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Abstract: Accurate and efficient image mosaicking is essential for generating wide-range swath
images of spaceborne scanning synthetic aperture radar (ScanSAR). However, the existing methods
cannot guarantee the accuracy and efficiency of stitching simultaneously, especially when mosaicking
multiple large-area images. In this paper, we propose a novel image mosaic method based on
homography matrix compensation to solve the mentioned problem. A set of spaceborne ScanSAR
images from the Gaofen-3 (GF-3) satellite were selected to test the performance of the new method.
First, images are preprocessed by an improved Wallis filter to eliminate intensity inconsistencies.
Then, to reduce the enormous computational redundancy of registration, the overlapping areas of
adjacent images are coarsely extracted using geolocation technologies. Furthermore, to improve the
efficiency of stitching and maintain the original information and resolution of images, we deduce a
compensation of homography matrix to implement downsampled images registration and original-
size images projection. After stitching, the transitions at the edges of the images were smooth and
seamless, the information and resolution of the original images were preserved successfully, and
the efficiency of the mosaic was improved by approximately one thousand-fold. The validity, high
efficiency and reliability of the method are verified.

Keywords: scanning synthetic aperture radar (ScanSAR); image mosaic; overlapping area extraction;
homography matrix compensation; parallel registration; Gaofen-3 satellite

1. Introduction

Synthetic aperture radar (SAR) is a kind of active imaging system operating in the
microwave band. It has the capability to observe the ground under all-day and all-weather
conditions, which is difficult for optical sensors [1]. Scanning SAR (ScanSAR) is an impor-
tant development of spaceborne SAR technology. It can shorten the global revisit period
by its wide surveying and mapping swath. Some surface phenomena that undergo rapid
changes, such as marine wind, wave, sea ice and aboveground biomass, can be monitored
by ScanSAR [2–10]. Gaofen-3 (GF-3), the first C-band polarization high-resolution SAR
satellite in China, has three ScanSAR modes. Its global observation mode can obtain
an imaging nominal swath width of 650 km, which greatly expands the ability of Earth
observation and application [11,12].

Image mosaic is a prerequisite for some quantitative applications of SAR. Registra-
tion as an important part of the image mosaic process has been studied widely. Among
registration methods based on features, the scale-invariant feature transform (SIFT) al-
gorithm has received wide attention because of its strong adaptability to image scaling,
rotation, translation and intensity [13–15]. However, due to the influence of speckle noise,
the traditional SIFT algorithm does not perform well in SAR image mosaics. Therefore,
P. Schwind et al. [16] proposed using the infinite symmetric exponential filter (ISEF) to
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smooth SAR images. They also suggested skipping the first octave of the scale-space
pyramid to reduce the number of incorrect keypoint detections. Yu X. et al. [17] used
a multilook preprocessing method to suppress speckle noise. This method reduces the
computational complexity at the expense of losing image features and reducing the resolu-
tion of the original image. To enhance the matching performance of SAR images, many
studies have focused on improving the scale space. Bilateral filter SIFT (BFSIFT), adapted
anisotropic Gaussian SIFT (AAG-SIFT), nonlinear diffusion scale space SIFT (NDSS-SIFT),
and the SIFT-like algorithm for SAR images (SAR-SIFT) were proposed by replacing a
Gaussian filter with several anisotropic filters to construct the scale space [18–21]. This
kind of method retains more image details and edges than other methods so that more
keypoints can be obtained. However, keypoint detection and matching initially take up
a large part of the time in the entire mosaic process, and these methods will increase the
computational complexity. Another type of research optimized the image registration
process, which consists of coarse registration and fine registration. Gong M. et al. [22]
proposed a novel coarse-to-fine scheme for automatic image registration based on SIFT
and mutual information. First, SIFT is used for preregistration. Then, a fine-tuning process
is implemented by maximizing the mutual information. Xiang Y. et al. [23] proposed an
automatic and novel SAR image registration algorithm. They downsampled images to
reduce the computational complexity of SAR-SIFT.

Although these methods have achieved a good mosaic effect on SAR images, there are
still some limitations when they are applied to spaceborne ScanSAR image mosaics:

1. The stitching seams cannot be eliminated completely in some special cases. After
stitching, there will be inconsistent intensity distributions on different sides of the seam,
which causes difficulties in the applications of large-area ScanSAR images. For example, if
there is a ship just across the seam of the two stitched images, the inconsistent intensity
distribution may lead to the failure of ship recognition.

2. Keypoint redundancy. Keypoint detection and matching will directly determine
the accuracy and efficiency of stitching. Most of the above algorithms are used to detect
keypoints from the whole image by the SIFT algorithm, but the keypoints that can be
matched correctly are from overlapping areas between adjacent images. For spaceborne
ScanSAR, the overlapping areas between adjacent images generally account for 5% ~ 45%
of the total image, which depends on the antenna angle, imaging geometry and latitude.
Therefore, keypoint detection of the whole ScanSAR image will acquire a considerable
number of redundant keypoints from nonoverlapping areas, resulting in much computa-
tional redundancy and stitching time. The redundant keypoints are not only unhelpful for
keypoint matching but also reduce the matching accuracy due to some similar mismatched
keypoints detected from nonoverlapping areas. Sun W. et al. [24] proposed to convert the
large-size small-overlap image registration into the small-overlap image registration by
using the location of an airborne SAR image. This idea could also be used in spaceborne
ScanSAR images.

3. Resolution reduction. The resolution of ScanSAR images is not as good as that
of stripmap SAR or spotlight SAR because ScanSAR can obtain a wide-range swath at
the expense of the azimuth resolution [25]. It will worsen by either multilooking or
downsampling. In that case, many details and edges will be lost, and the image quality
will be affected.

4. The mosaicking of multiple spaceborne ScanSAR images is a time-consuming
process that is intolerable in practice. The swath of GF-3 ScanSAR varies from 300 km
to 650 km, and an image of a single subswath has hundreds of millions of pixels. The
computation will be enormous when mosaicking of multiple spaceborne ScanSAR images
is required. Too many pixels will drastically slow down the detection and matching speeds,
especially when using algorithms that increase the number of keypoints after optimization.

Another type of method which should be discussed in this article is geolocation
technology. It seems that the stitching of ScanSAR images can be realized by geolocation,
which is fast. However, due to various errors, such as satellite measurement error, time
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error of SAR system, pulse repeat frequency error and relative height error, the geolocation
of SAR processors cannot achieve sufficient accuracy in practice. As for the GF-3 satellite,
the accuracy of a location is 230 m, and the resolution of narrow scanning (NS) is 50 m [11].
It can be seen that using geolocation can only guarantee the efficiency of stitching instead
of the accuracy. To improve the accuracy of geolocation, the SAR processors should be
more complex, which is very difficult.

Thus, the traditional feature-based mosaic method can only guarantee the accuracy
rather than efficiency of stitching, while the geolocation-based mosaic method can only
guarantee the efficiency rather than accuracy of stitching.

To solve the problems mentioned above, we propose a novel mosaic method for
spaceborne ScanSAR images. First, an improved Wallis filter is used to eliminate the
inconsistency of intensity and contrast between adjacent images before mosaicking. Then,
the overlapping areas of images are coarsely extracted by geolocation technologies to
remove the redundant areas of images that are useless for registration. In the image
registration process, we reduce the size of the extracted overlapping areas and divide them
into equal parts perpendicular to the stitching direction so that keypoint detection by the
SIFT algorithm and keypoint matching can run in parallel. The homography matrix is
calculated by matched keypoints, filtered by the random sample consensus (RANSAC)
algorithm and compensated based on the multiple of overlapping area downsampling.
After scaling compensation, the matrix can be used to project the original-size images so
that the original resolution can be preserved. To validate the performance of this method,
we selected a group of ScanSAR image data acquired by the GF-3 satellite for experiments.
The results indicate that the proposed method can significantly reduce the mosaicking time
while ensuring the accuracy of the mosaic and maintaining high resolution. This method
can, thus, be used on the mosaic of multiple large-area spaceborne ScanSAR images.

The remainder of this paper is organized as follows: Section 2 introduces the ScanSAR
modes of GF-3. Section 3 presents a traditional feature-based image mosaic process.
Section 4 shows the details of our proposed method. Section 5 reports the experimental
results and discussion. Conclusions are provided in Section 6.

2. ScanSAR Modes of GF-3 Satellite

As an important technology based on stripmap SAR, ScanSAR has been applied in
many spaceborne SAR systems. Figure 1 shows the working mechanism of spaceborne
ScanSAR. Unlike the fixed antenna pointing of stripmap SAR, ScanSAR can obtain several
times the range swath of stripmap SAR by switching radar beams within a preset angle
range. The antenna scans from different subswaths in turn.

The antenna spends a fixed time transmitting a set of pulses (i.e., a burst) and receiving
echo data on each subswath [1]. Then, the radar beam is switched to the next subswath,
and the above-mentioned process is repeated until all the subswaths are scanned once.
A period of scanning is completed when the antenna returns to the point of the first
subswath. The working mechanism of spaceborne ScanSAR shows that there is a time gap
between two bursts in the same subswath, which means that the azimuth resolution of the
ScanSAR image is sacrificed. Moreover, the wide-range swath is composed of multiple
subswaths with independent echo data phases. Therefore, stitching the imaging results of
each subswath into a smooth and seamless wide image is an effective approach.

As the first C-band polarization high-resolution SAR satellite in China, GF-3 carries
three advanced ScanSAR modes: NS, wide scanning (WS) and global observation (G).
Table 1 shows the information of these modes [26]. The NS, WS and G modes all use the
same antenna beam as the standard stripmap (S) mode, which covers an approximately
130 km swath. Its capability of wide swath observations plays a crucial role in sea surface
information retrieval and sea monitoring.
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Table 1. ScanSAR modes of GF-3 satellite.

ScanSAR
Mode

Incidence
Angle (◦)

Nominal
Resolution (m)

Nominal
Swath (km) Polarization Adjacent

Beams

NS 17–50 50 300 Dual 3
WS 17–50 100 500 Dual 5
G 17–53 500 650 Dual 7
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3. Traditional Feature-Based Mosaic Process for SAR Images

The traditional feature-based image mosaic process for SAR can be roughly divided
into five parts: image preprocessing, keypoint detection and matching (registration), ho-
mography matrix calculation, image projection and image blending [27,28]. The entire
traditional feature-based image mosaic process is shown in Figure 2.
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3.1. Image Preprocessing

Before mosaicking, to suppress speckle noise, SAR images were filtered to enhance
edges and denoise. In regard to ScanSAR, the intrinsic periodic scalloping in the azimuth
and the effect of the roll angle error on the range, which are caused by the multiple-beam
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scanning strategy in swath, should also be corrected [29–31]. In addition, the radiation
intensity of adjacent images has to be balanced to avoid obvious differences after stitching.

3.2. Keypoint Detection and Matching

The classic SIFT is an efficient feature detection algorithm [13]. First, the potential
interest points that are invariant to scale and orientation were identified by using a differ-
ence of Gaussians function and select the keypoints based on their stability. Then, one or
more orientations were assigned to each keypoint location based on local image gradient
directions and form a feature vector with 128 elements for each keypoint. Finally, the
candidate keypoints were matched by finding their nearest neighbor, which is defined as
the keypoint with the minimum Euclidean distance for the descriptor vector. In addition,
the speeded-up robust features (SURF) algorithm and the oriented features from the ac-
celerated segment test (FAST) and rotated binary robust independent elementary features
(BRIEF) algorithm were also used in SAR image mosaics [32,33].

3.3. Homography Matrix Calculation

The transformation of the pixel coordinates, which is called the homography matrix,
was calculated based on the coordinates of matched keypoints [34,35]:

H =

 ax bx cx
by ay cy
0 0 1

 (1)

where ax and ay stand for the scaling degree of rows and columns, respectively, bx and by
reflect the rotation of the image rows and columns, respectively, and cx and cy represent
the translation of rows and columns, respectively. The homography matrix, which directly
affects the accuracy of image projection, should be filtered by the RANSAC algorithm
because using mismatched keypoints for the calculation is possible [36,37]. Four pairs of
matched keypoints were selected randomly to calculate a homography matrix. Then, all
matched keypoints were projected based on the homography matrix, and their Euclidean
distances between coordinates (threshold) were recorded. The number of the correctly
matched keypoints, whose threshold was less than one, were also recorded. After iterating
the above steps multiple times, the accurate homography matrix with the most correctly
matched keypoints could be screened. The threshold was one pixel in this paper. The
number of iterations was 2000. Such parameters of the RANSAC algorithm can result in a
higher accuracy of homography matrix calculation and were independent from the images
to be stitched. In addition, the RANSAC algorithm used in this paper was very efficient
and took time in seconds.

3.4. Image Projection

To ensure the relative positions between images are accurate, the image to be stitched
was projected to the coordinate system of the reference image by scaling, rotation and
translation based on the homography matrix. (x, y) are the coordinates of any pixel in the
image to be stitched, and the coordinates of pixels in the projected image are represented
by (x′, y′):  x′

y′

1

 = H

 x
y
1

 =

 ax bx cx
by ay cy
0 0 1

 x
y
1

 (2)

3.5. Image Blending

To eliminate mosaic seams and achieve a smooth transition after projection, image
blending, which can process the pixel values of overlapping areas, becomes indispensable.
The weighted-average algorithm is a simple and effective image blending method that
sums the pixel values after assigning them a particular weight [38]. In the case of the
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transverse mosaic, the pixel values of overlapping areas after distance weighting can be
expressed as:

I(i, j) = wIα(i, j) + (1− w)Iβ(i, j) (3)

where Iα and Iβ stand for the overlapping areas of the reference image and the image to be
stitched, respectively, before blending, and w = dα

dα+dβ
represents the weight, where dα or

dβ are the distances from any pixel location to the left or right boundary, respectively, of
the overlapping area. After image blending, the final mosaic result was obtained.

4. The Proposed Novel Mosaic Method for Spaceborne ScanSAR Images Based on
Homography Matrix Compensation

To eliminate intensity inconsistencies, reduce redundant computations and improve
efficiency under the premise of ensuring the images’ high resolution, we optimize several
parts of the traditional process.

4.1. Image Preprocessing Based on an Improved Wallis Filter

The wide swath of ScanSAR was composed of multiple subswaths. However, the
radiation intensities of the different subswath images were still inconsistent even though
the intrinsic periodic scalloping in the azimuth and the effect of the roll angle error on the
range were corrected. This phenomenon is caused by many factors, such as the slant range
from the satellite to the target, the radar looking angle, different antenna gain patterns and
inconsistent processor parameterizations. Therefore, the radiation intensity of adjacent
images should be balanced during preprocessing to avoid inconsistency after mosaicking.

The Wallis filter, which can equalize the intensity and contrast of images, is a pixel-
value processing algorithm based on the reference image [39]. We used Iα and Iβ to
represent the reference image and the image to be stitched, respectively; then, the classic
Wallis filter can be shown as:

I′β(i, j) =
(

Iβ(i, j)−mβ

) sα

sβ
+ mα (4)

where I′β is the filtered image, mα and mβ represent the mean of the pixel values in Iα and
Iβ, and sα and sβ are the standard deviations of the pixel values.

As shown in Figure 3a, the classic Wallis filter worked well when two images with
similar intensity trends along the stitching seam were processed. However, when the seam
was too long and the intensity trends were opposites, there would still be obvious intensity
inconsistencies even when the means and standard deviations of the two images were
adjusted to the same, as shown in Figure 3b.

It can be analyzed from Equation (4), when mα = mβ and sα = sβ, I′β(i, j) = Iβ(i, j),
which means that the classic Wallis filter will be invalid if the means and standard de-
viations of Iα and Iβ are equal. This could happen in the situation of opposite intensity
trends. Thus, these two parameters were not enough to accurately describe the differences
between images.

In this paper, a ratio of the mean was multiplied by the classic Wallis filter to implement
the description of intensity trends along the stitching seam:

I ′′ β(i, j) = I′β(i, j)
Mα

Mβ
(5)

where I ′′ β is the result of the improved Wallis filter, I′β is the result of the classic Wallis filter,
and Mα and Mβ are the mean pixel values of Iα and I′β perpendicular to the stitching seam
(if the stitching seam is along the column, Mα and Mβ are the mean pixel values of every
row). The improved Wallis filter performed well regardless of whether the intensity trends
were similar or opposite, so that the inconsistency in the intensity could be successfully
eliminated and the effect of the mosaic result would be improved.
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Figure 3. The intensity distribution trends along the stitching seam of two images before and after classic Wallis filtering.
(a) The situation of similar trends; (b) the situation of opposite trends.

4.2. Overlapping Area Coarse Extraction

As mentioned in the introduction, the keypoints that could be matched correctly were
from overlapping areas between adjacent images. In that case, a large number of redundant
keypoints were acquired from nonoverlapping areas, which would cause considerable
computational redundancy in keypoint matching. The accuracy of matching and the
efficiency of mosaics would both be affected. To solve this problem, we reduced the
range of keypoint detection from the whole images to the overlapping areas. First, we
calculate the actual longitude and latitude of the pixels using the geolocation technologies
of spaceborne SAR [40–42]. The mature geolocation technologies used in this paper were
efficient enough and took time in seconds. Then, the overlapping rates were estimated by
the longitude and latitude of the pixels. Finally, the overlapping areas of adjacent images
were coarsely extracted based on the overlapping rates. Only the keypoints in overlapping
areas would be detected and matched, while nonoverlapping areas that accounted for a
large proportion would not be involved in the registration.

We used rα and rβ to represent the overlapping rates of Iα and Iβ:

rα =
card

(
Lα ∩ Lβ

)
card(Lα)

(6)

rβ =
card

(
Lα ∩ Lβ

)
card

(
Lβ

) (7)

where card(·) represents the number of elements in the set, Lα is the longitude and latitude
of all the pixels in Iα, and Lβ is the longitude and latitude of all the pixels in Iβ. As shown
in Figure 4, the overlapping areas were extracted from the whole images based on the
overlapping rates.
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4.3. Homography Matrix Compensation

To improve the efficiency of the mosaic, we initially tried to downsample the images
for stitching and upsample the stitched image to the original size. Although multilooking
or image downsampling can greatly reduce the amount of data and effectively speed up
image mosaicking [17], the problem of ScanSAR with a lower resolution than stripmap
SAR worsens. Neither of these methods were helpful in maintaining the original resolution
or as many image details as possible. One aspect considered significant was that the image
projection accuracy was directly determined by the homography matrix. In that case, we
switched our attention from image scaling to homography matrix scaling and proposed
a novel method. The extracted overlapping areas were downsampled for registration,
so keypoints would be detected and matched quickly. After being calculated based on
matched keypoints, the homography matrix should be compensated, which depends on
the multiple of downsampling. Then, the compensated matrix could be applied to the
projection of the original-size images. In that case, the resolution could be preserved
successfully in the final mosaic result.

To ensure the accuracy of projection, the scaling compensation for the homography
matrix should be precisely deduced. As shown in Figure 5, the rows and columns of the
reference image Iα and the projected image Iβ were scaled to 1/n. The homography matrix
used to complete this step is as follows:

H1 = diag(1/n, 1/n, 1) (8)

the homography matrix H used for the projection of downsampled image Iβ to downsam-
pled image Iα was calculated as shown in Equation (1). After being projected based on H,
the rows and columns should be scaled by n times to approximate the projection of the
original-size images. The homography matrix used in amplification is:

H2 = diag(n, n, 1) (9)(
xβ, yβ

)
are the coordinates of any pixel in image Iβ,

(
x′β, y′β

)
are the coordinates of any

pixel in downsampled image Iβ,
(

x′′ β, y′′ β
)

are the coordinates of any pixel in projected

downsampled image Iβ, and
(

x′′′ β, y′′′ β
)

are the coordinates of any pixel in projected
original-size image Iβ. Thus, the relationship among these coordinates can be expressed as: x′β

y′β
1

 = H1

 xβ

yβ

1

 (10)

 x′′ β
y′′ β

1

 = H

 x′β
y′β
1

 (11)

 x′′′ β
y′′′ β

1

 = H2
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1

 = H2H

 x′β
y′β
1

 = H2HH1

 xβ
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1

 (12)
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Figure 5. The relationship of image scaling and homography matrix scaling.

Therefore, the homography matrix used to project the original image Iβ to the original
image Iα can be shown as:

H0 = H2HH1

=

 n 0 0
0 n 0
0 0 1

 ax bx cx
by ay cy
0 0 1

 1/n 0 0
0 1/n 0
0 0 1


=

 ax bx ncx
by ay ncy
0 0 1


(13)

First, H was calculated after keypoint detection and matching in downsampled over-
lapping areas. Then, the projection of the original-size images was achieved based on H0.
This method not only projected correctly and preserved the original information of the
images, but also decreased the keypoint detection and matching times to make the image
mosaic process faster. However, although the efficiency of keypoint detection and matching
was improved, the overlapping areas could not be downsampled indefinitely. According to
Equation (13), if there was a computational error in cx or cy, it would be magnified n times
in H0, which affected the image projection accuracy. Therefore, a tradeoff between the
efficiency and accuracy of image mosaics should be determined according to the specific
mosaic requirements, which will be discussed in Section 5.

4.4. Parallel Registration

With the rapid development of modern radar technology, the image processing scale
of spaceborne ScanSAR has increased continually. Parallel operation is becoming an
attractive solution when traditional serial operation cannot meet the growing application
requirements. Thus, we developed an efficient registration method. First, perpendicular
to the direction of the mosaic, the downsampled overlapping areas were divided into
multiple equally sized parts. Then, as shown in Figure 6, the keypoints of different parts
could be simultaneously detected and matched to achieve parallel registration.
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Directly calculating the homography matrix using the matched keypoints obtained
from the downsampled divided overlapping areas was not enough. It should be noted
that to ensure the accuracy of H0 and the mosaic relationship between block and block,
the coordinates of the matched keypoints must be corrected due to the offsets caused by
overlapping area extraction, downsampling and division. Taking transverse stitching as an
example, the row coordinate offset of the overlapping area’s kth part in Iα is:

xe(k) =
hα

nM
(k− 1), k = 1, . . . , M (14)

where hα stands for the number of rows in Iα, n represents the multiple of downsampling,
and M is the number of divided parts in overlapping areas, which can depend on the
number of central processing unit (CPU) cores on the experimental device. The column
coordinate offset in Iα is:

ye =
1
n
(cα − cαrα) (15)

here, cα is the number of columns in Iα and rα is the overlapping rate of Iα. Therefore,
the coordinate of any matched keypoint in the overlapping area’s kth part of Iα should be
corrected as:

(xc, yc) = (x, y) + (xe(k), ye) (16)

where (xc, yc) are the corrected coordinates and (x, y) are the coordinates before correction.
After extraction, downsampling and division, the keypoints were detected and matched in
the M parts of the overlapping areas at the same time. Then, the coordinates of the matched
keypoints in different parts were simultaneously corrected. The matched keypoints of all
blocks were selected randomly to calculate the homography matrix. Thus, the proposed
parallel registration can significantly improve the efficiency of the image mosaic.

4.5. Workflow

In summary, the new method is a combination of the traditional process and our
novel improvements. Figure 7 shows its entire workflow: (1) inputting the image data of
spaceborne ScanSAR; (2) geolocation; (3) image preprocessing by the improved Wallis filter;
(4) overlapping area coarse extraction based on the longitude and latitude of the pixels;
(5) overlapping area downsampling, (6) equal division of the downsampled overlapping
areas; (7) keypoint detection by the SIFT algorithm, keypoint matching and coordinate offset
compensation of matched keypoints (all run in parallel); (8) homography matrix calculation,
RANSAC filtering and scaling compensation; (9) preprocessed image (in original size)
projection based on the compensated homography matrix; (10) image blending by the
weighted-average algorithm; (11) outputting the smooth, seamless and large-area image of
spaceborne ScanSAR.
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5. Experimental Results and Discussion

An image mosaic was created using a program written in MATLAB. The computer
has thirty-two Intel (R) Xeon (R) CPU (2.6 GHz) cores and 512 GB RAM. In this section,
we will use real GF-3 ScanSAR image data to perform a series of contrast experiments to
compare the traditional feature-based mosaic method with the method we proposed and
analyze their results and performances in terms of various aspects.

5.1. Image Preprocessing Contrast Experiment

To verify the effect of the improved Wallis filter, the mosaic results without preprocess-
ing, using the classic Wallis filter and using the improved Wallis filter, were compared in
this paper. Two ScanSAR images of GF-3, which corrected the intrinsic periodic scalloping
in the azimuth and the effect of the roll angle error on the range, were selected to implement
this experiment. We divided every stitching result into three parts for comparison. As
shown in Figure 8a, the intensity of the original images was not consistent. There was an
obvious stitching seam due to the fault in the azimuthal intensity distribution (the azimuth
is along the vertical direction in this image). The result using the classic Wallis filter is
presented in Figure 8b, where the seam still exists even if the intensity distribution in
azimuth of the middle part is balanced. Therefore, the limitation of the classic Wallis filter
is that it had difficulty handling the situation where the means and standard deviations
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were very similar but the trends in the intensity along the seam were opposites. Figure 8c
provides the result based on the improved Wallis filter. The azimuthal intensity of all three
parts is consistent, and the connection between the two images is smooth, which means that
the mosaic seam was successfully eliminated. In addition, for two images with the same
trends in the intensity along the seam, both the classic Wallis filter and the improved Wallis
filter could achieve good results. Therefore, the effect of the mosaic results can be markedly
improved by the improved Wallis filter, which is more robust than the classic filter.
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Figure 8. Image preprocessing experiment: (a) result without preprocessing; (b) result with the classic Wallis filter (the
existing method of traditional process); (c) result with the improved Wallis filter (the method we proposed).

5.2. Image Registration Contrast Experiment

To verify the improvement of overlapping area extraction, Azimuth1_subswath2 and
Azimuth2_subswath2 and their overlapping areas were used for the keypoint detection
and matching experiments. The overlapping rates estimated from the geolocation of the
two images were 7.46% and 7.50%, respectively. Ideally, the matched keypoints should
have the same coordinates when projection finishes. Therefore, after stitching, the matched
keypoints whose Euclidean distances between the coordinates were not greater than one
were regarded as correctly matched keypoints. The ratio of correctly matched keypoints to
matched keypoints is defined as the correct matching rate:

Em =
P′m
Pm

(17)

where Pm is the number of matched keypoints and P′m is the number of correctly matched
keypoints.

The keypoint detection and matching performances in the whole images and overlap-
ping areas are compared in Table 2. It can be seen that the number of keypoints detected
from the overlapping areas was much less than that detected from whole images, but
the numbers of matched keypoints in the two situations were almost the same. There-
fore, acquiring keypoints from overlapping areas can provide enough matched keypoints
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for subsequent operations. In addition, keypoint detection and matching will be more
efficient. More importantly, compared to the situation without an overlapping area extrac-
tion, the correct matching rate was improved by nearly four percentage points to 98.89%,
which means there were some mismatched keypoints obtained from the whole images.
In that case, the interference of mismatched keypoints from nonoverlapping areas was
avoided, which improves the accuracy of matching and provides a strong guarantee for
the calculation of the homography matrix.

Table 2. Keypoint detection and matching performances of the whole images and overlapping areas.

Range of Keypoint
Detection

Number of
Keypoints

in Azimuth1_
Subswath2

Number of
Keypoints

in Azimuth2_
Subswath2

Number of
Matched

Keypoints
Em/%

Whole image 843,159 931,704 53,269 94.92
Overlapping area 93,866 93,507 51,812 98.89

5.3. Efficiency Analysis

The time needed for keypoint detection and matching will be greatly reduced due
to the improved methods we proposed. However, it is difficult to estimate the degree
of efficiency optimization because the distribution of keypoints in spaceborne ScanSAR
images is not uniform. In this paper, assuming that keypoints follow a uniform distribution,
we roughly estimated the improvement in the efficiency with our proposed methods. The
total time needed for keypoint detection by the SIFT algorithm and matching with the
traditional method is:

t0 = tS + tm (18)

where tS is the time needed for keypoint detection by the SIFT algorithm and tm represents
the time needed for matching. Assuming that u is the computational load, the computa-
tional efficiency of the SIFT algorithm is O(u) and the computational efficiency of matching
is O

(
u2). The time after overlapping area extraction is:

t1 = rotS + (r0)
2tm (19)

where ro is the overlapping rate of the reference image and the image to be stitched. The
time after overlapping area extraction and downsampling is:

t2 =
rotS

n
+
( ro

n

)2
tm (20)

where 1/n is considered the scaling coefficient of the image. The range of keypoint detection
and matching is reduced to equal parts of overlapping areas when performed in parallel,
so the time after overlapping area extraction, downsampling and division is:

t3 =
rotS
Mn

+
( rα

Mn

)2
tm (21)

where M is the number of parts after division. Thus, compared with the traditional method,
the efficiency of keypoint detection and matching can be considerably improved.

To evaluate the influence of the improved methods presented in Section 4 on the
mosaic efficiency of multiple large-area images, several mosaic experiments with differ-
ent situations of overlapping area extraction, different scaling coefficients and different
numbers of divided parts were performed on six GF-3 ScanSAR images (two images in the
azimuth and three subswath). The basic parameters of the six GF-3 ScanSAR images are
presented in Table 3.
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Table 3. Parameters of the six GF-3 ScanSAR images.

Image Name Size Bit Depth/Format Capacity

Azimuth1_subswath1 24,648 × 36,092 16/TIF 1.65 GB
Azimuth1_subswath2 29,256 × 30,016 16/TIF 1.63 GB
Azimuth1_subswath3 31,304 × 36,532 16/TIF 2.12 GB
Azimuth2_subswath1 24,648 × 36,092 16/TIF 1.65 GB
Azimuth2_subswath2 29,256 × 30,016 16/TIF 1.63 GB
Azimuth2_subswath3 31,304 × 36,532 16/TIF 2.12 GB

From Figure 9a, we know that the time can be reduced to approximately 1/10 when
the overlapping area extraction is applied to the mosaic of large-area images. The efficiency
of stitching was improved significantly. As shown in Figure 9b, mosaic time can also
be reduced effectively by downsampling overlapping areas, especially when the scaling
coefficient is from 0.5 to 0.05. The smaller the scaling coefficient is, the faster the stitching
speed. However, the degree of improvement in efficiency is not significant when the scaling
coefficient changes from 0.1 to 0.05, which means that too much scaling is unnecessary.
In addition, Figure 9c shows that parallel operation greatly contributed to the efficiency
of mosaics, especially for large-area images. As the number of divided parts increased,
the stitching speed became faster. Moreover, all situations of the image mosaic contrast
experiments we implemented are presented in Figure 9d. For the traditional feature-
based mosaic process (no overlapping area extraction, no scaling compensation or parallel
operation), the total mosaic time of six GF-3 ScanSAR images of original size was more
than five thousand minutes. After using the improved methods, the mosaic time could
easily reach approximately five minutes, which means that the efficiency was improved by
nearly a thousand-fold. This indicates that the new method is more efficient.

We recorded the time of each processing step in two situations. The scaling coefficient
was 0.5 and the number of the parts in parallel was 32. From Table 4, we knew that the
registration was the most time-consuming part of the traditional method and its efficiency
could be improved greatly by using our proposed method.
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Figure 9. Time needed for image mosaicking in different situations: (a) overlapping area extraction or not (no scaling
compensation or parallel operation); (b) different downsampling degrees of overlapping areas (no parallel operation);
(c) different parts in parallel (no downsampling); (d) mosaic times of the contrast experiments in all situations.

Table 4. Time of each processing stage.

Method Registration
Homography

Matrix
Calculation

Image
Projection

Image
Blending Total

Traditional method 5200.7 min 0.5 min 1.8 min 1.2 min 5204.2 min
The method we

proposed 1.7 min 0.5 min 1.8 min 1.2 min 5.2 min

To test the effect of the proposed method on multiple large-area image mosaics, six
spaceborne ScanSAR images of GF-3 were stitched to a wide image. The scaling coefficient
was 0.5, and the number of divided parts was 32. The geolocation results of the six GF-3
ScanSAR images are presented in Table 5, the overlapping rates between adjacent images
are provided in Table 6 and the overlapping areas of six images are shown in Figure 10.

Table 5. Geolocation results of the six GF-3 ScanSAR images.

Image Name Latitude/Longitude (◦)
of the Top-Left Corner

Latitude/Longitude (◦)
of the Top-Right

Corner

Latitude/Longitude (◦)
of the Lower-Left

Corner

Latitude/Longitude (◦)
of the Lower-Right

Corner

Azimuth1_subswath1 43.043873/
121.062448

41.509605/
120.578586

43.339918/
119.192047

41.802235/
118.759260

Azimuth1_subswath2 43.218379/
119.982423

41.681016/
119.528637

43.478385/
118.232633

41.939181/
117.824313

Azimuth1_subswath3 43.454342/
118.396638

41.919444/
117.985239

43.656159/
116.900489

42.120934/
116.527078

Azimuth2_subswath1 41.620338/
120.612775

40.083754/
120.159869

41.913187/
118.789969

40.374984/
118.376998

Azimuth2_subswath2 41.792651/
119.560996/

40.254233/
119.130605

42.050932/
117.853522

40.511655/
117.461630

Azimuth2_subswath3 42.026978/
118.013633

40.491942/
117.619156

42.228482/
116.552920

40.693604/
116.192071
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Table 6. Overlapping rates between adjacent images.

Direction Image Iα Image Iβ rα/% rβ/%

Range

Azimuth1_subswath1 Azimuth1_subswath2 42.16 45.06
Azimuth1_subswath2 Azimuth1_subswath3 9.51 11.22
Azimuth2_subswath1 Azimuth2_subswath2 42.27 45.11
Azimuth2_subswath2 Azimuth2_subswath3 9.41 11.11

Azimuth
Azimuth1_subswath1 Azimuth2_subswath1 7.43 7.48
Azimuth1_subswath2 Azimuth2_subswath2 7.46 7.50
Azimuth1_subswath3 Azimuth2_subswath3 7.21 7.23
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Figure 10. Overlapping areas of the six images.

The wide image was 70,088 × 69,500 pixels and 9.07 GB. The range of the geoloca-
tion results was from 40.083754◦ to 43.656159◦ north latitude and from 116.192071◦ to
121.062448◦ east longitude. The real width of the range swath was more than 400 km. From
Figure 11g, there is no obvious intensity inconsistency among adjacent subswaths and no
stitching seams in the wide image. The means and standard deviations of the pixel values
among adjacent images were successfully balanced by an improved Wallis filter to make
the transitions smoother. There were no apparent position offsets or image pixel coverage
issues, which demonstrates that the mosaic accuracy of multiple large-area images can be
ensured by the proposed method. The details of the objects in the original subimages can be
found in the wide image, which means that the information and resolution of the original
ScanSAR images can be successfully preserved. Thus, the proposed method can provide
support for some subsequent applications of wide ScanSAR images, such as information
extraction, object detection and target recognition.
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Figure 11. GF-3 ScanSAR images: (a) Azimuth1_subswath1; (b) Azimuth1_subswath2; (c) Az-
imuth1_subswath3; (d) Azimuth2_subswath1; (e) Azimuth2_subswath2; (f) Azimuth2_subswath3;
(g) mosaic result of the six GF-3 spaceborne ScanSAR images.

5.4. Error Analysis

To analyze the error of the image mosaic caused by homography matrix scaling, Az-
imuth1_subswath2 and Azimuth2_subswath2 were stitched at different scaling coefficients.
First, an experiment with a scaling coefficient of one was performed. We recorded all the
pixel coordinates of the Azimuth2_subswath2′s mosaic result and regarded them as the
correct coordinates. Then, experiments with scaling coefficients of 1, 0.5, 0.1 and 0.05 were
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conducted, and all the pixel coordinates of the corresponding Azimuth2_subswath2 mosaic
results were recorded as the experimental coordinates.

The root-mean-square error (RMSE) of the distances between the correct coordinates
and the experimental coordinates was calculated as follows:

RMSE =

√√√√ 1
N
×

N

∑
i=1

(
(xi − x′ i)

2 + (yi − y′ i)
2
)

(22)

where N is the number of pixels, (xi, yi) are the correct coordinates and (x′ i, y′ i) are the
experimental coordinates. Figure 12 shows the correct matching rate Em and the RMSE at
the different scaling coefficients.
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It can be seen from Figure 12 that Em decreased as the scaling coefficient decreased.
Especially when the scaling coefficient was 0.05, it decreased by more than twenty per-
centage points compared to the case without downsampling. Therefore, overlapping area
downsampling has a negative impact on the correct matching rate so that the fault tolerance
rate of the homography matrix calculation will be lower. However, the RMSE changed
in an opposite trend with the scaling coefficient. When the scaling coefficients were 0.1
and 0.05, the RMSE was greater than three. Apparently, overlapping area downsampling
increases the RMSE of the distances between the correct coordinates and the experimental
coordinates, which causes a worse accuracy of the image mosaic. Moreover, one important
aspect is that the RMSE was not zero when the scaling coefficient was 1. This phenomenon
demonstrates that there is still an error in the calculation of the homography matrix itself
even with the same scaling coefficient because the matched keypoints used to calculate
the homography matrix were randomly selected. The homography matrixes computed by
different matched keypoints will produce tiny errors.

6. Conclusions

Aiming to solve the mosaic problems of multiple large-area spaceborne ScanSAR
images, a new method was presented that is an improvement over the traditional method.
Six GF-3 ScanSAR images were stitched quickly and accurately based on the proposed
method. The main findings of this study can be summarized as follows:

1. Images were preprocessed by the improved Wallis filter. The mosaic result had
no obvious intensity inconsistency so that the stitching seams can be eliminated and the
transitions are very smooth.
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2. Extracting overlapping areas using the geolocation results was a crucial improve-
ment in the registration. On the one hand, a large number of redundant keypoints were
eliminated to improve the efficiency of mosaics, and the number of matched keypoints
could also be guaranteed. On the other hand, the interference of similar keypoints from
nonoverlapping areas was avoided, and the false matching rate was reduced, which im-
proved the accuracy of matched keypoints.

3. Homography matrix scaling compensation can greatly improve the efficiency
of image mosaics but causes some stitching errors. Therefore, it is not suggested to
downsample blindly but to make a tradeoff between the efficiency and accuracy of mosaics
according to the specific requirements.

4. The speed of image mosaicking was much faster when a parallel operation was
used in equally divided overlapping areas, especially for large-area images.

The performance of the novel image mosaic method based on homography matrix
compensation was verified by GF-3 spaceborne ScanSAR images. The experimental results
indicate that the proposed method is more effective, more efficient and more robust than
the traditional method. In addition, the degree of optimization can be adjusted within
the range of permissible error to achieve a shorter mosaicking time. In summary, this
new method is suitable for multiple large-area spaceborne ScanSAR image mosaics to
obtain a wide image for subsequent applications, such as information extraction, object
detection and target recognition, and has a strong value in both theoretical research and
practical applications.
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