
remote sensing

Article

Parallel Point Clouds: Hybrid Point Cloud Generation and 3D
Model Enhancement via Virtual–Real Integration

Yonglin Tian 1,2 , Xiao Wang 2,3,* , Yu Shen 2,4, Zhongzheng Guo 2, Zilei Wang 1 and Fei-Yue Wang 2,3

����������
�������

Citation: Tian, Y.; Wang, X.; Shen, Y.;

Guo, Z.; Wang, Z.; Wang, F.-Y. Parallel

Point Clouds: Hybrid Point Cloud

Generation and 3D Model

Enhancement via Virtual–Real

Integration. Remote Sens. 2021, 13,

2868. https://doi.org/10.3390/

rs13152868

Academic Editor: Riccardo Roncella

Received: 21 May 2021

Accepted: 16 July 2021

Published: 22 July 2021

Publisher’s Note: MDPI stays neutral

with regard to jurisdictional claims in

published maps and institutional affil-

iations.

Copyright: © 2021 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

1 Department of Automation, University of Science and Technology of China, Hefei 230027, China;
tyldyx@mail.ustc.edu.cn (Y.T.); zlwang@ustc.edu.cn (Z.W.)

2 State Key Laboratory of Management and Control for Complex Systems, Institute of Automation,
Chinese Academy of Sciences, Beijing 100190, China; shenyu2015@ia.ac.cn (Y.S.);
guozhongzheng63@foxmail.com (Z.G.); feiyue.wang@ia.ac.cn (F.-Y.W.)

3 Qingdao Academy of Intelligent Industries, Qingdao 266000, China
4 School of Artificial Intelligence, University of Chinese Academy of Sciences, Beijing 100091, China
* Correspondence: x.wang@ia.ac.cn

Abstract: Three-dimensional information perception from point clouds is of vital importance for
improving the ability of machines to understand the world, especially for autonomous driving and
unmanned aerial vehicles. Data annotation for point clouds is one of the most challenging and costly
tasks. In this paper, we propose a closed-loop and virtual–real interactive point cloud generation and
model-upgrading framework called Parallel Point Clouds (PPCs). To our best knowledge, this is the
first time that the training model has been changed from an open-loop to a closed-loop mechanism.
The feedback from the evaluation results is used to update the training dataset, benefiting from
the flexibility of artificial scenes. Under the framework, a point-based LiDAR simulation model is
proposed, which greatly simplifies the scanning operation. Besides, a group-based placing method
is put forward to integrate hybrid point clouds, via locating candidate positions for virtual objects
in real scenes. Taking advantage of the CAD models and mobile LiDAR devices, two hybrid point
cloud datasets, i.e., ShapeKITTI and MobilePointClouds, are built for 3D detection tasks. With almost
zero labor cost on data annotation for newly added objects, the models (PointPillars) trained with
ShapeKITTI and MobilePointClouds achieved 78.6% and 60.0% of the average precision of the model
trained with real data on 3D detection, respectively.

Keywords: virtual LiDAR; hybrid point clouds, virtual–real interaction; 3D detection

1. Introduction

With the rapid development of deep learning, computer vision technology has
achieved competitive results on many tasks compared to humans, such as image classifica-
tion [1,2], object detection [3,4], medical imaging [5,6], and object tracking [7]. However,
challenges still exist, especially in 3D perception tasks [8], due to the increase of the data di-
mension. Precise 3D information understanding is indispensable in applications with high
safety requirements such as autonomous driving and unmanned aerial vehicles, and point
clouds are one of the commonly used data formats in such scenarios [9,10]. However,
the annotation of point clouds generated by active sensors such as Light Detection and
Ranging (LiDAR) is time consuming. Taking the LiDAR used in autonomous driving as an
example, due to the sparsity and incompleteness of the point clouds generated by LiDAR,
annotators need to refer to images or other inputs to precisely label the whole point cloud.
This greatly increases the difficulty and time for point cloud annotation.

One of the popular ways to reduce data labeling is using the virtual data from [11].
However, although simulated data are becoming more and more visually realistic, they
still suffer from the domain difference from real scenes [12]. To mitigate the gap between
virtual and real scenes, we propose a new point cloud generation method that integrates

Remote Sens. 2021, 13, 2868. https://doi.org/10.3390/rs13152868 https://www.mdpi.com/journal/remotesensing

https://www.mdpi.com/journal/remotesensing
https://www.mdpi.com
https://orcid.org/0000-0003-1911-5791
https://orcid.org/0000-0002-0008-0659
https://doi.org/10.3390/rs13152868
https://doi.org/10.3390/rs13152868
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.3390/rs13152868
https://www.mdpi.com/journal/remotesensing
https://www.mdpi.com/article/10.3390/rs13152868?type=check_update&version=1

Remote Sens. 2021, 13, 2868 2 of 17

real environmental contexts and virtual or scanned object information. Our method can
maintain the layout of real scenes, thus reducing the difference between synthetic data
and real data. Besides, the proposed point-based representation and LiDAR simulation
greatly simplify the process of collision detection and make it easy to plug into existing
data processing pipelines.

Deep learning methods greatly rely on the training dataset. In most scenarios of
training deep learning models, researchers focus more on the upgrading of models and
algorithms than the updating of the dataset [13]. One of the main reasons is that the
updating of the dataset in real scenes is inconvenient and sometimes unaffordable (e.g.,
expensive LiDAR sensors and high annotation cost) for most researchers. Wang [14]
proposed the Artificial societies, Computational experiments, and Parallel execution (ACP)
methodology for the management and control of complex systems. Inspired by the ACP
method, we integrate the model enhancement and point cloud generation into a closed-loop
framework. Our virtual–real interaction data generation method enables us to adjust the
point clouds flexibly at a very low cost. Therefore, we can use the evaluation results of the
current model to guide the generation of point clouds. By iteratively updating both point
clouds and model parameters, the performance of the model can be continuously promoted.

In conclusion, our contributions can be summarized as follows:

• We design a unified framework to integrate the point cloud generation and model
enhancement, which changes the training of the model from an open-loop to a closed-
loop mechanism. In this manner, both the performance of the models and the quality
of point clouds are iteratively improved;

• The complexity of the collision computation between laser beams and meshes on
objects can be totally avoided by our modeling of LiDAR sensors. In addition, a group-
based placing method is put forward to solve the virtual object placing problem in
real scenes;

• We build a hybrid point cloud dataset called ShapeKITTI with real point scenes and
virtual objects and evaluate our method on 3D detection tasks. With almost zero
annotation cost for newly added objects, we achieved 78.5% of the 3D performance of
the model trained with the real KITTI dataset.

On the one hand, the parallel point cloud framework proposes to use software-defined
and auto-labeled point clouds to train and evaluate 3D models. This greatly reduce the
cost of data annotation. On the other hand, the parallel point cloud framework integrates
both point cloud generation and model updating. This speeds up the enhancement of 3D
models and can promote the development of intelligent industries such as autonomous
driving, intelligent robots, and logistics.

2. Related Works

In this section, we mainly discuss the related works on the ACP method, synthetic
datasets, and 3D detection methods. The ACP method inspired us to propose the frame-
work of parallel point clouds. We built two hybrid point cloud datasets and conducted
experiments on 3D detection to validate the effectiveness of our approach.

2.1. ACP Methodology

ACP theory was proposed by Wang et al. [14] for the modeling and control of com-
plex systems. It includes three parts, i.e., artificial societies, computational experiments,
and parallel execution. Recently, ACP theory has been extended to many areas such as com-
puter vision [15], image generation [16], machine learning [17], autonomous driving [18],
intelligent transportation [19], control theory [20], and so on. For computer vision tasks,
artificial societies are used to model the real world and generate large-scale visual data with
automatic annotation. Computational experiments are used to train and evaluate visual
models for different vision tasks. Parallel execution feeds back the evaluation results to the
construction of artificial scenes. The ACP method inspired us to rethink the relation of the
data and model. Most of the deep learning methods use data to update the parameters of

Remote Sens. 2021, 13, 2868 3 of 17

models in an open-loop manner. The evaluation of the model cannot be used to update the
data due to the difficulty of changing real data.

2.2. Synthetic Datasets

With the rapid development and wide application of deep learning methods [21],
effective and inexpensive generation and labeling of large-scale data are becoming an
urgent problem to solve. To avoid the high cost of data generation in the real world, Many
researchers turn to the virtual world for the solution. Predinger et al. [22] built a laboratory
in a virtual city to analyze driving and travel behaviors. They built the environment
of the virtual city using OpenStreetMap and CityEngine. Then, they added cars and
transportation facilities in Unity and simulated the actions of cars and the interactions
between cars and road networks. Ros et al. [23] constructed virtual traffic scenes and
generated the depth and semantic labels with Unity and Computer-Aided Design (CAD)
models. To improve the diversity of the dataset, they rendered different weather for the
scenes. Gaidon et al. [24] imitated the real KITTI [25] dataset and constructed corresponding
virtual KITTI sequences. The data in virtual KITTI had a similar structure and visual effect
as real KITTI. Diverse annotations can be automatically generated for multiple vision
tasks including object detection, segmentation, tracking, depth estimation, and so on. The
ParallelEye [26] dataset was built based on the map information from the real world and
helps to improve the performance of detection models [27]. The above methods generate
virtual dataset by constructing virtual scenes from scratch. This is flexible, but increases
the workload. Johnson-Roberson proposed to take advantage of existing video games such
as Grand Theft Auto V (GTA V) to collect virtual image data and annotations. This further
reduces the cost of constructing virtual scenes and improves the realness of synthetic data.

Different from the generation of image data, LiDAR point clouds are sparse and
contain 3D information, which makes it hard to effectively process them using existing
CNNs. Yue et al. [28] simulated LiDAR in GTA V and collected many point cloud data.
They used virtual point clouds to train the segmentation model mixed with real data and
improved the performance of the segmentation model. Fang et al. [29] combined real
background points and virtual foreground points in the same scenes. The mixed data
reduced the domain gap between real point clouds and synthetic point clouds. Our work in
this paper adopted the idea of using hybrid point clouds to train the 3D models to reduce
human annotation cost, but simplified the point cloud generation process.

2.3. Three-Dimensional Object Detection with Point Clouds

According to the data format used in the network of point clouds, most 3D detec-
tion models can be roughly categorized into point-based methods, voxel-based methods,
and range-view-based methods.

Point-based methods [8] extract features from the original format of point clouds.
PointNet is a pioneer work to learn 3D information from points. It uses one-dimensional
convolution to encode each point and applies a max-pooling layer to aggregate global
features. Such a design achieves the permutation invariance of unordered point clouds and
helps to extract spatial and structural features. F-PointNet [30] extracts the local points at
the second stage and uses an extended PointNet to predict positive points. VoteNet [31]
generates proposals from point clouds using Hough voting. It uses seed points to help
the regression of final 3D objectives. In voxel-based methods, sparse point clouds are first
transformed into regular 2D or 3D grids [32,33] by voxelization. The new data format has a
similar organization as image data; thus, it can be processed with traditional Convolutional
Neural Networks (CNNs). VoxelNet [32] divides the point clouds into 3D cells and uses 3D
CNNs to extract 3D features. PointPillars [34] ignores the vertical dimension in voxelization
and uses the 2D CNN to accelerate the processing speed of feature extraction. Range-view-
based methods project point clouds to the front view, which maintains the 3D information
and can be processed effectively using CNNs. LaserNet [35] directly regresses the 3D

Remote Sens. 2021, 13, 2868 4 of 17

bounding box form the range view inputs and adopts adaptive NMS to generate the final
results. RCD [36] proposes a learnable dilation convolution to handle the size variation.

Three-dimensional detection was used as the example of 3D tasks to validate the
effectiveness of our parallel point cloud framework.

3. Method

The framework of our method is shown in Figure 1. It comprises three parts, which
are shown in different colors. Lines in yellow show the generation of hybrid point clouds,
which includes the simulation of the LiDAR sensor and the combination of hybrid point
clouds. They are illustrated in Sections 3.1 and 3.2, respectively. Lines in red show the
computational experiments on 3D models such as 3D object detection. Lines in blue
illustrate our human-in-the-loop optimization of the data generation and the training
process, which are discussed in Section 3.3.

Figure 1. The framework of the parallel point clouds.

3.1. Point-Based LiDAR Simulation

In this part, we discuss how to simulate the effects of LiDAR scanning for real or
virtual objects with our virtual LiDAR. A point-based method was adopted to avoid
the tedious computation of the collision between LiDAR beams and meshes of objects.
The simulation of the LiDAR sensor is illustrated in Figure 2. By imitating the mechanism
of real LiDAR, a virtual LiDAR was built that had similar horizon and vertical resolutions.
For objects to be scanned, the original mesh models were first transformed into point
clouds. Finally, equivalent scanning grids were proposed to simulate the scanning of the
LiDAR sensor and generate the point clouds.

Figure 2. The illustration of our virtual point cloud generation pipeline.

Remote Sens. 2021, 13, 2868 5 of 17

The beams of LiDAR can be encoded by a two-dimensional index [i, j], where i is the id
of the beam in the vertical dimension and j is the id of the beam in the horizontal dimension.
The coordination system of virtual LiDAR is illustrated in the left of Figure 2. By only
considering the range of scanning within the Field of View (FoV) of the camera, we denote
the minimum angle in the vertical and horizontal directions as α0 and β0, respectively.
The resolution of virtual LiDAR is denoted as rv and rh in the vertical and horizontal
directions. Then, we have:

αi,j = α0 + i× rv,

βi,j = β0 + j× rh,
(1)

where α and β are the angle of the LiDAR beam in the vertical and horizontal directions.
To calculate the projection of the beam with the index of [i, j] onto the image plane, we
assumed the distance of a point on the beam to the LiDAR sensor is l0. Then, the coordinates
of the point Pi,j = [xi,j, yi,j, zi,j, 1] are:

xi,j = l0 × cos(−βi,j)× sin(αi,j),

yi,j = l0 × cos(−βi,j)× cos(αi,j),

zi,j = l0 × sin(βi,j).

(2)

Assuming the LiDAR sensor has no relative rotation with respect to the camera,
the rotation matrix can be ignored in the calculation of the extrinsic parameters of the
camera. Let us denote the translation matrix as Cw, which is defined as:

Cw =


1 0 0 −x0
0 1 0 −y0
0 0 1 −z0
0 0 0 1

 , (3)

where [x0, y0, z0] is the translation between the LiDAR coordinates and the camera coordi-
nates. The intrinsic matrix K can be denoted as:

K =

 fx s px 0
0 fy py 0
0 0 1 0

 , (4)

where [fx, fy] are the focus-related parameters, [px, py] is the offset, and s is the shear
parameter. Then, we can project the 3D point Pi,j onto the image plane. The projected point
P̂i,j = [ˆxi,j, ˆyi,j, ˆzi,j] can be calculated as:

P̂i,j = KCwPT
i,j (5)

Then, for each beam, their projected position on the image plane is calculated to
generate the equivalent scanning grids. For each point on the grids, the mean distance
di,j to all its neighbors can be calculated. A receptive range si,j is assigned for point P̂i,j
as follows:

si,j = γ× di,j/2 (6)

where γ is used to adjust the receptive range, and it is within the range [0, 1]. The points
from the virtual object will be kept if they are within the range of si,j from P̂i,j. If there is
more than one point assigned to the same grid, we randomly keep one of them. With such
a design, we can project the point clouds onto the image plane and compare them with
the equivalent grids to see if they can be scanned by the virtual LiDAR. To simulate the

Remote Sens. 2021, 13, 2868 6 of 17

reflectance of the LiDAR scan, we used the distance of the point and a random function as
the inputs. Then, the reflectance r is:

r = max(min((0.7− λ× l) + rand(0, 0.3), 1), 0), (7)

where λ is used to adjust the reflectance strength, l is the distance of the point to the LiDAR
sensor, and rand() is the random function used to generate a random value within [0,0.3].
The min and max function are used to restrict the value of the reflectance within [0, 1].

3.2. Hybrid Point Cloud Integration

To improve the realness of synthetic point clouds and avoid the heavy data annota-
tion work, we separated the background point clouds and foreground point clouds. Real
environmental point clouds were used as the background to reduce the domain difference.
Virtual point clouds or scanned point clouds of objects of interest were used as the fore-
ground to generate annotated data automatically. The public point cloud dataset KITTI [25]
was used as the source of real point clouds. The integration of the hybrid point cloud
pipeline is illustrated in Figure 3. To eliminate the influence of real points from foreground
objects, all the points within the 3D bounding box were removed according to the labels of
KITTI. Point clouds of foreground objects can either be generated from CAD models or
scanned objects. For CAD models, we obtained their surface points with our surface point
sampling method. To scan the objects in the real world, an iPad pro device with a LiDAR
sensor was used. It can conveniently generate the point clouds of the objects of interest.
We also proposed an automatic placing algorithm to choose proper places for foreground
virtual point clouds. Although, in our scenario, foreground point clouds can be placed
in the positions where real foreground objects are removed, such a placing mechanism
cannot be generalized to background scenes with no real objects. Then, background and
foreground points are combined, and virtual points are further processed by our virtual
LiDAR to keep the visible points.

Figure 3. The illustration of our hybrid point cloud integration pipeline. Firstly, foreground models are converted to point
clouds. Secondly, an empty background is generated by removing existing objects. Thirdly, the background and foreground
are integrated with the proposed ground-based placing algorithm. Finally, foreground objects are virtually scanned by the
virtual LiDAR.

Remote Sens. 2021, 13, 2868 7 of 17

Existing CAD models can be used as the sources to generate the point clouds of the
objects of interest. Considering that only outside points of an object can be captured in real
scenes, we proposed a surface point sampling method to produce and upsample the points
lying on the surface of the CAD models. As shown in Figure 4, firstly, the complete point
clouds are generated from the CAD model with uniform sampling. Complete point clouds
include both the outside and inside points of the CAD model. Therefore, it is necessary to
remove the points lying inside the object. Making use of current 3D graphic software such
as Blender, surface points can be extracted easily. However, in this paper, we tried to avoid
using external software or applications to develop an online processing mechanism. We
used the multiview projection to decide which points were on the surface of the object. Five
views (front view, back view, left view, right view, and bird’s eye view) were used to create
effects according to real situations. Finally, the points from different views were combined,
and duplicate points were eliminated to generate the surface point clouds. The surface
point clouds were further upsampled to guarantee that every beam of the virtual LiDAR
could generate the point when it collided with the target.

Figure 4. The illustration of our surface point sampling method.

Foreground point cloud generation: Two approaches were adopted to generate the
foreground point clouds, i.e., generating from CAD models and generating from scanned
real objects.

CAD models can provide a flexible imitation of common objects, but are not realistic
enough. Existing real objects that we just removed only contain partial information (visible
parts) and thus cannot be used for flexible data generation. Therefore, we proposed to use
mobile LiDAR to reconstruct the objects in the real world. An iPad Pro (2020) was used
to scan the real objects. We used the app called 3D Scanner APP [37] to scan objects and
transform them into point clouds. The 3D models and corresponding point clouds are
shown in Figure 5.

Figure 5. The models and point clouds of real cars scanned by the iPad Pro.

Remote Sens. 2021, 13, 2868 8 of 17

Group-based placing algorithm: To make the integration of virtual and real point
clouds reasonable, we proposed a group-based placing algorithm to find the proper areas
to place the virtual points into the real background points. Firstly, 2D keypoints on the BEV
plane are uniformly defined with a resolution of res. Then, k neighbors for each keypoint
are found according to the x and y coordinates using the constrained K-Nearest Neighbor
(KNN) algorithm with a range of r. Finally, we computed the maximum and minimum
height for the points within each group. If the height difference dh is below the threshold τ0,
the corresponding keypoint is selected as a candidate position. For the object that is only
provided with the normalized coordinates, we randomly generated the size Sr to obtain its
absolute coordinates using the constrained normal distribution, which is defined as:

Sr = max(min(Xs, Smin), Smax), Xs ∼ N(Sµ, S2
δ), (8)

where Smin and Smax are the minimum and maximum values of the size, respectively. Xs
is a random variable with a normal distribution. The mean value and the variance of
the normal distribution are Sµ and Sδ, respectively. To find a suitable orientation for the
foreground object, we proposed a “random try and region-based validation” method.

We evenly generated Na anchor angles. For each anchor angle, a random shift, which
obeys uniform distribution, is added. The t-th value of the angle is:

At = t× π/Na + Xa, Xa ∼ U(−π/Na, π/Na), t = 0, 1, 2, ..., Na − 1. (9)

Then, we tried each random angle and cropped points in the 3D region formed by the
candidate position, a random size, and a random angle with 3D Region of Interest (RoI)
pooling. If the height difference of the points in the 3D region is lower than τ1, the current
box is labeled as a valid one and the corresponding position, size, and angle information
is recorded for placing the foreground object. To avoid the collision between multiple
foreground objects, we iteratively removed the keypoints that lied in the current valid box.
The group-based placing algorithm is illustrated in Algorithm 1.

3.3. Human-in-the-Loop Optimization

The parallel point cloud framework makes it possible for consistent optimization of
both the point cloud generation and model parameters’ update. In this part, we mainly
discuss the adjustment of the point cloud generation with the human in the loop.

There are many factors to be considered in the virtual point cloud generation such as
the types of virtual objects, the density of points of the object, the size of the object, and so
on. Although machine intelligence such as auto-augmentation [38] may have the potential
to solve these problems, it demands massive computational capacity and needs carefully
designed learning networks. In our situation, taking advantage of the human experience
and the flexibility of virtual data was the most direct and effective way. After the training
process, several randomly sampled data were used to evaluate the performance of the
current model. Then, we visualized the outputs and asked three volunteers to comment on
the detection results. Based on their opinions, the parameters in the generation of point
clouds, such as the mean number of foreground objects in each frame, the mean size of
foreground objects, the receptive range of the virtual LiDAR, the reflectance rate of virtual
points, and so on, were optimized accordingly. After several iterations, the quality of the
point clouds and the performance of the detectors were improved.

Remote Sens. 2021, 13, 2868 9 of 17

Algorithm 1: Group-based placing algorithm.
Input:

Rp = [Xmin, XMax, Ymin, Ymax]: The range of the whole point cloud.
M: The total number of positions that need to be allocated.
τ0: The threshold of the height difference in the candidate location selection.
τ1: The threshold of the height difference in the final location selection.
Pc: Real foreground point clouds.
Sµ, Sδ, Smin, Smax: The expectation, variance, minimum value, and maximum value of the constrained

normal distribution.
No: The number of positions to find for virtual objects.
Na: The number of searches for angle selection.

Output:
O: The locations, sizes, and angles for virtual objects.

O={}, cntp = 0,cnto = 0, Kp = KeyPoints(Pc, Rp), Nk = len(Kp).
while cntp < Nk do

qx, qy, _ = Kp[cntp].
if [qx, qy, _] ∈ PointInRange(O) then

continue
else

Pn = KNN([qx, qy, _]): find the neighbors of the current point (only consider the x and y coordinates).
maxh = Max(Pn[:, 2]): calculate the maximum height of points in Pn.
minh = Min(Pn[:, 2]): calculate the minimum height of points in Pn.
if maxh −minh < τ0 then

size = RandSize(Sµ, Sδ, Smin, Smax): random size generation under a constrained normal distribution.
cnta = 0.
while cnta < Na do

angle = RandAngle(−Pi/Na, Pi/Na) + cnta ∗ Pi/Na: random angle generation under a normal
distribution.

Pr = RotateRoIPool(Pc, [qx, qy], size, angle): rotated RoI pooling.
maxhr = Max(Pr[:, 2]): calculate the maximum height of points in Pr.
minhr = Min(Pr[:, 2]): calculate the minimum height of points in Pr.
if maxhr −minhr < τ1 then

mean = Mean(Pr[:, 2]): calculate the mean of height of points in Pr.
O+={[[qx, qy, mean], size, angle]}.
cnto+ = 1.
break.

else
pass.

end
end
if cnto >= No then

break.
else

pass.
end

else
pass.

end
end

end

4. Experiments

In this section, we discuss the construction of the ShapeKITTI and MobilePointClouds
datasets in Sections 4.1 and 4.2. ShapeKITTI was built by using CAD models as the
foreground, and MobilePointClouds was built by using scanned objects as the foreground.
In Section 4.3, we evaluate our method on the 3D detection task. The optimization of data
generation with the human in the loop is discussed in Section 4.4.

Remote Sens. 2021, 13, 2868 10 of 17

4.1. ShapeKITTI

We proposed a hybrid point cloud dataset, ShapeKITTI, using KITTI and ShapeNet as
our sources of real and virtual point clouds. There were 3712 samples from the KITTI dataset
and 200 car models from ShapeNet used to generate the training data for 3D detectors.
The left 3769 KITTI samples were used to evaluate the performance of 3D detection. When
generating the reflectance of virtual point clouds, λ was set to 0.01. In our group-based
placing algorithm, the resolution was set as 0.16m and the threshold as 0.1. We selected at
most 64 points for each keypoint within 0.5 m around the keypoint. The demos of candidate
placing generated by the group-based placing method are shown in Figure 6. As we can see,
most of the proposed regions are flat, being suitable and reasonable for parking or driving.
Imitating the parameters of the real LiDAR (Velodyne HDL-64E) used in the KITTI dataset,
we configured our virtual LiDAR as shown in Table 1. The demos of our hybrid point clouds
are shown in Figure 7. The proposed group-based placing algorithm distributes most of the
added objects evenly into possible regions. Besides, it also effectively avoids the collision
between adjacent objects.

Figure 6. The visualization of candidate places generated by our group-based placing method (second row) and original
point clouds (first row).

Figure 7. The demos of ShapeKITTI (blue boxes indicate the bounding boxes of newly added objects).

Table 1. The configurations of the virtual scanning grids.

Attribute H-Resolution (Channels) V-Resolution H-FoV V-FoV Detection Range

Value 0.4°(64) 0.2° [−45°, 45°] [−24.8°, 2°] 120 m

4.2. MobilePointClouds

To enrich the source of object-level point clouds, we took advantage of the LiDAR
sensor on the latest iPad Pro device and the 3D Scanner APP [37] to obtain more object-level
point clouds from the real world. There were 40 real cars scanned to generate their point
clouds. There were 3712 samples from the KITTI dataset used to generate the training data
with 40 scanned objects for the 3D detectors. The left 3769 KITTI samples were used to

Remote Sens. 2021, 13, 2868 11 of 17

evaluate the performance of 3D detection. Other settings were the same as those in the
construction of ShapeKITTI. Following the steps described in Section 3, we set up another
dataset called MobilePointClouds.

To fairly compare the difference of foreground objects between our hybrid datasets
and KITTI dataset, we placed the virtual foreground objects into the locations of the original
KITTI objects so that they had the same contexts. The comparisons are shown in Figure 8.
Both the hybrid dataset and real KITTI showed the characteristics of linear scanning. While
the density of point clouds in the hybrid dataset was higher than that in real KITTI, that
may be caused by the higher complexity of the real environment where the emitted laser
has a higher probability of loss.

Figure 8. The visualization of ShapeKITTI (first row), MobilePointClouds (second row), and KITTI (last row).

4.3. Three-Dimensional Object Detection

In this part, we evaluate the ShapeKITTI dataset on real-time 3D detectors
(PointPillars [34] and SECOND [33]). We trained all four models for 20 epochs with the
Adam optimizer. The initial learning rates were set to 0.003 for these one-stage detectors.
We evaluated the performance of the model under an IoU of 0.7 on the KITTI validation
set. The results are shown in Table 2, and we abbreviate the real KITTI dataset as K, the
ShapeKITTI dataset as SK, and the MobilePointClouds dataset as MPC. For the widely
used detector PointPillars (fast and light-weight), using ShapeKITTI, we could achieve
78.6% and 86.8% of the performance of models trained with the real KITTI dataset for 3D
precision and BEV precision, respectively. This is a very promising result for a dataset
that requires almost zero human annotations. With only 40 cars in our MobilePointClouds
dataset, we achieved 60.0% and 82.2% of the performance of the PointPillars model trained
with real KITTI for 3D and BEV precision, respectively, under moderate mode.

From the results in Table 2, we can see that detectors trained with SK achieved better
results than MPC. Such superiority may come from the larger number of models in SK
compared with MPC. We also found that both SK and MPC failed to achieve superior
results compared to the real KITTI dataset. Although we tried to imitate the mechanisms
of real LiDAR, several gaps between the real KITTI and our hybrid datasets still exist, such
as the locations of foreground objects, the number or diversity of foreground models, and

Remote Sens. 2021, 13, 2868 12 of 17

the distribution of point clouds on foreground objects. We analyze the influence of the first
two factors in the following sections (Sections 5.1 and 5.3.). We think that the influence
of the locations of foreground models can be handled to a large extent by our current
group-based placing algorithm, and the influence of the number or diversity of foreground
models will diminish with more kinds of foreground objects added. The distribution
gap of point clouds on foreground objects between real and hybrid datasets was mainly
caused by the difference in the scanning processes. This has a strong influence on the
feature extraction, and many related approaches and methods have been proposed in
transfer learning [39,40] and domain adaptation [41,42]. However, finding solutions to this
is beyond the scope of this paper.

Table 2. Performance on the KITTI validation set of detectors trained with the real KITTI and ShapeKITTI.

Method
3D AP BEV AP AOS AP

Moderate Easy Hard Moderate Easy Hard Moderate Easy Hard

PointPillars-K 77.58 86.68 75.82 87.44 89.79 84.77 89.34 90.63 88.36
PointPillars-SK 60.94 75.54 58.26 75.93 86.49 73.95 74.23 86.90 72.38

PointPillars-MPC 46.28 56.32 45.81 71.86 85.49 71.53 71.08 85.51 70.62

SECOND-K 78.06 87.62 76.52 87.28 89.52 83.89 89.45 90.49 88.41
SECOND-SK 45.04 60.13 42.66 68.40 79.59 64.82 64.11 80.13 42.66

SECOND-MPC 38.83 53.62 36.87 54.33 70.35 55.01 58.52 74.22 55.90

4.4. Human-in-the-Loop Optimization

The above experiments were all based on the final version of ShapeKITTI, which
has gone through many generations of updates. In this part, we elaborate the process to
update our hybrid point cloud dataset with the human in the loop. Taking PointPillars
as an example, we evaluated the 3D AP on the KITTI val set for different generations
of ShapeKITTI. The results are shown in Table 3. We trained the 3D detectors for each
version of the data and obtained feedback and advice from volunteers. For each iteration,
we randomly sampled three groups of detection results from the validation data. They
were provided to the volunteers so that they could evaluate the performance of the model
trained with the current data. The feedback included the number of virtual objects, the size
of virtual objects, the type of virtual objects, the density of generated point clouds, and
the position of virtual objects. We collected 45 comments for each version of the data.
Considering the possible variation of the feedback, we only selected the most common
comment. The generation process of the hybrid dataset was then adjusted according to this
advice, and the detectors were retrained with the new data.

Table 3. The process of updating the ShapeKITTI dataset.

Version Moderate Easy Hard Feedback Advice AP

V0 10.32 10.64 10.53 Works for a few types of car Add more cars -
V1 16.64 22.14 13.98 Bad estimation for the size Refine the size of the CAD models 6.14
V2 22.40 32.85 19.52 Bad performance for sparse objects Generate more sparse objects 5.94
V3 26.85 29.43 23.51 Bad estimation for the height Adjust the height of the objects 4.45
V4 29.74 38.99 27.10 Bad performance for sparse objects Generate more sparse objects 2.89
V5 31.04 39.22 30.30 2.30

5. Discussion

In this section, we analyze the design and effectiveness of the components in the
proposed parallel point cloud framework. All the models (PointPillars) were trained on
the MobilePointClouds dataset and evaluated on the KITTI validation set. To avoid the

Remote Sens. 2021, 13, 2868 13 of 17

uncertainty introduced by the random functions in our method, we fixed the random seeds
in this part (therefore, some results may be slightly different from the results in Section 4).

5.1. The Effectiveness of the Group-Based Placing Algorithm

In this part, we validated the effectiveness of the proposed Group-based Placing
algorithm (GP) by comparing it to the Fully Random Placing algorithm (FRP) and the
Ground-Truth-based Placing algorithm (GTP). For FRP, the objects were randomly placed in
the range of view of the virtual LiDAR. For GTP, the ground-truth of the KITTI dataset was
used to place virtual objects. The results are shown in Table 4. The proposed group-based
placing algorithm achieved much better results than the fully random placing algorithm
and competitive performance compared with the ground-truth-based placing method.
Form the results, we can see that the locations for placing objects had a great influence on
the quality of the hybrid dataset. Randomly placing foreground objects might ignore the
relations between foreground objects and the background, for example: it may place a car
in a wall. Our method can automatically find the proper places for foreground objects, as
shown in Figure 7, thanks to the perception ability of the local regions by analyzing the
group statistics.

Table 4. Comparison of different placing algorithms.

Method
3D AP BEV AP AOS AP

Moderate Easy Hard Moderate Easy Hard Moderate Easy Hard

FRP 35.25 40.59 31.93 61.22 72.62 56.29 60.17 75.88 55.37
GP 42.03 52.91 38.72 61.96 76.94 58.48 64.86 83.74 60.35

GTP 45.24 54.36 44.13 70.91 82.54 68.66 72.93 83.88 70.36

5.2. The Receptive Field of the Virtual LiDAR

In the proposed virtual LiDAR, most of the settings were designed by referring to the
real Velodyne HDL-64E LiDAR such as the vertical and horizontal resolution. In this part,
we discuss the influence of the value of the receptive field (in pixels) on the performance of
3D object detection. As shown in Table 5, we obtained the best performance with the value
of the receptive field set as 1.5 pixels. When we decreased the value of the receptive field,
the diversity of the generated point clouds also declined because the captured points of
each laser beam were restricted to a smaller range. On the contrary, the diversity would
increase with a larger receptive field; however, more noise would be introduced, and the
accuracy would be lower. According to the results shown in Table 5, setting the value of
the receptive field to 1.5 achieved a good trade-off between diversity and accuracy.

Table 5. Comparison of different receptive fields in the proposed virtual LiDAR.

Value (m)
3D AP BEV AP AOS AP

Moderate Easy Hard Moderate Easy Hard Moderate Easy Hard

0.5 18.24 22.44 16.11 45.23 60.34 39.70 39.68 49.81 35.51
1.0 40.63 43.41 37.66 57.01 68.05 55.02 62.85 75.67 58.52
1.5 42.03 52.91 38.72 61.96 76.94 58.48 64.86 83.74 60.35
2.0 39.10 46.50 37.05 57.77 70.25 56.58 62.31 71.64 57.07
2.5 38.28 41.04 34.68 54.05 63.11 52.73 60.63 69.11 55.56

5.3. The Number of Foreground Models

In this part, we compare the models trained using the dataset generated with different
numbers of foreground models. It is worth noting that the “number” here refers to how
many 3D models we used to generate the hybrid dataset instead of the number of objects
in the generated hybrid dataset. One 3D model can generate multiple objects with differ-

Remote Sens. 2021, 13, 2868 14 of 17

ent settings and background environments. The changes of the average precision for 3D
detection, BEV detection, and AOS under moderate mode are illustrated in Figure 9. In gen-
eral, using more foreground models usually results in better performance. However, some
exceptions exist in 3D detection where more models lead to a relatively bad performance
sometimes. One possible reason behind this is that the newly added models have distinct
3D structures from the objects in the KITTI validation set; therefore, they may lead to more
serious divergence between the real (KITTI) and hybrid (MobilePointClouds) domains.
Besides, we also found that even with only one foreground 3D model, we can still achieve
an AP of 24.82 for 3D detection, which illustrates the effectiveness of our virtual LiDAR
scanning method and automatic group-based placing algorithm.

Figure 9. The influence of the number of foreground models on the average precision of the 3D detector.

5.4. The Number of Objects in the Dataset

As shown in Figure 10, we analyzed the influence of the number of foreground objects
in the hybrid dataset on the performance of the trained models. The biggest increase
was witnessed when the number of objects increased from 2500 to 5000. When we added
more objects, the increase slowed down and sometimes could not be guaranteed. With the
increase of the number of objects, the main obstacles that constrained the performance may
change from the number of objects to the difference between real data and hybrid data.

Figure 10. The influence of the number of foreground objects in the hybrid dataset on the average precision of the
3D detector.

Remote Sens. 2021, 13, 2868 15 of 17

5.5. The Time Cost of Each Operation in the Pipeline

To analyze the time consumption in the proposed hybrid point cloud generation
method, we took the generation of hybrid data containing one foreground object as an
example and divided the whole pipeline into six parts, as shown in Figure 11. “Data
loading” denotes the loading of foreground and background points, as well as other
configuration files. “LiDAR configuration” denotes the generation of equivalent scanning
grids as depicted in Figure 2. “Place proposing” and “place selection” compose the group-
based placing algorithm, as shown in Algorithm 1. “Virtual scanning” denotes the scanning
process of the virtual LiDAR, and “label generation” denotes the generation of labels for
hybrid point clouds. The whole process took 0.54 s, and the loading of the data took
most of this time. All the data were stored on a hard disk; therefore, the loading process
can be accelerated with a solid-state drive. The virtual scanning took 0.203 s, and the
group-based placing algorithm took 0.101 s. Both of these processes are fully automatic
and avoid manual participation, which can achieve higher efficiency compared with the
human–machine interactive graphic software.

Figure 11. The time (in seconds) cost of each operation in the pipeline.

6. Conclusions and Future Works

In this paper, we proposed a simple and effective hybrid point cloud generation
pipeline with almost zero human annotation. It greatly reduces the cost of constructing a
large-scale point cloud dataset. Besides, we proposed a human-in-the-loop optimization
method to build a closed-loop data generation and model update framework inspired
by the ACP method. The experiments with 3D detectors verified the effectiveness of
our approach. Three conclusions can be summarized for this paper. Firstly, the closed-
loop framework was proven to be effective in the development of 3D detection models.
Secondly, the proposed point-based LiDAR simulation method was validated to be effective
in the generation of object-level point clouds. Thirdly, the proposed group-based placing
algorithm was validated to be effective in the integration of foreground and background
point clouds.

In future, we will further increase the diversity of our hybrid dataset by generating
more 3D models, especially the scanned models with mobile devices. With the popularity
of mobile devices with LiDAR or a ToF camera, the acquisition of 3D models will become
more and more simple. It is possible to build a rich dataset by collecting the models that
will be widespread through the Internet, which is promising to promote the development
of 3D perception. Besides, improving the quality of hybrid point clouds with deep learning
models is also very attractive. There still exists a gap between hybrid point clouds and real
ones in the distribution of points. The influence of the environment on the LiDAR sensor
in the real world is hard to simulate. With the development of generative adversarial
networks, it will be possible for networks to learn to refine the hybrid point clouds and
make them good substitutes for real point clouds.

Author Contributions: Conceptualization, Y.T., X.W. and F.-Y.W.; methodology, Y.T.; software, Y.T.,
Y.S. and Z.G.; validation, Y.T. and Y.S.; formal analysis, Y.T.; writing—original draft preparation, Y.T.,
X.W., Y.S., Z.W. and F.-Y.W.; visualization, Y.T.; supervision, F.-Y.W. and Z.W.; project administration,
F.-Y.W.; funding acquisition, X.W. and F.-Y.W. All authors read and agreed to the published version
of the manuscript.

Remote Sens. 2021, 13, 2868 16 of 17

Funding: This research was funded by the State Key Program of the National Natural Science
Foundation of China OF FUNDER Grant Number 61533019, the Intel Collaborative Research Institute
for Intelligent and Automated Connected Vehicles (ICRI–IACV), the Joint Funds of the National
Natural Science Foundation of China OF FUNDER Grant Number U1811463, and the Key Research
and Development Program of Guangzhou OF FUNDER Grant Number 202007050002.

Institutional Review Board Statement: Not applicable.

Informed Consent Statement: Not applicable.

Data Availability Statement: KITTI dataset can be obtained from http://www.cvlibs.net/datasets/
kitti/index.php (accessed on 20 May 2021), and ShapeNet dataset can be obtained from https:
//www.shapenet.org/ (accessed on 20 May 2021).

Conflicts of Interest: The authors declare no conflict of interest.

References
1. He, K.; Zhang, X.; Ren, S.; Sun, J. Deep residual learning for image recognition. In Proceedings of the IEEE Conference on

Computer Vision and Pattern Recognition, Las Vegas, NV, USA, 27–30 June 2016; pp. 770–778.
2. Huang, G.; Liu, Z.; Van Der Maaten, L.; Weinberger, K.Q. Densely connected convolutional networks. In Proceedings of the IEEE

Conference on Computer Vision and Pattern Recognition, Honolulu, HI, USA, 21–26 July 2017; pp. 4700–4708.
3. Ren, S.; He, K.; Girshick, R.; Sun, J. Faster R-CNN: Towards real-time object detection with region proposal networks. In

Proceedings of the Advances in Neural Information Processing Systems, Montreal, ON, Canada, 7–12 December 2015; pp. 91–99.
4. Zhang, H.; Tian, Y.; Wang, K.; Zhang, W.; Wang, F.Y. Mask SSD: An Effective Single-Stage Approach to Object Instance

Segmentation. IEEE Trans. Image Process. 2019, 29, 2078–2093. [CrossRef]
5. Shen, T.; Gou, C.; Wang, F.Y.; He, Z.; Chen, W. Learning from adversarial medical images for X-ray breast mass segmentation.

Comput. Methods Programs Biomed. 2019, 180, 105012. [CrossRef]
6. Shen, T.; Wang, J.; Gou, C.; WANG, F. Hierarchical Fused Model with Deep Learning and Type-2 Fuzzy Learning for Breast

Cancer Diagnosis. IEEE Trans. Fuzzy Syst. 2020, 28, 3204–3218. [CrossRef]
7. Zhu, Z.; Wu, W.; Zou, W.; Yan, J. End-to-end flow correlation tracking with spatial-temporal attention. In Proceedings of the IEEE

Conference on Computer Vision and Pattern Recognition, Salt Lake City, UT, USA, 18–22 June 2018; pp. 548–557.
8. Qi, C.R.; Su, H.; Mo, K.; Guibas, L.J. Pointnet: Deep learning on point sets for 3d classification and segmentation. In Proceedings

of the IEEE Conference on Computer Vision and Pattern Recognition, Honolulu, HI, USA, 21–26 July 2017; pp. 652–660.
9. Chen, X.; Ma, H.; Wan, J.; Li, B.; Xia, T. Multi-view 3d object detection network for autonomous driving. In Proceedings of the

IEEE Conference on Computer Vision and Pattern Recognition, Honolulu, HI, USA, 21–26 July 2017; pp. 1907–1915.
10. Wang, C.; Xu, D.; Zhu, Y.; Martín-Martín, R.; Lu, C.; Li, F.F.; Savarese, S. Densefusion: 6d object pose estimation by iterative dense

fusion. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, Long Beach, CA, USA, 16–20 June
2019; pp. 3343–3352.

11. Dosovitskiy, A.; Ros, G.; Codevilla, F.; Lopez, A.; Koltun, V. CARLA: An open urban driving simulator. arXiv 2017,
arXiv:1711.03938.

12. Zhang, H.; Luo, G.; Tian, Y.; Wang, K.; He, H.; Wang, F.Y. A Virtual-Real Interaction Approach to Object Instance Segmentation in
Traffic Scenes. IEEE Trans. Intell. Transp. Syst. 2020, 22, 863–875. [CrossRef]

13. Sambasivan, N.; Kapania, S.; Highfill, H.; Akrong, D.; Paritosh, P.; Aroyo, L.M. “Everyone wants to do the model work, not the
data work”: Data Cascades in High-Stakes AI. In Proceedings of the 2021 CHI Conference on Human Factors in Computing
Systems, Yokohama, Japan, 8–13 May 2021; pp. 1–15.

14. Wang, F.Y. Parallel system methods for management and control of complex systems. Control Decis. 2004, 19, 485–489.
15. Wang, K.; Gou, C.; Zheng, N.; Rehg, J.M.; Wang, F.Y. Parallel vision for perception and understanding of complex scenes:

methods, framework, and perspectives. Artif. Intell. Rev. 2017, 48, 299–329. [CrossRef]
16. Wang, K.; Lu, Y.; Wang, Y.; Xiong, Z.; Wang, F.Y. Parallel imaging: A new theoretical framework for image generation. Pattern

Recognit. Artif. Intell. 2017, 30, 577–587.
17. Li, L.; Lin, Y.; Zheng, N.; Wang, F.Y. Parallel learning: A perspective and a framework. IEEE CAA J. Autom. Sin. 2017, 4, 389–395.

[CrossRef]
18. Wang, F.Y.; Zheng, N.N.; Cao, D.; Martinez, C.M.; Li, L.; Liu, T. Parallel driving in CPSS: A unified approach for transport

automation and vehicle intelligence. IEEE CAA J. Autom. Sin. 2017, 4, 577–587. [CrossRef]
19. Wang, F.Y. Parallel control and management for intelligent transportation systems: Concepts, architectures, and applications.

IEEE Trans. Intell. Transp. Syst. 2010, 11, 630–638. [CrossRef]
20. Wei, Q.; Li, H.; Wang, F.Y. Parallel control for continuous-time linear systems: A case study. IEEE/CAA J. Autom. Sin. 2020,

7, 919–928. [CrossRef]
21. Deng, J.; Dong, W.; Socher, R.; Li, L.J.; Li, K.; Fei-Fei, L. Imagenet: A large-scale hierarchical image database. In Proceedings of

the 2009 IEEE Conference on Computer Vision and Pattern Recognition, Miami, FL, USA, 20–25 June 2009; pp. 248–255.

http://www.cvlibs.net/datasets/kitti/index.php
http://www.cvlibs.net/datasets/kitti/index.php
https://www.shapenet.org/
https://www.shapenet.org/
http://doi.org/10.1109/TIP.2019.2947806
http://dx.doi.org/10.1016/j.cmpb.2019.105012
http://dx.doi.org/10.1109/TFUZZ.2020.3013681
http://dx.doi.org/10.1109/TITS.2019.2961145
http://dx.doi.org/10.1007/s10462-017-9569-z
http://dx.doi.org/10.1109/JAS.2017.7510493
http://dx.doi.org/10.1109/JAS.2017.7510598
http://dx.doi.org/10.1109/TITS.2010.2060218
http://dx.doi.org/10.1109/JAS.2020.1003216

Remote Sens. 2021, 13, 2868 17 of 17

22. Prendinger, H.; Gajananan, K.; Zaki, A.B.; Fares, A.; Molenaar, R.; Urbano, D.; van Lint, H.; Gomaa, W. Tokyo virtual living lab:
Designing smart cities based on the 3d internet. IEEE Internet Comput. 2013, 17, 30–38. [CrossRef]

23. Ros, G.; Sellart, L.; Materzynska, J.; Vazquez, D.; Lopez, A.M. The synthia dataset: A large collection of synthetic images for
semantic segmentation of urban scenes. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition,
Vegas, NV, USA, 27–30 June 2016; pp. 3234–3243.

24. Gaidon, A.; Wang, Q.; Cabon, Y.; Vig, E. Virtual worlds as proxy for multi-object tracking analysis. In Proceedings of the IEEE
Conference on Computer Vision and Pattern Recognition, Vegas, NV, USA, 27–30 June 2016; pp. 4340–4349.

25. Geiger, A.; Lenz, P.; Urtasun, R. Are we ready for autonomous driving? the kitti vision benchmark suite. In Proceedings of the
2012 IEEE Conference on Computer Vision and Pattern Recognition, Providence, RI, USA, 16–21 June 2012; pp. 3354–3361.

26. Li, X.; Wang, K.; Tian, Y.; Yan, L.; Deng, F.; Wang, F.Y. The ParallelEye dataset: A large collection of virtual images for traffic
vision research. IEEE Trans. Intell. Transp. Syst. 2018, 20, 2072–2084. [CrossRef]

27. Tian, Y.; Li, X.; Wang, K.; Wang, F.Y. Training and testing object detectors with virtual images. IEEE/CAA J. Autom. Sin. 2018,
5, 539–546. [CrossRef]

28. Yue, X.; Wu, B.; Seshia, S.A.; Keutzer, K.; Sangiovanni-Vincentelli, A.L. A lidar point cloud generator: From a virtual world to
autonomous driving. In Proceedings of the 2018 ACM on International Conference on Multimedia Retrieval, Yokohama, Japan,
11–14 June 2018; pp. 458–464.

29. Fang, J.; Zhou, D.; Yan, F.; Zhao, T.; Zhang, F.; Ma, Y.; Wang, L.; Yang, R. Augmented lidar simulator for autonomous driving.
IEEE Robot. Autom. Lett. 2020, 5, 1931–1938. [CrossRef]

30. Qi, C.R.; Liu, W.; Wu, C.; Su, H.; Guibas, L.J. Frustum pointnets for 3d object detection from rgb-d data. In Proceedings of the
IEEE Conference on Computer Vision and Pattern Recognition, Salt Lake City, UT, USA, 18–22 June 2018; pp. 918–927.

31. Qi, C.R.; Litany, O.; He, K.; Guibas, L.J. Deep hough voting for 3d object detection in point clouds. In Proceedings of the IEEE
International Conference on Computer Vision, Seoul, Korea, 27–28 October 2019; pp. 9277–9286.

32. Zhou, Y.; Tuzel, O. Voxelnet: End-to-end learning for point cloud based 3d object detection. In Proceedings of the IEEE Conference
on Computer Vision and Pattern Recognition, Salt Lake City, UT, USA, 18–22 June 2018; pp. 4490–4499.

33. Yan, Y.; Mao, Y.; Li, B. Second: Sparsely embedded convolutional detection. Sensors 2018, 18, 3337. [CrossRef]
34. Lang, A.H.; Vora, S.; Caesar, H.; Zhou, L.; Yang, J.; Beijbom, O. Pointpillars: Fast encoders for object detection from point clouds.

In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, Long Beach, CA, USA, 15–20 June 2019; pp.
12697–12705.

35. Meyer, G.P.; Laddha, A.; Kee, E.; Vallespi-Gonzalez, C.; Wellington, C.K. Lasernet: An efficient probabilistic 3d object detector for
autonomous driving. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, Long Beach, CA,
USA, 16–20 June 2019; pp. 12677–12686.

36. Bewley, A.; Sun, P.; Mensink, T.; Anguelov, D.; Sminchisescu, C. Range Conditioned Dilated Convolutions for Scale Invariant 3D
Object Detection. arXiv 2020, arXiv:2005.09927.

37. 3D Scanner APP. Available online: http://www.3dscannerapp.com/ (accessed on 1 December 2020).
38. Cubuk, E.D.; Zoph, B.; Mane, D.; Vasudevan, V.; Le, Q.V. Autoaugment: Learning augmentation strategies from data.

In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, Long Beach, CA, USA, 16–20 June 2019;
pp. 113–123.

39. Pan, S.J.; Qiang, Y. A Survey on Transfer Learning. IEEE Trans. Knowl. Data Eng. 2010, 22, 1345–1359. [CrossRef]
40. Zhuang, F.; Qi, Z.; Duan, K.; Xi, D.; He, Q. A Comprehensive Survey on Transfer Learning. Proc. IEEE 2020, 109, 43–76. [CrossRef]
41. Wang, M.; Deng, W. Deep Visual Domain Adaptation: A Survey. Neurocomputing 2018, 312, 135–153. [CrossRef]
42. Wilson, G.; Cook, D.J. A survey of unsupervised deep domain adaptation. ACM Trans. Intell. Syst. Technol. (TIST) 2020, 11, 1–46.

[CrossRef]

http://dx.doi.org/10.1109/MIC.2013.87
http://dx.doi.org/10.1109/TITS.2018.2857566
http://dx.doi.org/10.1109/JAS.2017.7510841
http://dx.doi.org/10.1109/LRA.2020.2969927
http://dx.doi.org/10.3390/s18103337
http://www.3dscannerapp.com/
http://dx.doi.org/10.1109/TKDE.2009.191
http://dx.doi.org/10.1109/JPROC.2020.3004555
http://dx.doi.org/10.1016/j.neucom.2018.05.083
http://dx.doi.org/10.1145/3400066

	Introduction
	Related Works
	ACP Methodology
	Synthetic Datasets
	Three-Dimensional Object Detection with Point Clouds

	Method
	Point-Based LiDAR Simulation
	Hybrid Point Cloud Integration
	Human-in-the-Loop Optimization

	Experiments
	ShapeKITTI
	MobilePointClouds
	Three-Dimensional Object Detection
	Human-in-the-Loop Optimization

	Discussion
	The Effectiveness of the Group-Based Placing Algorithm
	The Receptive Field of the Virtual LiDAR
	The Number of Foreground Models
	The Number of Objects in the Dataset
	The Time Cost of Each Operation in the Pipeline

	Conclusions and Future Works
	References

