for FI_Sod
but strong for US_Prr. Over FI_Sod, MOD17A2H agrees well with in situ measurements
(Figure 4a), with the RMSE of 1.33 g C m−2 d−1 and bias of −0.77 (Figure 5a). However,
for US_Prr, their agreement is worse (Figure 4b), with the RMSE of 2.05 g C m−2 d−1 and
bias of 1.19 (Figure 5b). It is important to note that the extent of misestimating MOD17A2H
varies from year to year. This is especially true over US_Prr, where the overestimation
of MOD17A2H is more significant from 2012 to 2014 (Figure 4b). Although the two
sites feature forests, their locations are different (Table 1), indicating that the accuracy
of MOD17A2H is also influenced by other factors. As shown in Figure 5c, although
MOD17A2H slightly underestimates GPP over forests (Bias = −0.36), overall, MOD17A2H
was consistent with site measurements over forests, with RMSE and R of 1.51 g C m−2 d−1

and 0.79, respectively.
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Figures 6 and 7 present the comparison results over grasslands, shrublands, and
permanent snow and ice. MOD17A2H generally underestimates GPP over these land
cover types but the degree of underestimation varies with sites, as it is relatively weak for
RU_Cok (RMSE = 1.02 g C m−2 d−1, Bias = −0.44) but strong for GL_ZaH and SJ_Blv (with
the RMSEs of 0.61 and 0.19 g C m−2 d−1 and the Bias of −0.5 and −0.17, respectively).
It is important to remember that the latitudes of GL_ZaH and SJ_Blv are higher than at
RU_Cok, which further demonstrates that the accuracy of MOD17A2H is related to the
latitude of the sites.

When combining the data points of all the sites (Figure 8), MOD17A2H slightly
underestimates GPP, with the bias of −0.32. The overall accuracy of MOD17A2H is
reasonable over the Arctic, with RMSE of 1.26 g C m−2 d−1 and R of 0.8, respectively. These
indicators demonstrate that MOD17A2H is able to capture the spatiotemporal variation
characteristics of GPP in the Arctic.

From the validation results based on in situ measurements, it is shown that the
MOD17A2H generally underestimates GPP over these land cover types. Nevertheless,
depending on the location of the sites, it may underestimate or overestimate GPP within
each land cover type. This demonstrates that the accuracy of MOD17A2H is also influenced
by other factors in addition to land cover types. For instance, the latitude seems to be
associated with the accuracy of MOD17A2H given that the accuracy of MOD17A2H tends
to be higher over low latitudes but lower over high latitudes (>74◦ N), which might be
due to the actual maximum radiation conversion efficiency (εmax) of vegetations being
quite different from the given εmax in high latitude. In fact, the misclassification of a pixel
is also responsible for the inconsistency of the accuracies derived from different sites
within the same land cover type. Because the classification scheme adopted by IGBP is too
general, it cannot reveal the detailed categories carrying out photosynthesis. Moreover,
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MOD17A2H is calculated based on the concept of light use efficiency (LUE), which assumes
a fixed maximum radiation conversion efficiency (εmax) of each land cover type [19]. This
treatment also introduced errors when misclassification occurred. Another cause of the
inconsistency is the different degrees of surface heterogeneities within the satellite pixel,
which cause the sites to be more or less representative of the satellite pixel. Last but not least,
since missing data of in situ may occur unequally during each 8-day period, the temporal
representativeness varies across these sites. Despite these uncertainties, the validation
results still suggest that the performance of MOD17A2H is better over shrublands and
wetlands than it is over forests.
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4.2. Evaluation of the Phenological Characteristics of MOD17A2H

According to Figure 9, MOD17A2H does express the phenological characteristics
of GPP in the Arctic, with cross-sites R and RMSE of 0.62 and 8.9 days, respectively. In
particular, as shown in Figure 9c, the peak GPP timing DOY of grasslands was the most
consistent with that extracted from in situ data (R = 0.86, RMSE = 4 days). By contrast,
the discrepancy between MOD17A2H and in situ peak GPP timing over forest sites was
the highest (Figure 9b), with R and RMSE of 0.52 and 11.9 days, respectively, which
demonstrates that the characteristics of the forests (mostly evergreen needleleaf) GPP,
derived from MOD17A2H, are difficult to capture compared with the characteristics of
other land cover types. This might be due to two reasons: (1) forests are composed of
evergreen needleleaf forests, evergreen broadleaf forests, deciduous needleleaf forests,
deciduous broadleaf forests, and mixed forests; therefore, the diversity of forests makes
phenological characteristics difficult to capture by satellite observations; and (2) evergreen
needleleaf forest is one of the major forest types in the Arctic, which is less sensitive
to climate changes according to [46], thus the phenological characteristics of evergreen
needleleaf forests are hard to capture.

4.3. Spatial Distribution Characteristics
4.3.1. Spatial Distribution of Annual-Averaged GPP

Figure 10 shows the annual maximum (Figure 10a) and annual-averaged GPP (Figure 10b),
derived from MOD17A2H, in the Arctic on a pixel basis. The two metrics generally
present similar spatial distribution patterns. GPP is relatively low in the northeast of
Canada and the regions surrounding Greenland, with an annual-maximum range of 0 to
1.200 g C m−2 d−1 and an annual-averaged range of 0 to 0.900 g C m−2 d−1. The low GPP
over these areas can be explained by the fact that these areas are almost completely covered
by grassland and barren land, which have lower GPP (Figure 11c). Therefore, it can be
inferred that the spatial distribution of GPP is related to land cover types. Furthermore,
the GPP shows a decreasing trend as the latitude increases. This is especially true over
the eastern hemisphere of the Arctic, where the annual maximum of GPP drops from
3.300 to 0.300 g C m−2 d−1 and the annual-averaged of GPP decreases from 2.400 to
0.300 g C m−2 d−1.
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Figure 11a,b display the distribution of GPP with latitude and elevation, respectively.
It can be seen that GPP generally shows a decreasing trend with latitude, which is in line
with the results of Gounand et al. [25]. Nevertheless, the sensitivity of GPP to latitude
depends on the situation. The results define three groups of latitudes: (1) latitudes less
than 62◦ N and more than 80◦ N; (2) latitudes higher than 62◦ N but lower than 66◦ N; and
(3) latitudes between 66◦ N and 80◦ N. In the first group, the GPP distribution is sparse
because the region located within this scope is quite limited. Thus, GPP shows irregular
variation patterns with latitude. In the second group, GPP is relatively stable, indicating
the insensitivity of GPP to latitude within this scope. Nevertheless, GPP presents a clear
decreasing trend in the third group, demonstrating that GPP is most sensitive to latitude
from 66◦ N to 80◦ N. Similar to latitude, GPP generally shows a decreasing trend with
increasing elevation (Figure 11b). However, the decreasing rates are different depending
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on the elevation, which is smaller for elevations lower than 700 m, but larger for elevations
higher than 700 m.
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Figure 11. The annual-averaged GPP distribution with latitude (a) and elevation (m) (b) for the whole Arctic. The gray belt
refers to the confidence interval of 95%, the blue line refers to the fit line, and the boxplots denote the distribution of the
annual-averaged GPP with the latitude. (c) The annual-averaged GPP distribution for the entire study period 2001–2019
over different land cover types. FOR, SHR, SAV, GRA, WET, SNO, BAR, and WAT denote the forests, shrublands, savannas,
grasslands, permanent wetlands, permanent snow and ice, barren, and water bodies, respectively.
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Figure 11c presents the annual-averaged GPP distribution over different land cover
types for the entire study period. It can be seen that all land cover types show considerable
interannual variation except for permanent snow and ice as well as barren land (as indicated
by the wide distribution of boxplots).

4.3.2. Variation of Monthly GPP

Figure 12 displays the spatial pattern of multiyear (2001–2019) averaged monthly GPP.
The phenological cycle of vegetation is clearly shown in the figure. GPP is very low from
November to March, with values close to 0. This is because the photosynthesis of vegetation
was restricted due to the extremely harsh environment and limited lighting hours. From
April to July, with rising temperatures, melting snow and sea ice, and increasing hours of
light, the carbon fixation ability of vegetation is stronger, which contributes to the gradual
expansion of GPP from the northwest of Canada and the low latitudes of Russia to the entire
Arctic. In addition, the mean GPP over the whole Arctic shows a rapid increase during this
period, with the values increasing from 0.0859 g C m−2 d−1 in April to 3.739 g C m−2 d−1

in July. However, the GPP gradually decreases from August to October as the mean values
decrease from 2.215 to 0.0453 g C m−2 d−1. This may be attributed to the decrease in
temperature, the shortening of day-length, and the senescence of vegetation during this
period. The northwestern region of Canada, a small low latitude portion of Russia, and the
regions surrounding Iceland have the longest growth period since they are the first to begin
and the last to stop photosynthesis. Figure 12 demonstrates that spatial heterogeneity is
small during the dormant months (from November to March) and the mid and late summer
months (July and August) when GPP is consistently small or large, but large during the
transition months (April, May, September, and October) and early summer (June). There
are two main reasons for this: the first is the spatial difference in land cover types, the
second is the temporal difference in climate conditions [47].

The GPP in the Arctic has a distinct seasonality with the greatest values in July
(Figure 13). Throughout the year, most land cover types follow the general seasonality
of GPP; they are lowest from January to March, begin to increase in April and reach
a maximum in July, decrease from then on and fall back to the lowest values in November.
Forest and savannas present the largest GPP from April to August, followed by shrublands,
water bodies, permanent wetlands, and grasslands (Figure 13). Permanent snow and ice as
well as barren land ranks last. Nevertheless, from September to October, water bodies show
slightly larger GPP than other land cover types. These results demonstrate that forests
and savannas have a rather high carbon storage capacity during the growing season (from
April to August) but water bodies are the biggest contributors to carbon fixation from
September to October.

The results of Figure 13 are certainly not anticipated because land cover types such as
permanent snow and ice, barren land, and water bodies, which cannot carry out photosyn-
thesis, show considerable GPP. This can be explained by the definition of land cover type
of IGBP, which is determined by the dominant land cover of a pixel. Water bodies refer to
those pixels that are at least 60% covered by permanent water bodies; barren denotes that
at least 60% of the pixel is non-vegetated barren (sand, rock, and soil) areas with less than
10% vegetation; permanent Snow and ice means that at least 60% of the pixel is covered by
snow and ice for at least 10 months of the year. Therefore, the misclassified part of a pixel
is the source of GPP for these three land cover types. From the results above, it is inferred
that only extracting the vegetated pixels, as classified by the land cover, will lead to errors
in calculating carbon storage in the Arctic.

Figure 13 also shows that the monthly GPP has the widest distribution in June,
indicating that the interannual variation of GPP is the most significant in June. This
is understandable since vegetation grew at the fastest speed from May to June (indicated
by the largest slope) and thus is more affected by climate change.
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Figure 13. Multiyear averaged monthly GPP distribution over the entire study period for different
land cover types (denoted by colored lines) over the Arctic. The black boxplots denote the multiyear
monthly GPP distribution of all land cover types.

4.4. Trend Estimates of GPP

The interannual variation trend of GPP is shown on a pixel basis (Figure 14); almost
half of the Arctic presents significant positive trends, but the magnitude of trends shows
distinct spatial variation. In the northwest of Canada and the latitude lower than 70◦ N of
Russia, the trend of GPP varies significantly, ranging from 0.005 to 0.08 g C m−2 year−1. By
contrast, in the northeast of Canada and the regions surrounding Greenland, the GPP trend
varies slightly, ranging from 0 to 0.01 g C m−2 year−1. The small range of the GPP trend is
likely to be associated with grassland and barren land. The former has a relatively small
spatial variation, as indicated by the centralized distribution of the interannual trends in
GPP. The latter has a very small GPP, which is almost constant over time (Figure 11c).
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As seen from Figure 12, there is almost no vegetation productivity in the Arctic from
November to March. Thus, Figure 15 only presents the interannual trends from April to
October. It is clear that the interannual trends show significant differences between different
months. From April to June, the interannual trends in northwestern Canada gradually
increase and reach a maximum in June, with an overall trend of 0.068 g C m−2 year−1

(Figure 15c). From then on, the interannual trend decreases gradually until October
(Figure 15d–g). Furthermore, we also find that the interannual trends in July and August
are more spatially heterogeneous than in other months. These results demonstrate that the
response of vegetation to climate change is not consistent between different months and
over different areas. It is interesting to find that the interannual trend is the most significant
in June (Figure 15c) and shows a similar spatial pattern to the overall interannual trend
(Figure 14). This demonstrates that the interannual variations of GPP in the Arctic may be
dominated by the change of vegetation productivity in June.
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The distributions of the interannual trends in GPP with latitude and elevation are
shown in Figure 16a,b. The interannual trends first increase at the latitude of 51◦ N and
reach a maximum of 0.018 g C m−2 year−1 at 57◦ N. From then on, the interannual trend
decreases significantly until 62◦ N. However, the interannual trend seems to be independent
of latitude from 62◦ N to 66◦ N. Then a clear decreasing trend can be observed from 66◦ N
until 80◦ N. Therefore, we can conclude that the interannual trend of GPP is sensitive to
the latitude, except in the regions located between 62◦ N and 66◦ N, which is similar to
the distribution of annual-averaged GPP with the variation of latitude. This is mainly
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because the regions located between (62◦ N, 66◦ N) are in the same climatic zone, namely
in the north temperate zone. Figure 16b demonstrates that the interannual trend of GPP
generally shows a decreasing trend with increasing elevations. However, the sensitivity is
relatively weak at low elevations (<700 m) and significant at larger elevations (>700 m). The
low GPP and interannual trend in the regions with relatively higher altitude and latitude
Figure 11a,b and Figure 16a,b mainly due to the low precipitation and temperature, which
are not conducive to plant growth [48,49]. These results could help us understand the
latitude or elevation range in which the change of GPP mainly occurred, providing a basis
for understanding the changes of the Arctic GPP.
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Figure 16. Interannual variation trend of GPP (g C m−2 year−1) distribution with latitude (a),
elevation (m) (b) over the Arctic. The gray belt refers to the confidence interval of 95%, the blue
line refers to the fit line, and the boxplots denote the distribution of the annual-averaged GPP with
the latitude. (c) Land cover-dependent interannual variation trend of GPP (g C m−2 year−1) over
the Arctic. FOR, SHR, SAV, GRA, WET, SNO, and BAR denote the forests, shrublands, savannas,
grasslands, permanent wetlands, permanent snow and ice, barren, and water bodies, respectively.

Figure 16c displays the boxplots of the interannual trends by combining the pixels
for each land cover type. It can be seen that almost each land cover type presents positive
trends. However, their magnitude, as well as their spatial variation, depend on the land
cover types. Forests have the largest interannual trend, followed by savannas and shrub-
lands. The interannual trend of grassland is not as large as we expected and is even slightly
smaller than the trend of permanent wetlands. Savannas and forests show the largest
spatial variations in interannual trends, as indicated by the most widespread distribution
of boxplots. Permanent wetlands and grasslands present the smallest spatial variations
when excluding permanent snow and ice as well as barren land. These results demonstrate
that the interannual trends of savannas and forests are more influenced by other factors,
while those of permanent wetlands and grasslands are less sensitive to other factors.

5. Conclusions

Arctic ecosystems have undergone great changes in the context of climate change.
GPP is one of the most crucial indicators of the response of ecosystems to climate change.
However, few efforts have been devoted to exploring the spatial variation and phenological
characteristics of GPP in the Arctic. In response to this challenge, this study investigated
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the spatial distribution as well as the seasonal (phenological) and interannual variations
of GPP in the Arctic using MOD17A2H. Furthermore, the GPP variation trends with land
cover types, latitude, and elevation were also explored. In order to ensure that the results
were reliable, the accuracy of MOD17A2H was first evaluated using in situ measurements
from FLUXNET.

This study found that MOD17A2H generally underestimates GPP over the land cover
types investigated in this study, and its accuracy tends to be higher over low latitude but
lower over high latitude. However, the overall accuracy suggests that MOD17A2H is con-
sistent with the FLUXNET 2015 dataset (RMSE = 1.26 g C m−2 d−1, R = 0.8, Bias = −0.32),
and MOD17A2H can represent the phenological characteristics of GPP (RMSE = 8.9 days,
R = 0.62). Based on MOD17A2H, it was demonstrated that the maximum GPP occurred in
July. In addition, the spatial distribution of GPP is related to land cover types; for example,
forests and savannas have relatively high carbon storage capacity from April to August. By
comparing the GPP variation with latitude and elevation, it was shown that GPP generally
decreases as the latitude and elevation increase. However, the phenomenon is not evident
for latitudes in the range (62◦ N, 66◦ N) and elevation lower than 700 m. The overall trend
of GPP in the Arctic is greater than zero and is dominated by the variation of vegetation
productivity in June. Furthermore, the response to climate change is different across these
land cover types; for example, forests are most sensitive to climate warming. The distribu-
tion of the interannual trend in GPP across latitudes and elevations is consistent with the
changes in GPP as a function of latitude and elevation.

This study is helpful for understanding the spatiotemporal distribution characteristics
of GPP over the Arctic as well as the response of ecosystems to climate change. Never-
theless, the results need to be validated with different satellite products. The number of
sites used for validation is limited. Therefore, the presented conclusion about the accuracy
of MOD17A2H may not be transferable to other regions. Another limitation is that only
individual factors such as land cover type, latitude, and elevation were considered in this
paper. Other factors, such as air temperature, precipitation, and snow, that are related
to vegetation growth status need to be explored further. This will also be our focus in
the future.
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