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Abstract: Land surface temperature (LST) in urban agglomerations plays an important role for
policymakers in urban planning. The Pearl River Delta (PRD) is one of the regions with the highest
urban densities in the world. This study aims to explore the spatial patterns and the dominant
drivers of LST in the PRD. MODIS LST (MYD11A2) data from 2005 and 2015 were used in this study.
First, spatial analysis methods were applied in order to determine the spatial patterns of LST and
to identity the hotspot areas (HSAs). Second, the hotspot ratio index (HRI), as a metric of thermal
heterogeneity, was developed in order to identify the features of thermal environment across the
nine cities in the PRD. Finally, the geo-detector (GD) metric was employed to explore the dominant
drivers of LST, which included elevation, land use/land cover (LUCC), the normalized difference
vegetation index (NDVI), impervious surface distribution density (ISDD), gross domestic product
(GDP), population density (POP), and nighttime light index (NLI). The GD metric has the advantages
of detecting the dominant drivers without assuming linear relationships and measuring the combined
effects of the drivers. The results of Moran’s Index showed that the daytime and nighttime LST were
close to the cluster pattern. Therefore, this process led to the identification of HSAs. The HSAs were
concentrated in the central PRD and were distributed around the Pearl River estuary. The results
of the HRI indicated that the spatial distribution of the HSAs was highly heterogeneous among
the cities for both daytime and nighttime. The highest HRI values were recorded in the cities of
Dongguan and Shenzhen during the daytime. The HRI values in the cities of Zhaoqing, Jiangmen,
and Huizhou were relatively lower in both daytime and nighttime. The dominant drivers of LST
varied from city to city. The influence of land cover and socio-economic factors on daytime LST was
higher in the highly urbanized cities than in the cities with low urbanization rates. For the cities
of Zhaoqing, Huizhou, and Jiangmen, elevation was the dominant driver of daytime LST during
the study period, and for the other cities in the PRD, the main driver changed from land cover in
2005 to NLI in 2015. This study is expected to provide useful guidance for planning of the thermal
environment in urban agglomerations.

Keywords: land surface temperature; spatial analysis; urban agglomeration; driving factors; geo-
detector metric

1. Introduction

The urban heat island (UHI) is a global phenomenon caused by urbanization [1]. UHI
affects air quality [2], threatens the health of urban residents [3,4], influences building en-
ergy consumption, and leads to the risk of overheating in outdoor thermal environments [5].
Generally, UHI can be assessed by using the air temperature or land surface temperature
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(LST). Urban agglomerations, which represent groups of cities that have a compact spatial
organization and close economic connections, have become the most prominent feature
of global urbanization in recent decades [6,7]. Especially in China, urban agglomerations
have become the major form of national urbanization [8]. Therefore, it is important to un-
derstand the spatial distribution patterns of LST and the main driving factors affecting LST
in order to formulate informed urban policies for urban agglomerations in the future [9].

Most previous studies focused on the spatial distribution characteristics and driving
factors of LST [10–18]. The spatial distribution of high LSTs is significant for understand-
ing the landscape patterns of LST [19,20]. According to previous studies, the potential
factors of LST can be divided into three types: (1) land cover factors, which include land
use/land cover (LUCC) [21], the normalized difference vegetation index (NDVI) [22–24],
and the normalized difference built-up index (NDBI) [25,26]. This type also includes the
impervious surface area (ISA) and the impervious surface distribution density (ISDD),
which indicate the urbanization intensity of an area from the perspective of impervious
surfaces [27,28]. (2) Socio-economic factors, which include the gross domestic product
(GDP) [29], population density (POP) [30,31], and industrial production activities [32].
In addition, the nighttime light index (NLI) can indicate the human density [33], energy
consumption [34], built-up area [35], and socioeconomic dynamics [36]. However, few
studies have explored the relationship between NLI and LST. (3) Physiographical factors,
which include elevation and slope, have also been studied [37,38].

The correlations between LST and various factors should be clarified in order to
determine the main drivers of LST. Several methods, including the use of Pearson cor-
relation coefficient [39], linear regression analysis [8,30], and stepwise multiple-linear
regression [40], have been widely used in previous studies. LST is usually affected by
multiple factors, and their interactions are quite complex. However, the above-mentioned
methods cannot adequately measure the non-linear correlations between LST and the
various drivers [9], or they cannot deal with categorical data [41]. In addition, few studies
have taken the combined effect of different factors into consideration when determining the
dominant factors of LST. Therefore, this study applied the geo-detector (GD) metric [42] to
explore the correlations between LST and three types of drivers in order to avoid the previ-
ous limitations. The GD metric is applicable to the non-linear relations between the drivers
and LST, and can also measure the combined impact of different drivers on LST. Due to its
good applicability, the GD metric has been widely used in studies of drivers, including air
pollution [43–45], public health [41,46,47], land use [48,49], regional economies [50,51], and
urban environment [9,52].

This study was conducted in the Pearl River Delta (PRD) urban agglomeration, China.
The PRD is one of the most important economic centers in China, and is also one of the most
highly urbanized and populous regions in the world [53]. The cities included in the PRD
were merged into an urban agglomeration in 2005 [54]. The PRD contributed about 9.12%
of the national gross domestic product in 2015 [55], and is known as an “economic miracle”
and the “world factory”. Its rapid urbanization and industrialization led to significant
land cover changes and brought a series of environmental problems, including urban
flood risk, air pollution, and the UHI effect in the PRD [56–58]. The PRD has a subtropical
climate and is located along the coast of the South China Sea. The dual effects of rapid
urbanization and climate make the PRD highly susceptible to extreme heatwave events [20].
However, the current studies on the thermal environment in the PRD are still not adequate.
Most previous studies focused solely on individual factors of LST, such as LUCC, ISA, or
greenspace in the PRD [19,20,37,59–62]. In addition, more attention has been paid to the
core cities, such as Guangzhou, Dongguan, Shenzhen, and Zhongshan cities [19,63–66],
while the cities in the east and west of the PRD have received less attention.

To address the above problems, this study aimed to explore the spatial distribution
characteristics of LST and to detect its main driving factors by using the GD metric in the
PRD. First, we studied the spatial distribution of LST and used Moran’s Index to indicate
the presence of hotspot areas (HSAs). Then, the HSAs were determined by using hotspot
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analysis in a GIS environment. Second, the Hotspot Ratio Index (HRI) was developed to
evaluate and rank the thermal gradient of each city in the urban agglomeration. Finally, the
GD metric was used to measure the influence of each factor and the combined influence
of the different factors on LST. Seven factors were selected based on the literature review
and available data. The effects of the seven factors on the LST in the nine cities were
compared to reveal the complex mechanism of LST in the PRD. Our study contributes
to a better understanding of the spatial distribution characteristics of LST and its main
driving factors, which is helpful in providing insights into the optimization of the urban
thermal environment.

2. Study Area and Data Sources
2.1. Study Area

The PRD urban agglomeration is one of the regions with the highest urban densities
in the world and is one of the most developed regions in China. It is located in the south-
central coastal region of Guangdong Province, and it includes nine cities: Guangzhou,
Foshan, Dongguan, Shenzhen, Zhongshan, Zhuhai, Huizhou, Zhaoqing, and Jiangmen
(Figure 1). The PRD is surrounded by hills and mountains to the north, west, and east. The
total area of the PRD is 55,000 km2 [61]. The PRD experienced rapid population growth
and economic growth from 2005 to 2015, with its population increasing by 13.27 million,
and its GDP increased by about 3.8 trillion yuan (http://stats.gd.gov.cn, accessed on
15 September 2020). The PRD became the largest mega-region in the world according to
the World Bank Group (2015). The average annual temperature ranges from 21 to 23 ◦C,
and the average annual precipitation is over 1500 mm [60,67]. The PRD was selected
for this study because its thermal environment became a serious problem due to the
acceleration of its urbanization. Table 1 shows some key attributes of the nine cities in the
PRD. The air temperature data were obtained from the National Meteorological Data Center
(http://data.cma.cn, accessed on 10 April 2021). The permanent population and electricity
consumption data were derived from the Statistical Yearbook of Guangdong Province.

Figure 1. Maps of the Pearl River Delta (PRD) urban agglomeration: (a) map of Guangdong province,
China; (b) PRD urban agglomerations, including nine cities; (c) elevation map of the PRD.

http://stats.gd.gov.cn
http://data.cma.cn
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Table 1. Absolute values of selected constant attributes and rates of change for the selected changeable attributes from 2005 to 2015.

Variables Unit Guangzhou Dongguan Shenzhen Foshan Zhongshan Zhuhai Huizhou Zhaoqing Jiangmen

Constant variables

Administrative area km2 7215.27 2449.57 1942.73 3795.64 1744.12 1579.48 11,319.16 14,898.67 9365.96

Mean Elevation m 110.96 42.86 90.25 24.50 23.51 38.21 167.26 207.32 77.80

Changeable variables

Average air temperature ◦C +0.18 +2.69 +3.04 +1.55 +2.32 +3.94 +2.12 +2.97 +3.07

Permanent population 10,000 persons +42.16 +25.81 +37.47 +28.11 +31.83 +15.43 +28.29 +10.44 +10.15

Electricity consumption 100 million kw/h +83.08 +58.84 +83.25 +85.85 +98.58 +136.07 +176.20 +213.50 +108.69

Cultivated land percentage % −6.18 −18.54 −11.50 −7.78 −7.49 −4.45 −3.68 −1.33 −2.31

Woodland percentage % −2.05 −9.40 −4.42 −3.45 −2.75 −1.43 −1.00 −0.73 −1.28

Grassland percentage % −3.05 −5.37 −3.31 −5.88 0.00 −20.00 +9.72 +25.63 +10.09

Water area percentage % −4.00 -8.53 −14.48 −7.87 −5.56 −12.70 +1.07 −1.65 −1.74

Construction land percentage % +19.43 +14.81 +9.95 +21.65 +16.55 +22.99 +25.68 +16.73 +18.89

Unused land percentage % 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 −33.33

Gross domestic product (GDP) 1000 yuan/km2 +284.58 +266.61 -27.47 +225.57 +329.39 +226.23 +123.42 +253.53 +196.55

Population density (POP) Person/km2 +85.52 +385.87 +389.66 +104.63 +121.56 +65.99 +66.93 +12.07 +19.09

Nighttime light index (NLI) __ +66.05 +27.98 +32.53 +49.68 +39.19 +71.48 +96.06 +123.03 +117.74

Normalized difference vegetation index (NDVI) __ +8.20 +9.09 +17.65 +2.00 −2.00 +1.82 +6.76 +3.85 +2.78

Impervious surface distribution density (ISDD) __ +35.71 +28.57 +22.58 +28.00 +40.91 +66.67 +66.67 +100.00 +25.00

Note: “+” indicates the positive changes from 2005 to 2015, and “−” indicates the negative changes from 2005 to 2015; the rate of change is calculated with the formula: (T2015-T2005)/T2005*100.
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2.2. Data Sources

In this study, the LST data for 2005 and 2015 were obtained from the 8-days (version
6) MODIS Aqua LST composite products (MYD11A2) (https://search.earthdata.nasa.
gov, accessed on 6 June 2019). The MYD11A2 LST product was validated with in situ
measurements to yield a bias of <0.5 K [68]. We used the annual mean LST observed in
the daytime/nighttime at 13:30/01:30 local solar time [37]. The potential driving factors
were selected according to previous research and available data, including the elevation,
LUCC, NDVI, ISDD, GDP, POP, and NLI (Table 2). The elevation, LUCC, NDVI, POP,
and GDP data were obtained from the Resource and Environment Science and Data
Center (www.resdc.cn, accessed on 15 June 2019). The LUCC data included six types:
cultivated land, woodland, grassland, water area, construction, and unused land. The
NDVI product was computed from the continuous time series of the SPOT/VEGETATION
NDVI remote sensing dataset. The GDP and POP were grid data with a 1 km resolution.
In addition, the impervious surface data were obtained from published global urban
datasets (https://doi.org/10.6084/m9.figshare.11513178.v1, accessed on 18 June 2020).
The calculation of the ISDD is detailed in [27]. The NLI was obtained from nighttime
light imageries, which were downloaded from the Resource and Environment Science and
Data Center (www.resdc.cn, accessed on 15 June 2019) and the National Geophysical Data
Center (http://ngdc.noaa.gov, accessed on 15 June 2019). All data were resampled to a
1 km resolution to keep the consistence of the spatial resolution of the data analyzed. The
sources of the driver data are summarized in Table 2.

Table 2. Influencing drivers and data sources.

Drivers Variables
Original

Resolution/Resample
Resolution

Time Source

Physiographical factor Elevation 1 km/1 km / www.resdc.cn

Land cover factors
Land use/land cover (LUCC) 1 km/1 km 2005, 2015 www.resdc.cn

NDVI 1 km/1 km 2005, 2015 www.resdc.cn

ISDD 30 m/1 km 2005, 2015 https://doi.org/10.6084/m9
.figshare.11513178.v1

Socio-economic factors

GDP 1 km/1 km 2005, 2015 www.resdc.cn
POP 1 km/1 km 2005, 2015 www.resdc.cn

NLI
1 km/1 km 2005 www.resdc.cn
750 m/1 km 2015 http://ngdc.noaa.gov

3. Methods
3.1. Spatial Variability of LST

The MYD11A2 LST products were used to get the annual average daytime LST and
annual average nighttime LST for 2005 and 2015. The MODIS Reprojection tool was used
to preprocess the MYD11A2 LST data, which included format conversion, re-projection,
and clipping. The mask tool was used to remove cloud pixels; only pixels with a high
quality (average LST error < = 1 K) were used to calculate the annual average LST for 2005
and 2015.

3.1.1. Global Moran’s Index

Spatial distribution analysis is often used to explore geographical phenomena. The
Global Moran’s Index was used to analyze the spatial distribution of the LST. The value of
the Global Moran’s Index is between−1.0 and 1.0, where 1 indicates perfect positive spatial

https://search.earthdata.nasa.gov
https://search.earthdata.nasa.gov
www.resdc.cn
https://doi.org/10.6084/m9.figshare.11513178.v1
www.resdc.cn
http://ngdc.noaa.gov
www.resdc.cn
www.resdc.cn
www.resdc.cn
https://doi.org/10.6084/m9.figshare.11513178.v1
https://doi.org/10.6084/m9.figshare.11513178.v1
www.resdc.cn
www.resdc.cn
www.resdc.cn
http://ngdc.noaa.gov
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autocorrelation, −1 indicates perfect negative spatial autocorrelation, and 0 indicates a
perfect spatial randomness [69]. The Global Moran’s Index is calculated as follows:

I =
n ∑n

i=i ∑n
j=1 Wij(xi − x)

(
xj − x

)
∑n

i=1 ∑n
j=1 Wij ∑n

i=1(xi − x)2 (1)

where n is the number of pixels; xi and xj are the LSTs at pixels i and j; x is the mean LST;
wij is the spatial weight determined with the spatial correlation of the LSTs at pixels i and j.

3.1.2. Hotspot Analysis

Many previous methods for delineating high-temperature regions have applied nu-
merical classification [70], Gaussian surface fitting [71–73], radial sampling [74,75], and
hotspot analysis [76,77]. Hotspot analysis can be used to identify the spatial clusters of
high LSTs (hotspots) and low LSTs (cold spots) by using only LST data, thus avoiding the
subjective influence that may be caused by having too many parameter settings. Therefore,
hotspot analysis was applied to identify the areas with high (hotspot) or low (cold spot)
LSTs in this study. Based on the clustering patterns of the spatial distribution of the LST,
the Getis–Ord Gi (Gi*) index was applied to measure the degree of clustering for each
pixel [77]. For each pixel, the hotspot analysis returns a z-score. A higher positive z- score
indicates a higher degree of clustering of high LSTs (hot spots) [78]. In this study, the areas
with z-scores≥ 2.58 (corresponding to the 99% confidence level) were defined as HSAs [76].
The Gi* is defined as:

G∗i =
∑n

j=1 ωijxj − X ∑n
j=1 ωij

S

√
[n ∑n

j=1 ωij
2−
(

∑n
j=1 ωij

)2
]

n−1

(2)

X =
∑n

j=1 xj

n
(3)

S =

√
∑n

j=1 xj
2

n
− (X)

2
(4)

where, xj is the LST value of pixel j, ωij represents the spatial weight between pixels i and
j, and n is the total number of pixels; the spatial weight is determined according to the
Queen’s adjacency connectivity matrix [76].

3.2. Hotspot Ratio Index

The urban-heat-island ratio index was applied in previous studies to evaluate and
rank thermal environments [79,80]. It is effective in measuring the characteristics of a
thermal environmental, but its calculation requires urban or rural boundary data [80,81].
In this study, the hotspot ratio index (HRI) was used to evaluate and rank the thermal
environments of the nine cities. The HRI gives scores and ranks the areas according to the
value of the LST. The HRI is calculated as the weighted sum of the percentage of HSAs with
different classes in the selected region. The HRI reflects the thermal gradient in the selected
region. A higher HRI indicates that a city has a higher thermal gradient, which implies that
the city is more likely to experience greater thermal stress. The HRI is calculated as follows:

HRI =
n

∑
i=1

i ∗ Pi (5)

where n is the total number of classes. To avoid skewed data, the quantile classification
method was applied to classify the HSAs into 5 classes according to the LSTs. Pi is the ratio
of the area of class i to the total study area. i is the class index, i.e., i = 1, 2, 3, 4, and 5. A
higher class index refers to a higher LST. To calculate the HRI, the areas of 1st, 2nd, 3rd,
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4th, and 5th classes of HSAs were divided by the total study area, then multiplied by the
class index.

3.3. Geo-Detector Metric

The geo-detector (GD) metric is an effective metric for revealing the drivers of geo-
graphical phenomena [42]. The main idea assumes that if an independent variable affects
the dependent variable, then their spatial distributions should be similar. The GD metric
includes four detectors: factor, interaction, risk, and ecological. We used the factor detector
to measure the influence of each driver on the LST. We also used the interaction detector to
measure the combined influence of the interactions between drivers on the LST. The GD
metric is freely available from www.geodetector.cn, accessed on 18 July 2021.

3.3.1. Factor Detector

The factor detector signifies the effects of factors on the LST. The greater the probability
distribution (q) value is, the greater the influence of the factors on the LST will be. The
value of q is between 0 and 1; in extreme cases, the q value equals 1, indicating that factor
X completely affects the spatial distribution of Y, and a q value of 0 indicates that factor X
has nothing to do with Y. The value of q is calculated as follows [42]:

q = 1− 1
Nσ2

L

∑
h=1

Nhσ2
h (6)

where the LST (Y) and the drivers (X) are composed of L classes (h = 1, 2, . . . L); N and Nh
represent the numbers of cells in the entire area and the h class, and σ2 and σ2

h represent
the variance in the LST.

3.3.2. Interaction Detector

The interaction detector was used to measure the influence of the interactions between
different factors on the LST. It identifies whether the interactions between drivers (X1
and X2) have an effective influence on the LST or not. First, we separately calculate the
influence of each driver (q(X1) and q(X2)) on the LST; then, the influence of the interaction
between X1 and X2 (q(X1∩X2)) on the LST is calculated based on an overlay of the two
drivers (X1 and X2). According to the values of q(X1), q(X2), and q(X1∩X2), the effect of
the interaction between the two drivers on the LST can be determined (Table 3) [9].

Table 3. The effects of interactions between two drivers.

Description Interaction Effect

q(X1∩X2) > Min (q(X1), q(X2)) Enhance
q(X1∩X2) > Max (q(X1), q(X2)) Bi-enhance

q(X1∩X2) > q(X1) + q(X2) Enhance, nonlinear
q(X1∩X2) = q(X1) + q(X2) Independent
q(X1∩X2) < q(X1) + q(X2) Weaken

q(X1∩X2) < Max (q(X1), q(X2)) Weaken, un-enhance
q(X1∩X2) < Min (q(X1), q(X2)) Weaken, nonlinear

3.3.3. Data Preparation

The GD metric captures the spatial heterogeneity of the attributes, and it requires the
discretization of input data. Many methods have been applied for discretization [82]. The
natural breaks method depends on the principle of the “maximum and minimum distance
between classes“ that can allow the original characteristics of the data to be kept [83].
This method has provided good results [43,52]. Accordingly, we applied natural breaks
classification in order to classify the drivers. Sample points were generated in ArcGIS
according to the 1 km grids over the entire study area. Therefore, the numbers of sample
points in each city depended on the area of the city. The values of each driver and mean LST

www.geodetector.cn
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were extracted for the sample points. The natural breaks method was applied to classify
all drivers (except LUCC, as it was already classified into cultivated land, woodland,
grassland, water areas, construction, and unused land). For the GD metric, LST was the
dependent variable, while the classified drivers were independent variables (Table 2).

4. Results
4.1. Spatial Distribution of LST

As seen in Figure 2, in 2005, higher daytime LSTs were mostly concentrated in the
central area of the PRD, including the cities of Dongguan, Shenzhen, Guangzhou, Foshan,
and Huizhou. By contrast, in 2015, higher daytime LSTs were concentrated in Dongguan,
Shenzhen, Foshan, Zhongshan, Jiangmen, and Guangzhou. The daytime LSTs decreased
in the cities located in the northern part of the PRD, including the cities of Zhaoqing,
Guangzhou, and Huizhou. For the nighttime LST, the higher LSTs were also concentrated
in the central area of the PRD in 2005. In 2015, the highest nighttime LSTs increased in the
cities of Dongguan, Shenzhen, Foshan, Zhongshan, Jiangmen, and Guangzhou.

Figure 2. Daytime and nighttime land surface temperature (LST) maps of the PRD:(a) daytime LST in 2005; (b) daytime LST
in 2015; (c) daytime LST difference between 2005 and 2015; (d) nighttime LST in 2005; (e) nighttime LST in 2015; (f) nighttime
LST difference between 2005 and 2015.

4.1.1. General Spatial Pattern of LST

The spatial pattern of the LST was estimated by using the Global Moran’s Index. The
Global Moran’s Indexes for the daytime LST were 0.903 and 0.915 at the 99% significance
level in 2005 and 2015, respectively. For nighttime LST, the Global Moran’s Indexes were
0.940 and 0.941 at the 99% significance level in 2005 and 2015, respectively. The results for
the Moran’s Index indicate that the LST distribution was a clustered pattern—areas had
aggregations of high and low temperatures—and there was less than a 1% likelihood that
the results were random, which indicates the presence of HSAs in the study area.
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4.1.2. Spatial Distribution of Hotspot Areas (HSAs)

Hotspot analysis was applied to identify the HSAs in the PRD. For each LST pixel,
the hotspot analysis returned a z-score. We defined areas with z-scores ≥ 2.58 as HSAs
according to [78] (Table 4). For the daytime LST, the HSAs pattern was consistent with the
pattern of the high-temperature regions (Figures 2 and 3).

Figure 3. Hot-/cold-spot distributions in the PRD: (a) hot-/cold-spots for daytime LST in 2005; (b) hot-/cold-spots for
daytime LST in 2015; (c) hot-/cold-spots for nighttime LST in 2005; (d) hot-/cold-spots for nighttime LST in 2015.

Three patterns of HSAs in the PRD were observed—stable, reduced, and expanded—
by comparing the HSAs maps for 2015 with those for 2005 (Figure 4). For the daytime LST,
the stable HSAs distribution indicates that the HSAs tended to be clustered in the center
of the PRD. The HSAs expanded towards the central and southwestern parts of the PRD.
A considerable growth of HSAs was observed in Jiangmen compared with Huizhou and
Zhaoqing. In contrast, the HSAs were significantly reduced in the northwest and northeast
of the PRD.
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Table 4. Average LSTs and the percentage of hotspot areas (HSAs) in each city during the study periods.

Variables Guangzhou Dongguan Shenzhen Foshan Zhongshan Zhuhai Huizhou Zhaoqing Jiangmen

Daytime LST (◦C)

2005 27.04 28.66 28.00 27.27 27.29 26.44 26.56 25.76 26.31

2015 27.47 30.28 29.38 28.30 28.64 27.56 26.92 25.93 27.04

variation 0.43 1.62 1.38 1.03 1.35 1.12 0.36 0.17 0.73

Ratio of daytime HSAs to city area

2005 0.26 0.63 0.51 0.25 0.26 0.06 0.19 0.04 0.03

2015 0.22 0.74 0.58 0.34 0.39 0.14 0.11 0.01 0.06

variation −0.04 0.10 0.07 0.09 0.13 0.07 −0.08 −0.03 0.03

Nighttime LST (◦C)

2005 16.76 17.88 17.76 18.12 18.48 18.58 16.06 16.08 17.44

2015 17.61 19.31 19.02 18.68 19.64 19.49 17.27 17.00 18.38

variation 0.85 1.43 1.26 0.56 1.16 0.91 1.21 0.92 0.94

Ratio of nighttime HSAs to city area

2005 0.23 0.50 0.39 0.59 0.78 0.83 0.02 0.04 0.20

2015 0.19 0.71 0.53 0.36 0.79 0.76 0.04 0.02 0.22

variation −0.04 0.21 0.15 −0.23 0.01 −0.07 0.02 −0.01 0.03

Note: HSAs were delineated at the 99% significance level.
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Figure 4. Maps of changes in the spatial distributions of hotspot areas (HSAs) at the 99% significance level in the PRD:
(a) the changes in daytime HSAs in the PRD; (b) the changes in nighttime HSAs in the PRD (the “blank” areas did not
include HSAs).

For the nighttime LST, the stable HSAs were bigger and more continuously distributed
than those in daytime. Most of the stable HSAs were located near the coast and the
Pearl River estuary, including in Zhuhai, Zhongshan, Foshan, Guangzhou, Shenzhen,
and Dongguan.

4.2. Hotspot Ratio Index in the Nine Cities

The HSAs were classified according to [79] (Table 5 and Figure 5). The values of
the HRI varied across cities in the daytime (Figure 6). Low HRI values were observed
in Zhaoqing, Jiangmen, Zhuhai, and Huizhou (Figure 6). The HRI values of Dongguan,
Shenzhen, Foshan, and Zhongshan were higher than those of the other cities.

Table 5. Criteria for HSAs classification.

HSAs Level
LST Range (◦C)

Daytime Nighttime

Level 1 <=28.78 <=18.36
Level 2 28.78~29.42 18.36~18.90
Level 3 29.42–30.19 18.90~19.30
Level 4 30.19~31.22 19.30~19.76
Level 5 >31.22 >19.76

The HRI also varied across cities in the nighttime. The highest HRI values were
recorded in Zhongshan and Zhuhai. The HRI values of Zhaoqing and Huizhou were
minimal. The higher HRI values were recorded in Dongguan, Shenzhen, Zhongshan,
Zhuhai, and Foshan cities. These results indicate that the spatial distribution of HSAs was
highly heterogeneous among the cities in both daytime and nighttime.

4.3. Dominant Drivers of LST in the PRD

The factor detector quantifies the influence of each driver on the LST by calculating
the q values (Table 6). The q value shows that driver X explains (100*q) % of the LST. The q
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values at the 95% significance level are shown in Table 6. The results show the differences
in the influence of each driver on the LST in 2005 and 2015.

Figure 5. HSAs classification in each city in 2005 and 2015: (a) the percentage of different levels of HSAs in the total area of
each city in the daytime; (b) the percentage of different levels of HSAs in the total area of each city in the nighttime.

Figure 6. Hotspot Ratio Index (HRI) in the nine cities.
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Table 6. The q values of the LST drivers in 2005 and 2015.

Year Region Elevation LUCC NDVI ISDD POP GDP NLI

2005 day PRD 0.50 0.35 0.40 0.30 0.26 0.25 0.36
2015 day PRD 0.50 0.43 0.50 0.44 0.37 0.31 0.58

2005 night PRD 0.41 0.30 0.44 0.32 0.45 0.35 0.45
2015 night PRD 0.43 0.31 0.45 0.34 0.33 0.29 0.50

For the daytime LST, in 2005, elevation had the greatest influence on LST (50%),
followed by the NDVI (40%). In 2015, the NLI was the dominant driver of LST, which
indicated the increase in the influence of socio-economic drivers on daytime LST due to
the continuous development of the urban agglomeration [84]. For the nighttime LST, in
2005, the NLI (45%) and POP (45%) had the greatest influence, followed by the NDVI (44%)
(Table 6). In 2015, the NLI (50%) also had the greatest influence, followed by the NDVI
(45%) (Table 6). The results indicate that the NLI and NDVI were important factors for the
nighttime LST.

The explanation rate of the NLI for the daytime LST increased from 36% in 2005 to
58% in 2015, and the explanation of the NLI for the nighttime LST increased from 45% in
2005 to 50% in 2015, which indicated the important influence of the NLI factor on LST in
the PRD.

4.4. Dominant Drivers of LST in the Nine Cities
4.4.1. Factor Detector Analysis

The results for the factor detector for each city are presented in Figures 7 and 8, where a
color-coding scheme was applied to facilitate the interpretation. Lower q values are shown
in a lighter red color, while darker red colors indicate higher q values. There are two ways
to explain these results. When read from left to right, the differences in the influences of all
drivers in one city are clear. When reading from top to bottom, the differences across cities
can be explained for each driver. The results show that the influence of the selected drivers
on LST varied from city to city (Figures 7 and 8).

For Huizhou, Zhaoqing, and Jiangmen, the elevation had the greatest influence on
daytime LST, as there are many mountains and forests in these three cities. Similarly, in
Guangzhou, the elevation also exhibited the highest influence rate (61%) in 2005. Socio-
economic factors also showed great influences on nighttime LST in the above four cities
(Figure 8).

For Dongguan and Shenzhen, the NDVI had the greatest influence on daytime LST in
2005, while in 2015 the NLI was the dominant driver. The NLI was the most influential fac-
tor for nighttime LST in Dongguan and Shenzhen in 2015, which indicated the importance
of socio-economic development in these areas and its effect on LST. The NDVI also had the
high explanation rate for nighttime LST in these two cities during the study period.

For Foshan and Zhongshan, the NLI was the dominant driver of daytime LST during
the study period (Figure 7). The NDVI showed the greatest influence on nighttime LST in
these two cities (Figure 8). The influences of the drivers on the nighttime LST in Guangzhou
and Zhuhai are shown in Figure 8. None of the seven drivers had a significant influence on
nighttime LST in Zhuhai, but all seven drivers had a strong influence on nighttime LST
in Guangzhou.

The socio-economic drivers (GDP, POP, and NLI) were highly correlated with daytime
LST in the central cities in the PRD, including Dongguan, Shenzhen, Guangzhou, Foshan,
and Zhongshan (Figure 7). The socio-economic drivers had a low level of correlation with
the daytime LST in Huizhou, Zhaoqing, and Jiangmen, where elevation was the dominant
driver of daytime LST (Figure 7). Similarly, the land cover drivers, i.e., the LUCC, ISDD,
and NDVI, were highly correlated with daytime LST in Dongguan, Shenzhen, Guangzhou,
Foshan, and Zhongshan, while the correlation was weaker in Huizhou, Zhaoqing, and
Jiangmen. Due to topographical issues, urbanization is concentrated in the central region



Remote Sens. 2021, 13, 2858 14 of 25

of the PRD [37]. For the nighttime LST, the NDVI showed a strong influence in most of the
cities during the study period (Figure 8).

Figure 7. The q values of drivers for each city in the daytime (the blank values indicate that the
results of corresponding factors are not significant at a p-value of 0.05).

Figure 8. The q values of drivers for each city in the nighttime (the blank values indicate that the
results of corresponding factors are not significant at a p-value of 0.05).
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4.4.2. Interaction Detector Analysis

In this study, the interaction detector was calculated for certain drivers: elevation,
LUCC, NDVI, ISDD, GDP, POP, and NLI. Strong interactions were observed among all
seven drivers (Figures 9–12). The interactions between elevation and the other drivers were
significantly strong in Huizhou, Jiangmen, Zhaoqing, and Guangzhou (Figures 9 and 10).
The greatest effects of the drivers’ interactions on daytime LST were Elevation ∩ NDVI
(68%), Elevation ∩ LUCC (46%), Elevation ∩ GDP (68%), and Elevation ∩ NDVI (71%)
in Huizhou, Jiangmen, Zhaoqing, and Guangzhou, respectively, in 2005. In 2015, the
greatest effects of drivers’ interactions on daytime LST were Elevation ∩ NLI in Huizhou
(69%), Jiangmen (57%), and Guangzhou (78%). The explanation rate of Elevation ∩ LUCC,
Elevation ∩ ISDD, and Elevation ∩ POP for daytime LST in Zhaoqing was 63%, which
illustrates that elevation had the greatest influence on daytime LST in this city.

Figure 9. The interactions among drivers with respect to daytime LST in each city (2005).

The interactions between elevation and the socio-economic factors showed a high
explanation rate for nighttime LST in Zhaoqing, Jiangmen, Huizhou, and Guangzhou
(Figures 11 and 12). The explanation rates of the interactions between elevation and the
three socio-economic factors exceeded 30% (in Zhaoqing), 40% (in Jiangmen), 42% (in
Huizhou), and 72% (in Guangzhou) in 2005. In 2015, the highest combined explanations of
elevation and the socio-economic factors reached 39% (in Zhaoqing), 43% (in Jiangmen),
57% (in Huizhou), and 72% (in Guangzhou).

In Dongguan and Shenzhen, in 2005, the interactions between the NDVI and the
three socio-economic factors exceeded 63% and 74%, respectively (Figure 9). In 2015, the
greatest influence of the interactions on daytime LST in Dongguan and Shenzhen was
from NLI ∩ LUCC (72%) and NLI ∩ NDVI (79%), respectively (Figure 10). The results
of the interaction analysis for daytime LST in Dongguan and Shenzhen were consistent
with the results of the factor detector analysis for daytime LST in these two cities. For the
nighttime LST in Dongguan and Shenzhen, the predominant interactions between drivers
were NDVI ∩ Elevation, NDVI ∩NLI, NDVI ∩ POP, and NDVI ∩ GDP (Figures 11 and 12).
This result indicates the important influence of the NDVI and socio-economic factors on
the nighttime LST in these two cities.
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Figure 10. The interactions among drivers with respect to daytime LST in each city (2015).

Figure 11. The interactions among drivers with respect to nighttime LST in each city (2005).
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Figure 12. The interactions among drivers with respect to nighttime LST in each city (2015).

Similarly, the interactions between land cover and the socio-economic drivers were
most predominant in Foshan, Zhongshan, and Zhuhai. NLI ∩ LUCC had the greatest
influence on daytime LST in Foshan with 64% in 2005 and 63% in 2015. NLI ∩ NDVI
had the greatest influence on daytime LST in Zhuhai with 43% in 2005 and 56% in 2015.
The strongest interaction in Zhongshan was between the drivers NLI ∩ ISDD (65%) in
2005, and the interactions between NLI and the three land cover drivers explained 70% in
2015 (Figures 9 and 10). For the nighttime LST in Foshan, Zhongshan, and Zhuhai, the
interactions between the NDVI and socio-economic factors were predominant during the
study period (Figures 11 and 12).

5. Discussion
5.1. Spatial Patterns and Drivers of LST

This paper aimed to study the spatial distribution characteristics and main drivers
of LST in the PRD urban agglomerations. The HSAs were mainly located on both sides
of the Pearl River estuary. Our findings agree with those of [37]. The HSAs were mainly
distributed in Shenzhen, Dongguan, Guangzhou, Foshan, Zhongshan, and Zhuhai, while
there were fewer HSAs in Huizhou, Jiangmen, and Zhaoqing (Figure 4). The urbanization
rates of the nine cities are as follows: Shenzhen > Guangzhou > Zhuhai > Dongguan >
Foshan > Zhongshan > Huizhou > Jiangmen > Zhaoqing [85]. The HSAs results indicate
that high temperatures are more likely to be observed in areas with high urbanization rates.
There was a remarkable decrease in the daytime HSAs in the northern PRD (Figure 4).
There are many mountains and forests in the northern PRD, where the environment has
been improved significantly since 2006. A series of ecological projects have continuously
promoted the increase in vegetation cover in these areas (http://gz.gov.cn, accessed on
15 September 2020), which decreased the LST in the northern PRD. This finding is consis-
tent with the findings of [20]. There was a difference between the spatial distributions
of daytime and nighttime HSAs. This could be explained by the impacts of impervious

http://gz.gov.cn
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surfaces and human activities on the LST in areas with higher urbanization rates during the
day, while the impact of water became significant at night due to its high thermal capacity
and properties [10]. In other words, the differences between daytime and nighttime HSAs
may be related to the different driving forces of daytime and nighttime LST [86].

The HRI was developed to quantitatively evaluate and rank the thermal environment
of each city. The results for the HRI indicated that Dongguan and Shenzhen, which were
characterized by high urbanization rates, were the most thermally cities in day and night
(Figure 6). This can be explained by the fact that Dongguan is an industrial city, while
Shenzhen has a big port with intensive traffic, as it is a coastal city, which increased the LSTs
in both cities [66]. The daytime HRI index also increased more in Foshan and Zhongshan
than in other cities (Figure 6), which can be due to the impervious surfaces, which obviously
increased in these cities from 2005 to 2015 [37]. However, Zhaoqing, Jiangmen, and
Huizhou, which were characterized by the lowest urbanization rates, showed the lowest
HRI values. These findings can provide guidelines for the improvement of the thermal
environment in urban agglomerations.

The drivers of LST were analyzed by applying the GD metric. All of the drivers
showed significant influences on daytime and nighttime LST in the PRD. However, the
main driving factors varied from city to city. Vegetation has a cooling effect through evap-
otranspiration and by shading other urban facets. Vegetation can absorb a large fraction
of solar radiation and use a large fraction of it for evaporation and transpiration, thereby
reducing sensible heat transfer to the boundary layer, i.e., reducing the temperatures of
both the vegetation and urban air [19,38]. The shade from vegetation protects other urban
surfaces from solar radiation and prevents increases in air and surface temperatures [87].
Our results showed that the NDVI had a strong correlation with daytime LST in Shenzhen
and Guangzhou. Our results agree with those of [19,30]. The NDVI also showed a strong
influence on nighttime LST in Dongguan, Shenzhen, Foshan, Zhongshan, and Guangzhou.
This result is in agreement with the findings of [88].

Variations in LST due to elevation differences should be considered in LST studies in
large areas where the terrain is not flat [89]. A negative correlation was observed between
LST and elevation [90]. In our study, the elevation factor had a stronger influence on
daytime LST in Huizhou, Zhaoqing, Jiangmen, Guangzhou, and Shenzhen. The elevation
values of these five cities are higher than those of the other cities in the PRD (Figure 1 and
Table 1). The high density of vegetation in the mountainous areas led to a great impact
on temperature [91]. In addition, the low urbanization rates in Zhaoqing, Jiangmen, and
Huizhou indicated the weak influences of the ISDD, GDP, POP, and NLI factors on daytime
LST, which was in line with our results (Figure 7). LST is usually affected by multiple
factors, and the higher correlation between the elevation factor and LST in these three
cities may be the result of the weak influences of the other factors that were related to the
urbanization rate on daytime LST. Similarly, the differences in correlation intensity between
elevation and LST in 2005 and 2015 can also be partially explained by the variations in
the influences of other factors on LST. The influence of elevation on nighttime LST in the
PRD was lower than that on daytime LST in the PRD (Table 6, Figures 7 and 8); this could
be due to the location of the PRD. The influence of the ocean at night makes the driving
mechanism of nighttime LST more complex. This finding is in agreement with those of [37].

In this study, POP had a significant influence on daytime LST in Dongguan, Shenzhen,
Foshan, Zhongshan, and Guangzhou, which were characterized by high urbanization rates
(Figure 7). However, a case study in the Yangtze River Delta urban agglomeration found
that there was no significant correlation between the surface UHI intensity and population
density [92]. The statistical population census data aggregated by the district were used in
the study of the Yangtze River Delta, while gridded population data with a 1 km spatial
resolution were used in our study, and these were consistent with the spatial resolution
of the LST data used in our study. Population indirectly reflects the development of an
area and the complexity of the urban surface. An increasing population leads to rapid
transformation of natural land cover into impervious surfaces, such as buildings, streets,
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and other human-made features, which can reduce thermal admittance and increase the
surface temperature through a modification of the energy balance [31]. In addition, a high
population density can directly (by metabolic heating) or indirectly (by anthropogenic heat
emissions) affect urban surface temperature.

In 2005, the socio-economic drivers explained most of the observed variations in
daytime LST in Dongguan, Shenzhen, Guangzhou, Foshan, and Zhongshan, which were
characterized by high urbanization rate. The daytime LST is affected by landscape changes
and anthropogenic activities [9]. Socio-economic activities are usually associated with en-
ergy consumption, which increases anthropogenic heat and local surface temperature [93].
The change rates of the population and electricity consumption were positive in these
cities (Table 1), which indicated the possible increase in the intensity of the population and
socio-economic activities. The NLI represents the intensity of nighttime lighting, and it
is an indicator of human density [86]. Anthropogenic heat emissions caused by human
activities contribute to daytime LST increases. A low intensity of nighttime lighting is the
result of agricultural activities, especially in underdeveloped areas with low urbanization
rates. In addition, the brightest areas in nighttime light images could represent factories or
industries, which also consume energy and generate heat emissions in the daytime, causing
daytime surface temperature changes [94]. Consequently, it can be inferred that the greater
influence of NLI on the daytime LST in Dongguan and Shenzhen cities was related to the
high urbanization rates and industrialization characteristics of these two cities. Our results
agree with those of [95]. The results for the drivers in these nine cities further revealed the
mechanisms that drive the LST.

5.2. Management of Urban Agglomerations

The results of the HSAs and HRI showed that the spatial distribution of LST in the PRD
urban agglomeration was highly heterogeneous among the nine cities in both daytime and
nighttime. Therefore, it is recommended that more attention and resources be committed to
improving the thermal environments of cities that are characterized by higher thermal stress
in daytime, such as Dongguan, Shenzhen, Zhongshan, and Foshan. Human-made surfaces
absorb solar radiation and lead to heat storage in urban areas [39]. As the urbanization is
greater in Dongguan and Shenzhen compared to Huizhou, Jiangmen, and Zhaoqing, the
thermal stress in daytime is higher in Dongguan and Shenzhen than in Huizhou, Jiangmen,
and Zhaoqing. To reduce the thermal stress, the spatial expansion of urban areas should
be controlled in these cities. On the other hand, increasing green vegetation areas is an
effective way to mitigate the increasing LSTs in regions with high thermal stress. The
significant reduction of HSAs in the northern part of the PRD is due to the implementation
of greening measures by local governments [20]. Therefore, increasing the green areas may
also be an effective way to alleviate the thermal stress in Shenzhen, Dongguan, Guangzhou,
and Huizhou, as the NDVI explained over 40% of the variations in the daytime LST in
these cities (Figure 7). In addition, the NDVI also showed a strong influence on nighttime
LST in Dongguan, Shenzhen, Foshan, Zhongshan, and Guangzhou. The dominant drivers
of daytime LST in the central cities of the PRD were the socio-economic ones in 2015,
including in Dongguan, Shenzhen, Foshan, Zhongshan, Guangzhou, and Zhuhai. The HRI
greatly increased in Dongguan, Shenzhen, Foshan, and Zhongshan, which could be due to
the increased intensity of socio-economic activities. Therefore, it is suggested that the heat
emissions caused by socio-economic activities should be considered in the urban planning
in order to reduce the thermal stress in these cities. The results of this study can provide
useful guidance for planners towards better management of the thermal environment.

5.3. Limitations and Future Work

This study provided a comprehensive framework for identifying the spatial distribu-
tion characteristics and main driving factors of the LST at different spatial scales in the
PRD. There are still some limitations. First, this study analyzed the spatial patterns and the
influencing factors of the LST for just two years: 2005 and 2015. Therefore, further studies
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are needed in order to address this aspect by applying the most recent multi-temporal
remote sensing data in the future. Second, the annual scale was selected in this study,
as it provided good results in many previous studies [31,37,96]. Seasonal changes also
need to be studied in the future. Third, we considered five levels of LST classification, but
more classification criteria need to be considered in future studies. Fourth, the combined
effects of two drivers on the LST were measured in this study. However, the combined
effects of multiple variables on the LST are important and need to be studied in future
works. Finally, the spatial resolution of the remote sensing data must be improved by using
higher-resolution remote sensing data in the future.

6. Conclusions

This study took the PRD urban agglomeration, a typical urban agglomeration in
Southeast China, as a case study and focused on the spatial distribution and main driving
factors of the LST in 2005 and 2015. A spatial autocorrelation analysis, hotspot analysis,
and the HRI were used to quantitatively analyze the spatial distribution characteristics of
the LST. Seven drivers of LST were studied, including physiographical, land cover, and
socio-economic drivers. The GD metric was applied to explore the explanation rate of
the driving factors for the LST. The main conclusions from this study can be summarized
as follows:

1. From 2005 to 2015, the daytime HSAs were concentrated towards the center of the
PRD, while they decreased in the northern PRD. The stable daytime HSAs were
concentrated and distributed on both sides of the Pearl River estuary.

2. The rankings of the HRI values of the nine cities showed that, during the study
period, the highest daytime stress on the thermal environment among all cities was
recorded in Dongguan and Shenzhen. The nighttime stress on the thermal environ-
ment recorded in Zhongshan, Zhuhai, Dongguan, and Shenzhen was higher than that
in the other cities in 2015, while the lowest HRI values were observed in Zhaoqing,
Jiangmen, and Huizhou, which were characterized by the lowest urbanization rates.
This finding indicates that highly urbanized cities are more likely to experience severe
thermal environments than cities with low urbanization rates.

3. The influence of land cover and socio-economic factors on daytime LST was higher in
the relatively highly urbanized cities than in the cities with low urbanization rates.
This finding indicates that human activities greatly contributed to the variations in
LST in highly urbanized areas.

4. In 2015, the NLI factor exhibited the strongest influence on daytime LST in Shenzhen,
Dongguan, Guangzhou, Foshan, Zhongshan, and Zhuhai. However, for the marginal
cities of Zhaoqing, Jiangmen, and Huizhou, the influence of elevation was much
higher than that of the other factors. This finding indicates that the influence of socio-
economic activities on daytime LST was higher in highly urbanized areas, and even
exceeded the influence of land cover. Controlling the anthropogenic heat released
due to socio-economic activities is an important step in improving the thermal envi-
ronment in highly urbanized areas with the development of urban agglomerations.

5. The NDVI showed an important influence on nighttime LST in most of the cities
during the study period. Some factors had no significant effects on nighttime LST
in some cities, suggesting that the driving mechanisms of nighttime LST are more
complex than those of daytime LST.

6. LST is the result of the combined effects of multiple factors. The combined effects of
different factors on the LST are greater than the independent effects of single factors.
The combined effects of different drivers are important in studies of the driving
mechanisms of LST.

This study is expected to provide useful guidance for the optimization of the thermal
environment in PRD urban agglomerations. In addition, the research framework used
in this study can also be applied in other urban agglomerations. The results of this
study revealed the complex mechanisms of the variability of the LST among the nine
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cities in the PRD urban agglomeration, and corresponding improvement measures have
been recommended to help urban planners in better articulating urban agglomeration
management strategies.
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Abbreviations

GD Geo-detector
GDP Gross domestic product
HRI Hotspot ratio index
HSAs Hotspot areas
ISDD Impervious surface distribution density
LST Land surface temperature
LUCC Land use/land cover
NDVI Normalized difference vegetation index
NLI Nighttime light index
POP Population density
PRD Pearl River Delta
UHI Urban heat island
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