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Abstract: Solar-induced chlorophyll fluorescence (SIF) is increasingly known as an effective proxy
for plant photosynthesis, and therefore, has great potential in monitoring gross primary production
(GPP). However, the relationship between SIF and GPP remains highly uncertain across space and
time. Here, we analyzed the SIF (reconstructed, SIFc)–GPP relationships and their spatiotemporal
variability, using GPP estimates from FLUXNET2015 and two spatiotemporally contiguous SIFc
datasets (CSIF and GOSIF). The results showed that SIFc had significant positive correlations with
GPP at the spatiotemporal scales investigated (p < 0.001). The generally linear SIFc–GPP relationships
were substantially affected by spatial and temporal scales and SIFc datasets. The GPP/SIFc slope
of the evergreen needleleaf forest (ENF) biome was significantly higher than the slopes of several
other biomes (p < 0.05), while the other 11 biomes showed no significant differences in the GPP/SIFc
slope between each other (p > 0.05). Therefore, we propose a two-slope scheme to differentiate ENF
from non-ENF biome and synopsize spatiotemporal variability of the GPP/SIFc slope. The relative
biases were 7.14% and 11.06% in the estimated cumulative GPP across all EC towers, respectively, for
GOSIF and CSIF using a two-slope scheme. The significantly higher GPP/SIFc slopes of the ENF
biome in the two-slope scheme are intriguing and deserve further study. In addition, there was still
considerable dispersion in the comparisons of CSIF/GOSIF and GPP at both site and biome levels,
calling for discriminatory analysis backed by higher spatial resolution to systematically address
issues related to landscape heterogeneity and mismatch between SIFc pixel and the footprints of flux
towers and their impacts on the SIF–GPP relationship.

Keywords: SIF-GPP conversion coefficient; eddy covariance flux towers; land cover type; GOSIF;
CSIF; evergreen needleleaf forest
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1. Introduction

GPP is the largest flux in the global carbon cycle [1], yet accurate estimation of GPP at
regional and global scales is still a major challenge [2]. Solar-induced chlorophyll fluores-
cence (SIF) has recently emerged as a process that can be detected using Earth observation
technologies, thus having the potential to radically improve terrestrial GPP estimation [3,4].
SIF is the energy emitted directly from the core of photosynthetic machinery during the
return photosystem II from excited to non-excited states, nanoseconds after light absorp-
tion, with a wavelength range from 600 to 800 nm [5,6]. Light energy absorbed by the leaf
chlorophyll molecules has three different pathways: photochemistry, non-photochemical
quenching (NPQ, i.e., heat dissipation), and a small fraction re-emitted as SIF [6]. SIF
is highly correlated with photosynthesis when NPQ dominates at high light levels [6],
and it shows stronger capability in general in characterizing the temporal and spatial
dynamics of photosynthesis or gross primary productivity in terrestrial ecosystems than
traditional vegetation indices (e.g., NDVI and EVI) [7], as it is directly related to the actual
photosynthetic rate [8].

Constructing a direct relationship between satellite-derived SIF and eddy covariance
(EC) flux tower based GPP is crucial for using SIF to estimate GPP at large scales [2], but
this has been hindered by the spatial and temporal coverage of SIF datasets [9]. Current SIF
products are derived from Greenhouse Gases Observing Satellite (GOSAT) [10], SCanning
Imaging Absorption spectroMeter for Atmospheric CHartographY (SCIAMACHY) [11],
Global Ozone Monitoring Instrument (GOME) [12] and Global Ozone Monitoring Mission
Experiment-2 (GOME-2) [13], Orbiting Carbon Observatory-2 (OCO-2) [14], TanSat [15],
and TROPOspheric Monitoring Instrument (TROPOMI) [16]. Among these products, SIF
retrieved from OCO-2 showed the smallest footprints (1.30 × 2.25 km) and slightly higher
signal-to-noise ratios than others, and provided new opportunities to directly link satellite-
derived SIF to flux tower GPP at the ecosystem scale [17]. Many studies have reported the
relationship between SIF derived from various satellite missions with GPP derived from
EC flux tower [18] and gridded Moderate-resolution Imaging Spectroradiometer (MODIS)
products [19] at different spatiotemporal scales.

The relationship between SIF measurements obtained with remote passive techniques
(i.e., remote sensing SIF signal (OCO-2 SIF)) and photosynthesis (i.e., GPP) is not well
understood [20] due to large uncertainties when establishing the relationship between SIF
and EC flux tower GPP across different ecosystems [21]. Wood and Griffis [22] found a
linear SIF–GPP relationship that is sensitive to crop type (corn vs. soybean) and invariant
across spatiotemporal scales in the Corn Belt. This study only investigated two types of
crops in a small part of the United States; therefore, it is not a systematic study of the
SIF–GPP relationship, and more studies should be conducted regarding of the differences
of C3 and C4 crops [21]. It was found that the strength of this linear relationship in
temperate forests was scale-dependent, and its linearity was stronger at the midday time
scale [23]. Similar results have been found across several vegetated biomes, especially for
OCO-2 SIF at 757 nm [21,24]. Li and Xiao [21] reported a nearly universal linear SIF–GPP
relationship between OCO-2 SIF and EC-GPP from a total of 64 sites across eight major
biomes. Recently, Wang and Chen [25] improved the SIF–GPP relationship using the
photochemical reflectance index. However, some studies based on GOSAT and GOME-
2 analysis indicated that the SIF–GPP relationship varied across biomes [19]. Indeed,
Sun and Frankenberg [26] found that the linear SIF–GPP relationship diverges somewhat
across 10 biomes at the global scale. The main reasons for the uncertainty in the SIF–GPP
relationship across sites and biomes are spatiotemporal mismatches and data uncertainties
among the SIF and GPP products, which can be traced back into at least three major
issues. First, the spatial mismatch of EC flux tower sites and OCO-2 orbit is the general
limitations of satellite SIF application [5]. Second, the temporal inconsistent between the
short lifetime of OCO-2 SIF (available from 6 September 2014 to present) and GPP estimated
from EC flux towers (i.e., FLUXNET data are only updated to 2015 (FLUXNET2015)) is not
relevant for the development or validation of the SIF–GPP relationship [2]. Third, there
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are uncertainties in estimating GPP from EC towers [27] and SIF sampling instrument and
retrieval methodologies [21]. Thus, the amount (spatial and temporal coverage) of data
available from the satellite SIF at present are insufficient to support comprehensive analysis
the SIF–GPP relationship [28]. Therefore, more studies tackling these issues are required
to truly address the complexities and drivers of variability in the SIF–GPP relationships
across biomes.

Several global spatially contiguous SIF datasets (hereafter referred to as SIFc) devel-
oped recently can contribute to address the above issues. Zhang and Joiner [29] generated
a global spatially contiguous SIF dataset (hereafter referred to as CSIF, i.e., clear-sky in-
stantaneous and all-sky daily average) at moderate spatiotemporal resolutions (0.05◦ and
4-day) by training a neural network with surface reflectance from MODIS and OCO-2 SIF
soundings. Yu and Wen [30] developed another spatially contiguous global SIF product
(hereafter referred to as GCSIF) at 0.05◦ and 16-day resolutions using machine learning
with a time- and biome-specific model. Li and Xiao [31] further developed a global OCO-2
SIF dataset (GOSIF) with a similar spatiotemporal resolution (0.05◦ and 8-day) based on
discrete OCO-2 SIF soundings, EVI and land cover type data from MODIS, and meteorolog-
ical reanalysis data from Modern-Era Retrospective analysis for Research and Applications
(MERRA-2) [32]. Moreover, Duveiller and Filipponi [33] presented a new SIF dataset (here-
after referred to as GOMESIF) based on GOME-2 satellite observations with an enhanced
spatial resolution covering the period 2007–2018. In general, differences exist among SIFc
products due to different reconstruction methods in this study (see Supplementary Mate-
rial), and there is an urgent need to recognize and, if possible, reconcile the differences of
SIFc datasets and understand their potential impacts on GPP estimation.

To improve the quantification of terrestrial photosynthesis at various spatial and
temporal scales using the recently available remotely sensed spatially contiguous SIFc
datasets, further efforts should focus on the application of expanded SIFc datasets to test
the robustness of the SIF–GPP relationship across all vegetated biomes [2]. Here, we use
two global spatially contiguous SIFc datasets (CSIF [29] and GOSIF [31]), coupled with
GPP obtained by an EC flux tower from the worldwide network FLUXNET2015 [34], to
address the following objectives: (1) to explore the commonality and differences of the
SIFc–GPP relationship across 12 vegetated IGBP biomes; (2) to examine the variability of
SIFc–GPP relationships over a range of spatial and temporal scales; (3) to elucidate the
application prospects and limitations of existing spatially contiguous SIFc datasets.

2. Materials and Methods
2.1. Datasets

Two available spatially contiguous SIFc datasets (unit in W m−2 µm−1 sr−1) based on
OCO-2 SIF (V8r) at 757 nm were used in this study. First, the CSIF dataset, generated by
Zhang and Joiner [29], has two global spatially contiguous SIFc data layers at moderate
spatiotemporal resolutions (0.05◦ spatial resolution, and 4-day temporal resolution, ob-
tained upon request from the author Zhang Yao): one from instantaneous measurements
obtained in clear-sky conditions (2000–2017) and the other from daily averages including
all sky conditions (2000–2016) (referred to as CSIFall-daily). They are generated based on
the SIF retrievals from OCO-2, interpolated by an artificial neural networks (ANN) to a
grid using the surface reflectance from MODIS aboard the Terra and Aqua satellites [29].
The ANN with one layer and five neurons exhibited the highest model performance with a
good performance in validation (R2 = 0.79, RMSE = 0.18 W m−2 µm−1 sr−1). The errors
of CSIF in 9 of 14 biomes to OCO-2 SIF were less than 10%, and most of them were lower
than 5% [29]. To better match with the GPP data, the all-sky daily average CSIF dataset
(CSIFall-daily) was used (referred to as CSIF), which exhibited strong spatial, seasonal, and
inter-annual dynamics that were consistent with daily SIF from OCO-2 and GOME-2 [29].

Second, we employed the global ‘OCO-2′ SIF dataset (referred to as GOSIF) (0.05◦ spatial
resolution, 8-day temporal resolution, freely available at http://globalecology.unh.edu, ac-
cessed on 1 April 2019) [31]. The dataset was based on a data-driven model developed based
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on discrete OCO-2 SIF data, EVI and land cover data from MODIS, and meteorological reanal-
ysis data. Similar to CSIF, the GOSIF dataset has extended the start date of the data record of
OCO-2 SIF to March 2000 and with a daily time scale. The dataset also performed fairly well
in SIF validation (R2 = 0.79, RMSE = 0.07 W m−2 µm−1 sr−1). These two reconstructed SIF
products (i.e., CSIF and GOSIF) offer opportunities to examine the synergy between satellite
SIF and photosynthesis at consistent spatial scales globally [29,31,35].

GPP data were extracted from the global network FLUXNET2015 (http://fluxnet.
fluxdata.org//data/fluxnet2015-dataset/, accessed on 1 April 2019), which contains terrestrial
ecosystem carbon flux data from 212 EC flux towers worldwide [34]. Considering small dif-
ferences between different GPP partitioning methods [36] (Table S1 and Figures S1 and S2),
the daily average GPP estimates (GPP_M, unit in g C m−2 d−1) were calculated as the
mean of GPP estimates from both daytime respiration (GPP_D) and nighttime respiration
(GPP_N) [37] and used to analyze the SIFc–GPP relationship globally. Four sites (i.e., IT-SRo,
NO-Blv, US-LWW, and US-Me4 sites) were removed due to the limited data and large land-
scape heterogeneity in the SIFc pixel, after visually examining the landscape composition of
all flux tower footprints and associated SIFc pixels using Google Earth images. Consequently,
208 EC flux tower sites distributed across 12 vegetated biomes were used, which was different
from some previous researches [21,29] (Figure 1, Table S2). In addition, all the daily data used
for analysis were extracted at an 8-day time interval (i.e., CSIF from days 4 to 8, GOSIF on
day 8, and GPP from days 1 to 8).
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Figure 1. The spatial distribution of all the 212 eddy-covariance (EC) flux tower sites from the
FLUXNET 2015 Tier 1 dataset, depicted by black triangles. Biomes in the legend are from a static
land cover map (MCD12C1 Land Cover Type 1: IGBP global vegetation classification scheme for
2007) retrieved from Friedl and McIver [38]. Biomes are: croplands (CRO), closed shrublands (CSH),
deciduous broadleaf forest (DBF), deciduous needleleaf forest (DNF), evergreen broadleaf forest
(EBF), evergreen needleleaf forest (ENF), grasslands (GRA), mixed forests (MF), open shrublands
(OSH), savannas (SAV), permanent wetlands (WET), and woody savannas (WSA).

2.2. SIFc–GPP Relationship Analysis

All analyses were performed using programming environments in R language ver-
sion 3.6.1 [39]. All significance tests were performed with an alpha of 0.05 by default
unless specified otherwise. All mean values presented in the paper were accompanied
by corresponding Standard Error (SE) values unless otherwise stated. This study covered
12 vegetated biomes according to IGBP [40,41] classification: croplands (CRO), closed

http://fluxnet.fluxdata.org//data/fluxnet2015-dataset/
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shrublands (CSH), deciduous broadleaf forests (DBF), deciduous needleleaf forests (DNF),
evergreen broadleaf forests (EBF), evergreen needleleaf forests (ENF), grasslands (GRA),
mixed Forests (MF), open shrublands (OSH), savannas (SAV), permanent wetlands (WET),
and woody savannas (WSA) (see Table S3 for more details).

First, the correlation and differences between the SIFc and GPP dataset have been
analyzed. Specifically, the differences between two SIFc datasets (CSIF and GOSIF) and
the differences between two GPP datasets (GPP_D and GPP_N) were tested based on
daily (8-day temporal resolution based on GPP data; all the daily GPP/SIF data were
extracted at 8-day intervals) data using the confidence interval (CI) approach. Second,
the relationships between two reconstructed SIFc products and GPP_M were investigated
across six combinations of temporal scales (i.e., daily: mean of half-hour GPP data for each
day, yearly: mean of daily GPP and SIF for each year, and multi-yearly: mean of the whole
observation period) and spatial scales (i.e., site and biome), using major axis regression in
the smatr package [42] to account for data uncertainties in both x and y in the analysis of
the SIFc–GPP relationship. In the analysis of the SIFc–GPP relationship, we forced trend
lines to pass through the origin by setting intercept to zero based on the logic that zero
SIF would suggest zero photosynthesis or GPP approximately [2,43]. Whether significant
differences existed among biomes in the SIFc–GPP conversion coefficients at site-yearly
and site-multi-yearly scales were evaluated using wilcox.test() in ggsignif package. Third,
the SIFc–GPP relationships at six spatial (site and biome) and temporal (daily, yearly, and
multi-yearly) scales were analyzed to examine the change of the SIFc–GPP relationship
with scales.

The abovementioned analyses led to the conclusion that it is necessary to synopsize
the inter-biome variability of GPP/SIFc slopes using a two-slope scheme. To develop the
two-slope scheme, we first reclassified all sites into ENF and Non-ENF biomes, and then
analyzed and compared the site-scale GPP/SIFc slopes within the ENF and Non-ENF
groups. The mean and standard error (SE) were calculated from site-scale GPP/SIFc slopes
within the ENF and Non-ENF biomes, respectively, to represent the two GPP/SIFc slopes
and their uncertainty of the two-slope scheme. Similarly, the adequacy of using median
and median absolute deviation (MAD) of site-scale GPP/SIFc slopes within the ENF and
Non-ENF biomes to represent the two-slope scheme was also investigated. The two-sided
Students t-test, the t.test (two.sided) function in R was applied to test the difference between
ENF and Non-ENF groups. The performance of two-slope scheme was measured with
correlation coefficient (r), standard deviation (SD), root mean square error (RMSE), and
percentage bias (PB) between flux GPP and SIFc_GPP.

3. Results
3.1. Correlation between SIFc and GPP

SIFc (both CSIF and GOSIF) showed significant positive correlations with GPP (GPP_D,
GPP_N, and GPP_M) worldwide across all the 12 biome types and available years (from
2001 to 2014) (Figure 2). Among biomes, the highest GPP-SIFc correlation was manifested
in DBF, and the lowest was in EBF (Figure 2A). The correlations between GOSIF and GPP
(i.e., GPP_D, GPP_N, and GPP_M) were higher than those from CSIF in general. However,
the r values for GOSIF-GPP were lower than those for CSIF for OSH and SAV biomes
(Figure 2A). Strong positive correlations were also observed between SIFc and GPP across
all 14 years (r > 0.71, p < 0.001; Figure 2B). Among all the SIFc-GPP correlation coefficients,
those of SIFc-GPP_M were the highest: concentrated at 0.76 ± 0.01 and 0.77 ± 0.00 for CSIF
and GOSIF, respectively, across 14 years (Figure 2B).
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3.2. SIFc–GPP Relationship across Sites, Biomes, and Years

Figure 3 showed the distributions of GPP/SIFc slopes in individual biomes at site-
multi-yearly (A and B) and site-yearly (C and D) levels. GPP/SIFc slopes varied greatly
across sites and biomes. The CSIF–GPP relationships at the site-multi-yearly scale (Figure 3A)
indicated that CSH had the largest inter-site variability with the biggest interquartile ranges
(the height of the boxes). In addition, there were significant differences in GPP/CSIF slopes
between ENF and several other biomes (i.e., DBF, EBF, GRA and OSH) (p < 0.001), and no
significant difference was found among all other biome pairs (p > 0.05). Although the GOSIF–
GPP relationships at the site-multi-yearly scale (Figure 3B) look similar to the GOSIF–GPP
relationships (Figure 3A), there were substantial differences. First, the GOSIF–GPP inter-site
variabilities were smaller than those of GOSIF-GPP in most biomes. Second, with less inter-site
variability, the GOSIF-GPP data showed that the number of biomes significantly different
from ENF was one more than the CSIF–GPP data (ENF vs. MF) and the significance level
(p value) generally increased as well. In addition to these differences, it is important to notice
that there was still no significant difference between any non-ENF biome pairs according to
GOSIF-GPP (p > 0.05), consistent with CSIF–GPP. The SIFc–GPP relationships at the site-yearly
scale (Figure 3C,D), as expected, showed larger variability than those at the site-multi-yearly
scale. The ENF biome showed significant differences with all other biomes (p < 0.001), except
for the CSH biome with GPP/CSIF slopes (p > 0.05) (Figure 3C,D). However, there were no
significant differences of the SIFc–GPP relationship between OSH and DNF biome with other
biomes at site-multi-yearly scale (p > 0.05), although the slopes from OSH and DNF are lower
than others (Figure 3A,B).
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SAV, and WET) (Figure 4). Medians of slopes were more similar than means in different 
variants. The interannual variability of forest biomes were in general the smallest, fol-
lowed by grassland and cropland. It is interesting to see that the interannual variability of 
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Figure 3. Boxplots and comparison of GPP/SIFc slopes between the 12 biomes are similar to those in Figure 1. (A,B)
Site-multi-yearly slopes (basis of slopes calculated for whole time); (C,D) site-yearly slopes (basis of slopes calculated for
each year). Each boxplot represents the distribution of GPP/SIFc slopes in the corresponding biome. The top and bottom of
the boxes represent the 75 and 25 percentiles (i.e., Q3 and Q1), respectively; the solid line in the box is the median value of
the box; the whole box is the interquartile range (IQR = Q3–Q1); the top and bottom whiskers represent the maximum and
minimum values (i.e., Q3–1.5 * IQR, Q1–1.5 * IQR), respectively; the data outside of the maximum and minimum are shown
as points beyond the whiskers. Site-yearly and site-multi-yearly slopes were derived from daily SIFc-GPP data obtained in
a year and in the whole observation period for each site, respectively, using major axis regression. Black asterisks indicate
that the difference of mean GPP/SIFc slopes between two connected biomes is significant (***: p < 0.001; **: 0.001 < p < 0.01;
*: 0.01 < p < 0.05).

Temporal variability of site-level GPP/CSIF slopes remained relative stable for most
biomes except for a few biomes with very limited number of flux towers (i.e., CSH, OSH,
SAV, and WET) (Figure 4). Medians of slopes were more similar than means in different
variants. The interannual variability of forest biomes were in general the smallest, followed
by grassland and cropland. It is interesting to see that the interannual variability of forest,
grassland, and cropland biomes remained relatively stable, not affected by the increase
of number of flux towers over time in general. In contrast, other biomes differed as the
number of sites were small and the number of towers in normal operation fluctuated across
years, which led to large interannual variability in the slopes within each of these biomes.
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top of the x axis.

Compared with the GPP/CSIF slopes, the temporal variabilities of the GPP/GOSIF
slopes were smaller for most biomes (Figure 5). The reduction of variability was most in
those biomes that showed large interannual variabilities in the GPP/CSIF slopes (i.e., CSH,
OSH and SAV). The site-variability of wetland (WET) biome expanded greatly from 2009 to
2011 compared with surrounding years and those of GPP/CSIF, and the variability of the
grassland (GRA) biome also increased in 2002 and 2003. The enlarged variabilities were
probably caused by underestimated GOSIF at a few flux sites in these two biomes in the
given years as the median slope was higher than the median and lower than the mean from
all years (Figure 5).
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Averaging all SIFc and GPP together by biome and ignoring the inter-site differences,
strong linear relationships between GPP and SIFc were found consistently across the
12 biomes (Figure 6) and 14 years (Figure 7). Although the SIFc–GPP relationship varied
among sites (see Figure 3), the SIFc–GPP relationships at the biome scale were strongly
linear (p < 0.001) for both CSIF and GOSIF. However, the large dispersion of the data points
also suggests the large temporal (across years) and spatial (across sites) variability (see
Figures 3–5). For example, the diverging relationship found in CSH was caused by the low
CSIF values at the IT.Noe site (Figure S3 and Figure 6).
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Figure 6. Scatter plots and linear regression of GPP and SIFc (CSIF and GOSIF) for 12 individual
biomes at a daily scale (p < 0.001). The statistical measures for the linear regression listed in the top
left corner correspond to different colors. All the linear regressions were forced to go through the
origin. The 12 biomes are similar to those in Figure 2.
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Figure 7. Scatter plots and linear regression of GPP and SIFc (CSIF and GOSIF) for all 12 biome types
year by year at a daily scale (p < 0.001). The statistical measures for the linear regression listed in the
top left corner correspond to different colors. All the linear regressions were forced to go through the
origin. Years range from 2001 to 2014, and the last figure shows all the matched daily SIFc-GPP data.

The linear SIFc–GPP relationships were SIFc dataset-dependent (Figures 6 and 7). The
GPP/CSIF slopes were generally higher than GPP/GOSIF slopes for all biomes except
DNF (Figure 6). Similar differences existed between GPP/CSIF slopes and GPP/GOSIF
slopes for all 14 years (Figure 7). The GPP/CSIF slopes ranged from 34.86 (R2 = 0.82,
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p < 0.001) to 39.29 (R2 = 0.79, p < 0.001) across 14 years with a mean value of 37.64 ± 0.32,
and the value of R2 ranged from 0.77 to 0.83. In contrast, the GPP/GOSIF slopes ranged
from 30.65 (R2 = 0.81, p < 0.001) to 35.19 (R2 = 0.82, p < 0.001), with a mean value of
33.14 ± 0.32, and the value of R2 ranged from 0.78 to 0.83. It should be noticed that there
were significant differences between CSIF and GOSIF products across all 12 biomes except
CSH (Figures S4 and S7) as well as across all 14 years (Figure S5).

3.3. Variation of the Linear SIFc–GPP Relationship across Spatiotemporal Scales

The robustness of linear SIFc–GPP relationship increased with spatiotemporal up-
scaling generally (i.e., site-daily, site-yearly, site-multi-yearly, biome-daily, biome-yearly,
and biome-multi-yearly scale) (Figure 8). From site to biome level, the R2 values increased
while slopes of the linear SIFc–GPP relationship significantly decreased regardless of the
time scale. For example, at a daily scale, the R2 value of CSIF–GPP relationship increased
from 0.80 to 0.96 from site to biome level, and the corresponding slope decreased from
37.70 to 32.60. Similar changes of R2 values and slopes of linear CSIF–GPP relationship can
also be found at yearly and multi-yearly time scales (Figure 8).
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Figure 8. Scatter plots and linear regression of SIFc (both CSIF and GOSIF) and GPP for all biomes
across six spatiotemporal scales (p < 0.001). The statistical measures for the linear regression listed
in the top left corner correspond to different colors. All the linear regressions were forced to go
through the origin. The solid lines represent the fitted major axis regression models for different
SIFc–GPP combinations: CSIF–GPP (blue) and GOSIF–GPP (red). (A) Site-daily; (B) site-yearly;
(C) site-multi-yearly; (D) biome-daily; (E) biome-yearly; (F) biome-multi-yearly.

The change of R2 values and slopes of the linear SIFc–GPP relationship with the
time scale varied with the spatial scale. For example, at the site level, the R2 values of
the linear CSIF–GPP relationship increased from daily (slope = 37.70, R2 = 0.80) to yearly
(slope = 34.73, R2 = 0.88) scale, but did not increase to multi-yearly (slope = 32.98, R2 = 0.88)
scale (Figure 8). Similarly, the R2 values and slopes of linear CSIF–GPP relationship had
little changes with the temporal scale at the biome level (daily: slope = 32.60, R2 = 0.96;
yearly: slope = 32.28, R2 = 0.96; multi-yearly: slope = 31.89, R2 = 0.98) (Figure 8).

4. Discussion
4.1. Dataset Dependence of the SIFc–GPP Relationship

The linear SIFc–GPP relationship, forced to go through the original point developed
from GPP and two contiguous SIFc datasets, is SIFc dataset-dependent (Figure 2). This SIFc
dependency can be explained by the fact that GOSIF is generally higher in value than CSIF
across biomes and years (Figures S3 and S4). The stronger SIFc–GPP relationship derived
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from GOSIF compared to that from CSIF was consistent with previous studies [31]. Zhang
and Joiner [29] found that the R2 value of the linear relationship between GPP derived
from 40 EC flux towers and CSIF ranges from 0.01 to 0.93, with a median value of 0.64.
Moreover, Li and Xiao [31] reported a higher linear relationship between GOSIF and flux
GPP (R2 = 0.73, p < 0.001) based on the GPP from 91 EC flux towers. However, GOSIF
did not always perform better than CSIF in some years and some places (Figures 4 and 5),
which might be influenced by the meteorological conditions input. On the other hand, as
the differences existing between both SIFc datasets should include variability ranges, sys-
tematical bias between different SIFc datasets would lead to different offsets for the linear
relationship. Hence, further efforts in improving the SIFc–GPP relationship must reconcile
differences from different SIFc datasets and further understand their implications [29–31].

4.2. Variability of the SIFc–GPP Relationship

Our results show that the linear SIFc–GPP relationship is significantly affected by the
spatial and temporal scales (Figure 8). SIFc–GPP shows the strongest linear relationship
at the coarsest scales (i.e., biome-multi-yearly). The R2 value of the linear SIFc–GPP
relationship increased with spatial upscaling from site to biome at all temporal scales
(i.e., daily, yearly, and multi-yearly). In contrast, the R2 value did not necessarily increase
with temporal upscaling at different spatial scales (i.e., site and biome). This suggests
that SIFc (both CSIF and GOSIF) is not effective in capturing temporal variabilities of
GPP, particularly the inter-annual variability. Overall, the reconstructed SIFc performs
well in tracking long-term biome-wide GPP (Figure 8F), consistent with other studies [9].
The reduced ability of SIFc in capturing the short-term changes of GPP might largely
be attributed to the errors in SIFc and GPP products, as well as the footprint mismatch
between SIFc and GPP, especially at finer resolutions and during the reconstruction period
(from 2001 to 2014) [29,31].

It should be noticed that, despite moderate to strong R2 values, there was considerable
dispersion in the comparisons of CSIF/GOSIF and GPP at both site and biome levels (Fig-
ure 3 and Figure S6). The scattered distribution might be caused by SIFc and flux_GPP data
quality as well as the non-universality of the linear GPP-SIFc relationship [44,45], particu-
larly at CRO and DBF biomes (Figures S3 and S6). For example, SIFc-GPP points scattered
around the linear regression lines widely at the DE.Geb site (CRO biome) (Figure S6) while
the aggregated annual change of flux_GPP synchronized well with those of SIFc in addition
to many scattered points caused by interannual variability (Figure S5), suggesting interan-
nual variability of cropping practices (e.g., rotation of crops, fallow, and fertilization) may
contribute substantially to the pronounced scattering of points around the regression lines
in Figure S6. On the other hand, there were clearly two clusters at the IT.Noe site (CSH
biome), which signifies major difference between CSIF and GOSIF there. Clearly, future
efforts are required to investigate the variability in the SIF–GPP relationship systematically
to answer a suite of important questions: where/when does a linear SIF–GPP relationship
break down? Where/when does it change in slope and why?

Li and Xiao [21] reported that C4-dominated grasslands and crops, albeit only two C4
sites, had a significantly higher slope than C3-dominated grasslands and crops (29.42 vs. 20.98,
p < 0.001). Moreover, Wood and Griffis [22] found a linear SIF–GPP relationship that is
sensitive to crop type (corn vs. soybean) as well. However, our results suggested that there
was no significant difference (p > 0.05) in the slopes between C4 (n = 3) and C3 (n = 8) crops
at a site-multi-yearly scale, respectively, for CSIF (C4 vs. C3: 42.71 ± 1.33 (mean ± SE) vs.
38.87 ± 5.38) and for GOSIF (C4 vs. C3: 38.70± 3.48 vs. 40.32± 6.11). The difference between
our study and Li and Xiao [21] may be due to the limited number of C4 crop sites and the
different approaches used for analysis. We compared the difference in the means of the
slopes from individual C3 and C4 sites, while Li and Xiao [21] compared the difference in
the overall slopes of the C3 and C4 crops after pooling SIF and GPP data from all C3 and C4
sites. Apparently, further research is needed to understand the differences in the SIF–GPP
relationships for C3/C4 plants with more C4 sites.
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The number of EC flux towers is not balanced among the biomes, and some biomes
only include one or a few sites. This leads to large uncertainties in the linear GPP/SIFc
slopes in some biomes (e.g., CSH, OSH, and WET). For example, the GPP/CSIF slopes
of OSH and DNF were lower than other biomes; there are clearly two clusters of data
captured within CSH (Figure 3). The main reason may be the limited GPP data at OSH
(72 site-yearly) and DNF (3 site-yearly) biomes. Thus, increasing the number of EC flux
towers, particularly in some underrepresented biomes (e.g., OSH and DNF), is necessary
to make our global analysis more representative and robust to support GPP modeling
using SIF.

4.3. A Generic Two-Slope Scheme SIFc–GPP Relationship

Our study found that at site-multi-yearly scale there was no significant difference
between any biome pairs in GPP/SIFc slopes except a few pairs between ENF and others
(Figure 3). Specifically, GPP/SIFc slopes in ENF biome were significantly higher than those
in four biomes (DBF, EBF, GRA, and OSH) according to CSIF or five biomes (DBF, EBF,
GRA, OSH, and MF) according to GOSIF, and the slopes between any other non-ENF biome
pairs were not significantly different. To summarize these findings, we, therefore, propose
a two-slope scheme to differentiate ENF from non-ENF and synopsize the GPP/SIFc slope
variability across all biomes and years. It should be noted that the two-slope scheme is
SIFc dataset-specific (Table 1), resulting from the systematic differences between these two
SIFc datasets.

Table 1. Two-slope scheme of the linear SIFc–GPP relationship based on GPP/SIFc slopes at a
site-multi-yearly scale. The SIFc dataset-dependent scheme divides all sites into two groups: ENF
and non-ENF (11 biomes), according to the significance of the GPP/SIFc slopes (see Figure 3). All
slopes are represented as mean ± SE or median (MAD). N is the number of sites included in the
specific biome.

Biome N CSIF
Mean

GOSIF
Mean

CSIF
Median

GOSIF
Median

CRO 20 39.94 ± 3.39 39.14 ± 3.45 37.95 (15.45) 34.68 (13.99)
CSH 3 46.51 ± 23.86 27.70 ± 2.54 26.19 (10.25) 30.09 (0.44)
DBF 26 38.25 ± 4.79 40.96 ± 10.88 33.87 (6.27) 30.75 (7.90)
DNF 1 24.15 26.59 24.15 26.59
EBF 15 34.49 ± 2.91 30.15 ± 2.76 34.30 (9.85) 30.48 (5.88)
GRA 37 36.20 ± 2.86 35.15 ± 3.23 32.31 (14.43) 30.38 (7.91)
MF 9 42.36 ± 7.60 35.83 ± 8.91 37.18 (4.2) 28.05 (4.24)

OSH 14 30.69 ± 4.47 28.64 ± 3.99 28.05 (13.57) 25.54 (15.12)
SAV 8 56.90 ± 17.40 42.49 ± 7.77 38.63 (14.04) 34.21 (15.87)
WET 21 41.23 ± 5.25 61.66 ± 16.05 38.44 (22.35) 33.89 (22.00)
WSA 6 33.36 ± 4.31 31.04 ± 2.83 29.77 (5.78) 29.04 (5.52)

ENF 48 42.75 ± 2.04 40.36 ± 2.28 43.21 (13.39) 38.61 (10.65)
Non_ENF 160 38.41 ± 1.74 39.09 ± 3.02 34.36 (11.66) 30.39 (9.65)

To sift the statistics (mean or median slope) building the two-slope scheme, we
compared the SIFc-derived GPP with flux tower GPP. It can be seen that the two-slope
scheme derived from median values (median PB were 7.14% and 11.06% for GOSIF and
CSIF, respectively) outperformed the one from the mean values (median PB were 31.65%
and 20.67% for GOSIF and CSIF, respectively) in estimating GPP across all EC towers
(Figure 9, Figure S8 and S9); probably, the median-based scheme effectively avoided the
impacts of slope outliers. Thus, we used the median values of slopes to develop the two-
slope scheme in this study. The median slopes for the GPP/CSIF were 43.21 (13.39) and
34.36 (11.66) with corresponding mean ± SE as 42.75 ± 2.04 and 38.41 ± 1.74, respectively,
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for ENF and other biomes (Table 1), resulting in the following two-slope scheme for
converting CSIF into GPP:

GPP =

{
43.21× SIF, ENF biome
34.36× SIF, other biomes

(1)
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two-slope scheme (A) and mean-based two-slope scheme (B). The two two-slope schemes are listed
in Table 1. The dash line is the 1:1 line. Blue and red lines are the fitted linear regression lines of
cumulative CSIF_GPP and GOSIF_GPP with Flux_GPP, respectively, and their associated PB values
are provided as well. To avoid the impacts of large unbalance in the number of GPP values across
biomes on accumulative GPP, 10,000 daily Flux_GPP and SIFc_GPP value pairs were sampled with
replacement for each biome for this comparison.

The median slopes for the GPP/GOSIF were 38.61 (10.65) and 30.39 (9.65) with cor-
responding mean ± SE as 40.36 ± 2.28 and 39.09 ± 3.02, respectively, for ENF and other
biomes, and the corresponding two-slope scheme was:

GPP =

{
38.61× SIF, ENF biome
30.39× SIF, other biomes

(2)

The two-slope scheme provides a very convenient and effective tool for converting
SIFc to GPP and monitoring GPP dynamics in time and space as it is almost land cover-
independent (only the distribution of ENF needs to be identified). The significantly higher
slopes for the ENF biome in the two-slope scheme are intriguing and deserve further
study. This phenomenon is in line with the observations reported by Gamon and Huemm-
rich [46] and Zhang and Joiner [29], who pointed out that the lower SIF (and therefore,
higher GPP/SIFc slope) for ENF is mainly caused by a stronger canopy reabsorption
and/or scattering of SIF for the needle leaf forest, and the core mechanism is the high
dependency between SIF and APAR, chlorophyll content [47], and photosynthetic light-use
efficiency [48]. However, it is still a great challenge to measure (in field), observe (from
satellite), and model (mechanism-based) photosynthesis in boreal forests, especially for the
ENF biome [48,49]. More in-depth research is still needed to expand our understanding of
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the effects of needle leaf clumping index [50]), leaf chlorophyll content [51], and chloro-
phyll/carotenoid index [46] on plant photosynthesis (especially for SIF as an agents) from
canopy to global scale [9].

The coefficients for the two SIF datasets are different from each other (Equations (1) and (2)).
It can be explained by the fact that GOSIF is generally higher in value than CSIF across biomes
and years (Figures S4 and S5), which can be traced back to their reconstruction methods and
the uncertainty of the SIFc products. GOSIF, generated from discrete OCO-2 SIF soundings,
EVI, and land cover type data from MODIS and meteorological reanalysis data, had an RMSE
of only 0.07 W m−2 µm−1 sr−1 [31]. In contrast, CSIF, generated using a machine learning
approach (trained by discrete OCO-2 SIF soundings and MODIS surface reflectance), had an
RMSE of 0.18 W m−2 µm−1 sr−1 [29], more than double that of GOSIF.

Previous studies have highlighted that the linear SIF–GPP relationship is either biome-
dependent [22,26] or ecosystem-specific (e.g., Sun and C. Frankenberg [2]). To our knowl-
edge, none of them has really examined the discriminatory power of their datasets on the
observed differences of SIF–GPP relationship across ecosystems or biomes. In other words,
previous studies often studied the uniqueness of the SIF–GPP relationships, and none
addressed their commonality or the discriminatory power of their datasets across biomes.
Our two-slope scheme represents a major step forward in this direction. In addition, it
provides a practicable method for estimating GPP from SIFc with a greatly reduced need
on land cover specificity, which should benefit the reduction of GPP uncertainty from
land cover classification. This general scheme may have reconciled the differences among
previous studies that were either restricted to small regions [52], had too few flux towers
and/or biomes [21], or had low spatiotemporal resolutions [28].

4.4. Potential Caveats and Uncertainties

Landscape heterogeneity and inconsistency between the flux-tower footprint and SIFc
pixel should have contributed to the uncertainty of our results [53]. We acknowledge that
the landscape heterogeneity at the EC flux towers is an important obstacle to analyzing the
SIF–GPP relationship. Although we have visually checked landscape conditions around all
EC-flux tower sites using Google Earth images, and removed four flux towers from our
analysis, a more robust approach to address the issue would be using a footprint model to
obtain the footprints of all the sites. Our manual examination approach resulted in 208 sites,
which was different from that of Zhang and Joiner [29], who selected only 40 sites using an
automated NDVI-based approach. Our results, therefore, might have higher uncertainties
than Zhang and Joiner [29], but at the same time, encompassed more spatial variability
of sites globally, which might enhance the representativeness of our results. The results
derived from this new paradigm should be better suited to real-world applications than
those derived from the conventional approach because of the ubiquity of heterogeneous
landscapes [53]. Furthermore, applying the results from conventional analysis that only
cover ‘homogenous’ landscapes to the real world would result in unknown amount of
uncertainty. The latter is demonstrated by the good performance of the median-based two-
slope scheme at many flux-tower sites and biomes (Figure 9). Retrospectively, our two-slope
scheme suggests that the impact of landscape heterogeneity and inconsistency between the
flux tower footprint and SIFc pixel might not as severe as we previously thought.

In addition, for CRO and GRA biomes, the site selection is particularly important,
as the flux towers at these biomes are of a height of 2–6 m and the footprint areas are
similar when visualized with the SIFc pixel. On top of that, the GPP from these sites
very much depend on the crop and management practice (e.g., rotation of crops, fallow,
grazing, and fertilization), which can change every few hundred meters, thereby making
the satellite-ground comparison challenging.

Whether the regression method used in this study works well also introduced uncer-
tainty. Just from the mathematical view, one of the fundamental problems of forcing the
intercept to zero is getting a much higher R2 (Figure 8), which will lead to a large portion
of bias in the results, especially at a daily scale [2]. Conversely, at the point of vegetation
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physiology, the zero-intercept logic provides a unique perspective for the SIFc–GPP rela-
tionship analysis. Xiao and Li [54] reported that the low daily SIF/GPP measurements are
not available in some areas/biomes, such as EBF. In such occasions, the application of our
zero-intercept logic makes more sense, which may have greater predictability under unseen
conditions (e.g., low SIF/GPP). As this study focused on the comparison of GPP/SIFc
slopes across different biomes, we finally applied the zero-intercept method rather than
the free intercept. Nevertheless, some free intercept regression model would provide more
information about the SIFc–GPP relationship [43].

5. Conclusions

Our work is a global analysis investigating the relationship between SIFc and GPP
at various spatial and temporal scales, which expands previous research on this topic,
particularly in the following two areas. First, we used all GPP data in the FLUXNET2015
collection and two global SIFc products for the analysis, providing the most comprehensive
coverage so far (208 flux towers and the longest study period from 2001 to 2014) to explore
the SIFc–GPP relationship. Second, we used Major Axis regression to account for uncer-
tainties in both SIFc and GPP estimates in the analysis of the SIFc–GPP relationship, which
produced higher GPP/SIFc slopes than OLS. Our research expands several pioneering
works which have reported the relationship between OCO-2 SIF and tower GPP at individ-
ual sites and a few biomes. We propose a two-slope scheme to differentiate ENF from the
non-ENF biome and synopsize the GPP/SIFc slope variability across biomes and years.
The relative biases were 7.14% and 11.06% in the estimated cumulative GPP across all EC
towers, respectively, for GOSIF and CSIF, using the two-slope scheme. Nevertheless, our
results suggested some major issues related to the SIFc–GPP relationship, including dataset
dependency of the SIFc–GPP relationship, variability of the SIFc–GPP relationship across
spatial and temporal scales, and a two-slope scheme that was distilled from the SIFc–GPP
relationships across biomes. Thus, we call for more research on these abovementioned
issues, and offer a few thoughts on the caveats and uncertainties of our research, as well as
future research directions.
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