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Abstract: Sparse imaging relies on sparse representations of the target scenes to be imaged. Prede-
fined dictionaries have long been used to transform radar target scenes into sparse domains, but
the performance is limited by the artificially designed or existing transforms, e.g., Fourier transform
and wavelet transform, which are not optimal for the target scenes to be sparsified. The dictionary
learning (DL) technique has been exploited to obtain sparse transforms optimized jointly with the
radar imaging problem. Nevertheless, the DL technique is usually implemented in a manner of patch
processing, which ignores the relationship between patches, leading to the omission of some feature
information during the learning of the sparse transforms. To capture the feature information of the
target scenes more accurately, we adopt image patch group (IPG) instead of patch in DL. The IPG is
constructed by the patches with similar structures. DL is performed with respect to each IPG, which
is termed as group dictionary learning (GDL). The group oriented sparse representation (GOSR) and
target image reconstruction are then jointly optimized by solving a l1 norm minimization problem
exploiting GOSR, during which a generalized Gaussian distribution hypothesis of radar image
reconstruction error is introduced to make the imaging problem tractable. The imaging results using
the real ISAR data show that the GDL-based imaging method outperforms the original DL-based
imaging method in both imaging quality and computational speed.

Keywords: inverse synthetic aperture radar (ISAR); imaging; compressive sensing; group
dictionary learning

1. Introduction

Inverse synthetic aperture radar (ISAR) can obtain high resolution images of moving
targets in all weather, day and night. It is an important tool for target surveillance and recog-
nition in non-cooperative scenarios [1]. Traditionally, ISAR imaging uses the range-Doppler
(RD) type of methods. Under the assumption of a small rotational angle, the cross-range
imaging is achieved by fast Fourier transform (FFT). If the targets undergo complex motion,
the imaging time needs to be selected or the high-order motion needs to be compensated.
The imaging results of this type of method usually suffer from sidelobe interferences.

The sparsity-driven radar imaging methods have verified that incorporating the spar-
sity as prior information in the radar image formation process is able to cope with the short-
comings of the RD type of methods. These sparsity-driven imaging methods [2–9] assume
that the target scene admits sparsity in a particular domain. In particular, regularized-based
image formation models focus on enhancing point-based and region-based [2–6] image
features by imposing sparsity on features of the target scene, whereas sparse transformation-
based image formation models [7–9] represent the reflectivity fields sparsely with dictio-
naries by imposing sparsity on the representation coefficients through the dictionaries.
Both models have been shown to offer better image reconstruction quality as compared to
traditional RD imaging methods. However, the aforementioned ways for sparsifying the
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target scene only depict pre-defined image features and are not adaptive to the unknown
target scenes; the performance is, therefore, limited.

In contrast to dictionaries constructed with fixed image transformations used in
sparse transformation based image formation models, the dictionaries obtained by the
dictionary learning (DL) technology [10–13] are generated with the prior information of
the unknown target image. Thus, the learned dictionaries are adaptive to the target images
to be reconstructed and can find the optimal sparse representation coefficients [14,15].
Nevertheless, the strategy of processing each target scene patch independently during
the DL and sparse coding stages neglects the important feature information between the
patches, such as the self-similarity information which has been proved to be very efficient
for preserving image details [16–20] during the image formation process. Both DL and
sparse coding stages are calculated with relatively expensive nonlinear estimations, e.g.,
orthogonal matching pursuit (OMP). These two deficiencies actually limit the improvement
of the reconstruction quality and efficiency of DL-based ISAR sparse imaging, respectively.

In order to exploit self-similarity information between patches to recover more details
of the target image, we adopt the image patch group (IPG) instead of the independent
patch as the unit in DL and sparse coding stages. The IPG is constructed by the patches
with a similar structure. A singular value decomposition (SVD) based DL method is
performed with respect to each IPG, which is termed as group dictionary learning (GDL).
The group-oriented sparse representation (GOSR) and target image reconstruction are then
jointly optimized by solving a l1 norm minimization problem exploiting GOSR, during
which a generalized Gaussian distribution hypothesis [21] of radar image reconstruction
error is employed to make the imaging problem tractable. The initial idea of our work for
ISAR imaging using GDL was presented in the conference paper [22].

Compared with the existing ISAR sparse imaging methods, the innovations of the
proposed imaging method are as follows: (1) The IPGs, instead of independent patches,
are used as the units in DL and sparse coding stages. The GOSRs characterize the local
sparsity of target image and self-similarity information between patches, simultaneously.
(2) A GDL method with low complexity is designed. The GDL is performed with respect
to each IPG rather than the target image using the simple SVD. (3) An iterative algorithm
combined with soft thresholding function is developed to solve the GOSRs-based l1 norm
minimization problem for target sparse imaging.

The real ISAR data are used to demonstrate the performance of the proposed GDL-
based sparse imaging method. The comparisons with the greedy Kalman filtering (GKF)
based sparse imaging method [9] and on-line DL and off-line DL based sparse imaging
methods [15] are conducted.

The rest of this paper is organized as follows: Section 2 briefly presents the ISAR
measurements model and sparse imaging model. Section 3 presents the DL-based ISAR
sparse imaging methods. Section 4 elaborates the GDL-based ISAR sparse imaging method
in great detail. Section 5 shows the real ISAR data imaging results and the performance
analyses of our imaging method. Section 6 draws the conclusions.

2. Imaging Model
2.1. Model of ISAR Measurements

We consider an ISAR imaging geometry, including a moving radar platform and a
target with both transnational motion and rotational motion, in an image projection plan
(IPP). The radar first transmits a linear frequency modulated (LFM) pulsed waveform
p(t) = rect(t/Tp)ejπkat2

ejω0t. Here, t represents the fast time, Tp represents the pulse width,
ka is the frequency modulation rate, ω0 is the carrier frequency of the transmitted waveform
and rect(·) is the rectangular function. The received signal from the target scene is then
mixed with a reference chirp. After performing the operations of demodulation, range
compression and motion compensation of higher order [23] on the de-chirped signal,
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the ISAR image formation can be formulated as a 2D inverse Fourier transform (FT) [9]
as follows:

T̂( fs, τ) ≈
∫

rmc(s, ft)ej2π fssej2π ftτdsd ft

≈ [A( fs)⊗ T( fs, τ)](
c2

4 f0Ω
)e−jω0τ

(1)

where ft ∈ [−B/2, B/2] is the range frequency with B denoting the bandwidth of the trans-
mitted waveform, fs =

2 f0
c Ωx′ and τ = 2y′

c , Ω denotes the effective rotational vector of the
target [24], x′O′y′ denotes the local coordinate system centered at O′ on the target, the A( fs)
is the spectrum of the amplitude modulation due to the azimuth antenna beam pattern,
and T( fs, τ) is the reflectivity distribution of the ISAR target scene to be reconstructed. The
rmc(s, ft) is the ISAR measurement after motion compensation and range compression.

2.2. Sparse Imaging Model

Let σ be the vector of the reflectivity function T( fs, τ) and G be the vector of ISAR
measurements rmc for discrete samples of fast-time and slow-time domain. The relationship
between the ISAR measurements and the reflectivity function to be reconstructed can be
modeled in terms of a linear system of equations in a matrix form [9] as follows:

G=Hσ+n (2)

where H is the observation matrix of ISAR imaging. Specifically, the H is a Fourier matrix
formed by H = FC ⊗ FR, where FC denotes the 1D Fourier transform matrix applied to the
column dimension of T( fs, τ), and FR denotes the 1D Fourier transform matrix applied
to the row dimension of FR. n is the noise vector embedded in the ISAR measurements.
We assume that the number of samples in the range and cross-range dimensions are Nr
and Na, respectively. G and σ are both vectors with the dimension of Nr Na , and H is a
Nr Na × Nr Na square matrix.

The σ is naturally sparse, considering that the background of an ISAR image usually
has relatively low reflectivity and the target to be imaged is a composition of a number of rel-
atively strong scatterers. The target image can be reconstructed with measurements smaller
than Nr Na in the theoretic framework of CS based on the following under-determined
linear systems of equations:

Gs = Ψσ + ns (3)

where Gs ∈ Cm is a randomly under-sampled measurement vector, Ψ ∈ Cm×n with
m < n, n = Nr Na is the measurement matrix, which is a partial Fourier matrix obtained by
Ψ = ΘH, where Θ denotes the sensing matrix, ns is the noise vector corresponding to the
under-sampled measurements Gs.

The imaging problem in Equation (3) can be formulated as a space sparse constrained
l1 norm minimization model as follows:

min
σ
‖σ‖1 s.t. ‖Gs −Ψσ‖2

2 < ε (4)

The sparse representations in the transform domains depict the certain features (point-
based or region-based image features) of the interested target [7,9] , thereby enhancing
the imaging quality of the target scene σ. Let D ∈ Cn×n be a dictionary, which sparsely
represents the σ as follows:

σ = Dw (5)
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where the vector w ∈ Cn is sparse representation of σ in the domain expanded by D.
Thus, the image reconstruction in Equation (4) is performed by obtaining the sparse
representation firstly as follows:

min
w
‖w‖1 s.t. ‖Gs −ΨDw‖2

2 < ε (6)

and then form the target image by the following:

σ̂ = D“w (7)

However, these dictionaries were artificially designed using the fixed image transforma-
tions and cannot be adaptive to the unknown target scene to find optimal sparse representations.

3. DL-Based Sparse Imaging

The main idea of DL-based ISAR sparse imaging is to utilize an adaptive dictionary to
sparsely represent the unknown target scenes [15]. The adaptive dictionary can be learned
off-line from the previously available ISAR data or on-line from the current data to be
processed; the atoms in the adaptive dictionary are generated with prior information of the
unknown target scene rather than the fixed image transformations.

3.1. Off-Line DL Based Sparse Imaging

A block processing strategy is adopted for reducing the size of training images to
improve the efficiency of DL. Extracting the patches from a training image can be simply
expressed as follows:

σtk = Fk(σt) (8)

where σt ∈ Cn denotes vectorized training image, σtk ∈ Cnp denotes the kth vectorized
patch extracted from σt, F (·) denotes the operator of patch extraction and k = 1, 2, . . . , N is
the index of the patch.

Given a set of patches {σtk}N
k=1, the patch-based DL can be modeled as a l1 norm

minimization problem [15] as follows:

min
Dp ,{wtk}

N

∑
k=1
‖σtk −Dpwtk‖2

2 s.t. ∀k ‖wtk‖1 ≤ Tp (9)

where Dp ∈ Cnp×np is the patch based dictionary to be learned, wtk is the sparse represen-
tation of σtk over the Dp, and Tp is the required sparsity level for each patch.

The K-SVD algorithm is used to optimize Dp and wtk alternatively, leading to the
optimal “Dp. Then, the “Dp, containing the prior information of the unknown target image,
is applied to the following joint optimization problem for reconstructing the target image:

min
σ,{wk}

N

∑
k=1
‖σk − “Dpwk‖2

2 + λ‖Gs −Ψσ‖2
2 s.t. ∀k ‖wk‖1 ≤ Tp (10)

where σk is the to be reconstructed patch, and wk is the sparse representation of σk over“Dp, λ is the regularization parameter and balances the measurements fidelity and sparse
representation.

An iterative strategy is utilized to minimize Equation (10). In each iteration, the “wk
is obtained with OMP and the σ̂k is reconstructed by σ̂k = “Dp“wk; the target image σ̂ is
estimated by performing conjugate gradient algorithm on the set {σ̂k}N

k=1.
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3.2. On-Line DL-Based Sparse Imaging

On-line DL-based sparse imaging models the DL, sparse coding and image reconstruc-
tion as a joint optimization problem [15] as follows:

min
σ,Dp ,{wk}

N

∑
k=1
‖σk −Dpwk‖2

2 + λ‖Gs −Ψσ‖2
2 s.t. ∀k ‖wk‖1 ≤ Tp (11)

An alternating iteration procedure is adopted to solve Equation (11). “Dp and “wk are
alternately solved with K-SVD, and σ̂ is also reconstructed by implementing the conjugate
gradient algorithm on set {σ̂k} during each iteration.

The dictionaries offered by both off-line DL method and on-line DL method are
able to find better sparse representations of the target image as compared to the fixed
image transformations [15]. However, the K-SVD used for the DL inevitably requires
high computational complexity. In addition, from Equations (9)–(11), it can be noticed
intuitively that each patch is actually considered independently in the process of DL and
sparse coding, which neglects the important feature information between similar patches
in essence, such as self-similarity information.

4. GDL-Based Sparse Imaging

In order to rectify the above problems of DL-based sparse imaging, we adopt the IPG
instead of an independent patch as the unit for DL and sparse coding with the aim of
exploiting the local sparsity of target image and the self-similarity information between
patches simultaneously. Each IPG is composed of patches with similar structures and is
represented by the form of a matrix. An effective SVD-based DL method is performed with
respect to each IPG to obtain the corresponding dictionary.

4.1. Construction of Image Patch Group

Given a vectorized image x, the size of x equals that of σ, i.e., x ∈ Cn. In order to
intelligibly elaborate the construction of IPG, the vectorized form of the x needs to be
converted to the matrix form with the size of

√
n×
√

n as shown in Figure 1.
The image x is divided into N overlapped patches {xk}N

k=1. For each patch xk ∈
C
√np×

√np , denoted by the dark blue square in Figure 1, in the search window (red square),
we search its l best matched patches to compose the image patch set sxk . Here, the similarity
between patches is measured, using a certain similarity criterion.

Next, all the patches in sxk are stacked into a matrix of size np × l, represented by xGk ,
which contains every patch in sxk as its columns, as shown in Figure 2. The matrix xGk ,
including all patches with similar structures, is named an IPG. For simplicity, we define
the construction of the IPG as follows:

xGk = FGk (x) (12)

where FGk (·) denotes the operator that extracts the kth IPG from x, and its transpose,
denoted by FT

Gk
(·), can put the kth IPG back into its original position in the reconstructed

image, padded with zeros elsewhere.
By averaging all the IPGs, the reconstruction of the whole image x from set {xGk}

N
k=1

becomes the following:

x̂ =
N

∑
k=1
FT

Gk
(xGk )./

N

∑
k=1
FT

Gk
(B) (13)

where “./” denotes the element-wise division and B is a matrix of size np × l with all the
elements being 1.

Note that in our work, each patch xk is represented as a vector, and each IPG xGk
is represented as a matrix as shown in Figure 3. According to the above definition, it is
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obvious to observe that each patch xk corresponds to an IPG xGk . One can also see that the
construction of xGk explicitly exploits the self-similarity information between patches.

Figure 1. Extract each patch xk (as shown by the dark blue square) from image x and for each xk,
search its l best similar patches in the search window (as shown by the red square) to compose the
image patch set sxk .

Figure 2. Reshape each patch in sxk to vector, and stack all vectors in the form of matrix to construct
the image patch group xGk .

Figure 3. The comparison between image patch xk and image patch group xGk .

4.2. ISAR Image Patch Group Based Imaging Model

Let I be an initial ISAR target image obtained by directly implementing the 2D FFT on
the measurements Gs, represented by the following:

I = ΨTGs (14)

The quality of the initial target image I ∈ Cn is very poor as expected since the pulses
cannot be coherently integrated. The purpose of GDL-based imaging is to completely
reconstruct the high quality target image σ from I.

According to the method provided in Section 4.1, we construct the ISAR IPG set
{IGk}

N
k=1 using the I, and the size of each IGk is np × l. During the construction of each IPG,



Remote Sens. 2021, 13, 2812 7 of 21

the cross-correlation is selected as the criterion to measure the similarity between patches.
Thus, reconstructing the σ from I can be modeled as follows:

min
σ

N

∑
k=1
‖IGk‖1 s.t. ‖Gs −Ψσ‖2

2 < ε (15)

4.3. Group Dictionary Learning Based Sparse Imaging

To enforce the local sparsity and the self-similarity of target image simultaneously in
a unified framework, we suppose that the IGk can be sparsely represented over a group
dictionary DGk . Here, DGk = {d(Gk ,1), d(Gk ,2), . . . , d(Gk ,m)} is assumed to be known. Note
that each atom d(Gk ,i) ∈ Cnp×l is a matrix of the same size as the IPG IGk , and m is the
number of atoms in DGk . Different from the dictionary in patch-based DL, here, DGk is of
size (np × l)×m, that is, DGk ∈ C(np×l)×m. How to learn DGk with high efficiency is given
in detail in the next subsection.

Similar to the notations about sparse coding process in patch-based DL, the sparse
coding process of each IPG over DGk is to seek a sparse representation wGk ∈ Cm such that
IGk ≈ DGk wGk , we refer to the wGk as GOSR. Thus, the target image reconstruction model
in Equation (15) can be rewritten as follows:

min
σ

N

∑
k=1
‖wGk‖1 s.t. ‖Gs −Ψσ‖2

2 < ε (16)

Only measurement Gs and IPG set {IGk} are available. However, we need to obtain
the optimal group dictionaries {DGk}

N
k=1 and corresponding GOSRs {wGk}

N
k=1. Similar to

the joint optimization model in on-line DL-based sparse imaging described in Section 3, we
reform the reconstruction model in Equation (16) as a joint optimization model as follows:

min
σ,{DGk

},{wGk
}

N

∑
k=1
‖IGk −DGk wGk‖

2
2 + µ‖Gs −Ψσ‖2

2 s.t. ∀k ‖wGk‖1 ≤ Tg (17)

where Tg is sparse level of each group. The weight µ in our formulation is a positive
constant and balances the measurements fidelity and GOSRs. The first term in Equation (17)
captures the quality of the sparse approximations of {IGk}with respect to group dictionaries
{DGk}, the second term in the cost measures of the measurements fidelity.

Our formulation is, thus, capable of designing an adaptive group dictionary for each
IPG, and also using the group dictionary to reconstruct the current IPG. In addition, the
model in Equation (17) can typically avoid artifacts seen in the initial image obtained in
Section 4.2. All of the above are done, using only the under-sampled measurements Gs
and set {IGk}.

In our work, we adopt the alternate iteration strategy to minimize the joint optimiza-
tion problem in Equation (17) to solve the {DGk}, the {wGk} and the σ. Each iteration
includes N cycles, and each cycle involves two steps: learning DGk as well as jointly opti-
mizing the wGk and IGk . In the first step, DGk is obtained by GDL, while the corresponding
IGk and wGk are fixed. In the second step, the learned DGk is fixed, wGk and IGk are es-
timated by solving a l1 norm minimization problem. The details of these two steps are
further given in the following subsections.

4.4. Group Dictionary Learning

In this subsection, we show how to learn the group dictionary DGk for each IPG IGk .
Note that, on one hand, we hope that each IGk can be represented by the corresponding
DGk faithfully. On the other hand, we hope that the sparse representation coefficient of IGk
over the DGk is as sparse as possible. According to the patch-based DL method presented
in Section 3, the GDL can be intuitively modeled as follows:
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min
{DGk

}

N

∑
k=1
‖IGk −DGk wGk‖

2
2 s.t. ∀k ‖wGk‖1 ≤ Tg (18)

Note that the group dictionary form is very complex. If we adopt the iteration method,
such as K-SVD, to learn group dictionary, it is a time-consuming process. Therefore, we do
not directly utilize Equation (18) to learn the group dictionary for each IPG.

In order to obtain the group dictionary with high efficiency, in this paper, the SVD-
based GDL method is directly performed on each IGk . Thus, the IGk can be decomposed
into the sum of a series of weighted rank-one matrices as follows:

SVD(IGk ) = UGk ∆Gk VH
Gk

=
m

∑
i=1

δ(Gk ,i)(u(Gk ,i)v
H
(Gk ,i)) (19)

where ∆Gk = {δ(Gk ,1), δ(Gk ,2), . . . , δ(Gk ,m)} is the singular value set, zGk ∈ Cm denotes
the singular value vector with the values in set ∆Gk as its elements. The left singular
vector u(Gk ,i) ∈ Cnp and the right singular vector v(Gk ,i) ∈ Cl are the columns of uni-
tary matrices UGk ∈ Cnp×np and VGk ∈ Cl×l , respectively. H represents the Hermitian
transpose operation.

Each atom in DGk for IGk is defined as follows:

d(Gk ,i) = u(Gk ,i)v
H
(Gk ,i) (20)

where the d(Gk ,i) ∈ Cnp×l .
Therefore, the ultimate adaptively learned group dictionary for IGk is defined

as follows: “DGk = {d(Gk ,1), d(Gk ,2), . . . , d(Gk ,m)} (21)

Based on the definitions in above, we can obtain IGk = DGk zGk . From Equations (19)–(21),
we can obviously see that the SVD-based GDL method guarantees that all the patches in
an IPG use the same group dictionary and share the same dictionary atoms. In addition, it
is clear to see that the proposed GDL is self-adaptive to each IPG IGk and is quite efficient,
requiring only one SVD for each IPG.

4.5. Group Sparse Representation and Target Image Reconstruction

According to the second term in Equation (17), the joint optimization problem of
GOSRs and the target image can be formulated as follows:

min
σ,{wGk

}

N

∑
k=1

µ‖Gs −Ψσ‖2
2 s.t. ∀k ‖wGk‖1 ≤ Tg (22)

By multiplying the ΨT for Gs and Ψσ, the Equation (22) becomes the following:

min
σ,{wGk

}

N

∑
k=1

µ‖σ − I‖2
2 s.t. ∀k ‖wGk‖1 ≤ Tg (23)

where σ denotes the target image to be reconstructed and I is the initial image of σ defined
in Section 4.2.

The Equation (23) can be rewritten as a regularized form by introducing a regularized
parameter λ:

{σ̂, {“wGk}} = min
σ,{wGk

}
‖σ − I‖2

2 +
λ

µ

N

∑
k=1
‖wGk‖1 (24)

where the parameter λ/µ controls the trade-off between the first and second terms in
Equation (24).
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The Equation (24) can be minimized in the iteration manners of greedy pursuit or
convex optimization. In each iteration, using the I to reconstruct the σ, the reconstructed
σ is regarded as a novel I in next iteration. Since the form of the ∑N

k=1 ‖wGk‖1 is too
complicated, to exactly reconstruct σ from I in the iteration manners is a very hard process.

In order to reduce the difficulty of minimizing Equation (24), we perform some
experiments to investigate the statistics of the error between the initial images I(t) and
corresponding reconstruction results σ(t) in each iteration, where t is the index of iteration.
Since obtaining the initial images and the exact reconstruction results is not available, we
use the poor quality images obtained by the RD method with different under-sampled
measurements to approximate the initial images and reconstructed results. Concretely,
the images reconstructed with 25%, 30% and 35% measurements are regarded as the
approximated initial images in 1st, 2nd and 3rd iterations, and the images obtained by 30%,
35% and 40% measurements are regarded as the reconstruction result in the 1st, 2nd and
3rd iterations.

We use the real plane data and ship data as the examples. By implementing the
approximate operation mentioned above for the motion compensated real plane data,
we can calculate the reconstruction errors e(t) = σ(t) − I(t) in the first three iterations, i.e.,
t = 1, 2, 3. Then, we can drawn the probability density histograms for e(1), e(2) and e(3),
as shown in Figure 4a–c, respectively. In Figure 4a, the horizontal axis denotes the range
of the pixel values in error matrix e(1), and the vertical axis denotes the probability of the
number of pixel values in different ranges to the number of total pixel. From Figure 4a, we
can observe that the probability density histograms of e(1) can quite be characterized as a
generalized Gaussian distribution (the probability density function of generalized Gaussian
distribution is given in https://sccn.ucsd.edu/wiki/Generalized_Gaussian_Probability_
Density_Function, accessed on 22 November 2020.) where the mean is zero and variance is
v(t). The v(t) is estimated by the following:

v(t) =
1
n
‖σ(t) − I(t)‖2

2 (25)

where n is the number of total pixels.
Similar to observation in Figure 4a, the probability density histograms of e(2) and e(3)

shown in Figure 4b,c can also be approximated as the generalized Gaussian distributions.
We also perform the approximation operation mentioned above for the motion com-

pensated ship data. The probability density histograms of e(1), e(2) and e(3) of ship data are
shown in Figure 4d–f, which have distributions similar to those of the plane data.

Based on the statistics of the probability density histograms of reconstruction errors in
the iteration process, to enable minimizing Equation (24) tractably, a reasonable assumption
is made in this paper. We suppose that each element in e(t) satisfies an independent
distribution with zero mean and variance be v(t). By this assumption, for ∀ε > 0, we can
obtain the following conclusion:

lim
n→∞
K→∞

P{| 1
n
‖σ − I‖2

2 −
1
K

N

∑
k=1
‖σGk − IGk‖

2
2| < ε} = 1 (26)

where σGk denotes the to be reconstructed IPG, P(·) be a probability function. Probability
coefficient K = np × l × N with np is the size of the patch, l is the number of patches in an
IPG, and N is the number of IPGs extracted from the initial image. The detailed proof of
Equation (26) is given in Appendix A.

According to the approximation in Equation (26), we have the following equation
with probability nearly at 1:

‖σ − I‖2
2 =

n
K

N

∑
k=1
‖σGk − IGk‖

2
2 (27)

https://sccn.ucsd.edu/wiki/Generalized_Gaussian_Probability_Density_Function
https://sccn.ucsd.edu/wiki/Generalized_Gaussian_Probability_Density_Function
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Figure 4. The probability density histograms of errors e(t) of the plane imaging in (a) t = 1, (b) t = 2
and (c) t = 3 iterations and the ship imaging in (d) t = 1, (e) t = 2 and (f) t = 3 iterations. The shape
parameter ρ in generalized Gaussian probability density function keeps constant of 1.3 for these
instances. The horizontal axis denotes the range of pixel values in e and the vertical axis denotes the
probability Ggd(e) of the number of pixel values in different ranges to the number of total pixels.

Incorporating Equations (27)–(24), we have the following:

min
σ,{wGk

}
‖σ − I‖2

2 +
λ

µ

N

∑
k=1
‖wGk‖1

= min
σ,{wGk

}

n
K

N

∑
k=1
‖σGk − IGk‖

2
2 +

λ

µ

N

∑
k=1
‖wGk‖1

= min
σ,{wGk

}

N

∑
k=1
{‖σGk − IGk‖

2
2 + η‖wGk‖1}

(28)

where η = λK/µn.
Note that (28) can be efficiently minimized by solving N joint optimization problems,

each of which is expressed as follows:

{σ̂Gk ,“wGk} = min
σGk

,wGk

‖σGk − IGk‖
2
2 + η‖wGk‖1 (29)

From the definitions of wGk , zGk we can know σGk = DGk wGk and IGk = DGk zGk ,
zGk is the singular value vector defined in Section 4.4. Due to the construction of DGk in
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Equation (21) and the unitary property of UGk and VGk , we can obtain the
following relationship:

‖σGk − IGk‖
2
2 = ‖wGk − zGk‖

2
2 (30)

The detailed proof of Equation (30) is provided in Appendix B.
Submitting Equation (30) into Equation (29), Equation (29) can then be minimized by

solving wGk first: “wGk = min
wGk

‖wGk − zGk‖
2
2 + η‖wGk‖1 (31)

According to Lemma 1 in [25], the closed-form solution of wGk is as follows:“wGk = SOT F (zGk , η) = sgn(zGk ) ·max(abs(zGk )− η, 0) (32)

where SOT F (·) denotes the soft thresholding function and “·” denotes the element-wise
product.

Then, the IPG in Equation (29) can be reconstructed by the following:

σ̂Gk =
“DGk
“wGk (33)

where “DGk is the group dictionary obtained in Equation (21).
According to the strategy of alternatively solving Equations (21) and (29), all IPGs can

be sequentially recovered, and the target image is reconstructed through Equation (13).
So far, all issues in the process from under-sampled measurements to the target image

reconstruction have been solved. In light of all derivations above, a detailed flow chart of
the proposed algorithm for ISAR imaging using GDL is shown in Figure 5.

Figure 5. The flow chart of the group dictionary learning based ISAR imaging algorithm.
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5. Experimental Results

In this section, we use real plane data and ship data sets to demonstrate the per-
formance of the proposed GDL based ISAR imaging method. In order to evaluate the
feasibility and the chief advantages of our method faithfully, the GDL ISAR imaging
method is compared with the greedy Kalman filtering (GKF) imaging method [9], ISAR im-
age patch based online dictionary learning (ONDL) imaging method and offline dictionary
learning (OFDL) imaging method [15], which deal with the ISAR data in a spatial domain
and transform domain adaptive to ISAR data, respectively.

5.1. Imaging Data and Parameters

The plane data were collected by a ground-based ISAR operating at C band; the
bandwidth of the transmitted waveform is 400 MHz. A de-chirp processing was used for
the range compression of the plane data. The ship data were collected by a shore-based
X-band radar, and the bandwidth of corresponding transmitted waveform is 80MHz.

All data sets were motion compensated by the minimum entropy based global range
alignment algorithm [26] as well as the improved phase gradient algorithm (PGA) [27].
The details of the size of the raw data (S_r_data), under-sampling ratios (S_ratios) as well
as the sparsity are listed in Table 1. Note that the sparsity is estimated, using the approach
in [28].

All data sets used for verifying the reconstruction performance of the proposed
imaging method were obtained by performing a random under-sampling operation on
both the range domain and cross-range domain of the corresponding motion-compensated
raw data. For the plane data, we consider two types of under-sampling ratios, which
are 25% and 50%. For the ship data, we set the under-sampling ratio to 50%, i.e., 4608
measurements, as listed in Table 1.

Table 1. The parameters of the real ISAR data sets used for verifying the performance of the GDL-
based ISAR imaging method.

Data S_r_data S_ratios (Measurements) Sparsity

Plane data 100 × 80 25% (2000), 50% (4000) 900
Ship data 96 × 96 50% (4608) 841

We set the optimal parameters in the GDL-based imaging method as listed in Table 2.
The detailed settings of all the parameters are discussed in Section 5.5. All the experiments
are performed in Matlab2015b on an assembled computer with Intel (R) Core (TM) i7-7700
CPU @ 3.60 GHz, 8G memory, and a Windows 7 operating system.

Table 2. The parameter settings of GDL imaging method for different ISAR data sets imaging.

Data P_size P_step h × w l µ λ

Plane data 1 64 2 16 × 16 64 17 0.02
Plane data 2 64 2 16 × 16 64 17 0.03
Ship data 1 64 2 16 × 16 64 17 0.035

5.2. Image Quality Evaluation

To provide a quantitative evaluation of the images reconstructed with the proposed
imaging method, we use two types of performance evaluation indices [29]. One is the
“true-value” based indices and the other is the conventional image quality indices. The
“true-value” based indices assess the accuracy of position of reconstructed scatterers. The
conventional indices mainly assess the visual quality of the reconstructed images.

The “true-value” based evaluation is based on the comparison of the original or
reference image (which represents the “true-value”) with the reconstructed image. Since



Remote Sens. 2021, 13, 2812 13 of 21

we do not have ground-truth images of non-cooperative targets, in our experiment, a high-
quality image reconstructed by the conventional RD method using full data is referred
to as the reference image in our work. Thus, the metrics evaluate the performance of the
proposed GDL-based imaging method as compared to the RD method. The “true-value”
based evaluation uses the following indices: False Alarm (FA) and Missed Detection (MD).
FA is used for assessing the scatterers that are incorrectly reconstructed. MD is used for
assessing the missed scatterers.

The conventional image quality evaluation includes the target-to-clutter ratio (TCR),
image entropy (ENT) and image contrast (IC). The TCR that we use in our work is defined
as follows:

TCR = 10 log10

(
∑(r,p)∈Ωτ

|σ̂(c, r)|2

∑(c,r)∈Ωc |σ̂(c, r)|2

)
(34)

where (c, r) represents the pixel index, σ̂(c, r) denotes the reconstructed value at pixel (c, r)
in the reconstructed image σ̂ and Ωτ , Ωc denote the target region and clutter region in σ̂,
respectively. We determine Ωτ and Ωc by performing a binarization processing on the RD
image. The pixels whose values are greater than a specified threshold are classified into Ωτ

and otherwise into Ωc.

5.3. Imaging Results of Real Data

Figure 6a,b presents the full data imaging results of the plane data and ship data,
using the RD method, respectively.

Figure 7 shows the imaging results of 25% measurements of plane data, using the GKF,
ONDL, and OFDL, as well as our GDL-imaging methods, respectively. Figure 8 shows the
imaging results of 50% measurements of plane data. Figure 9 shows the imaging results
obtained by 50% ship raw data, using the different imaging methods mentioned above.
Note that all imaging results are displayed with the same contour level.

Comparing Figure 7a–d, we see that many artifacts appear in the results of the
GKF, ONDL, and OFDL methods. The first three imaging methods cannot provide well-
reconstructed images, while our GDL method well reconstructs the nose, tail, and wings of
the plane as indicated by the red and blue circles in Figure 7. This verifies the superiority
of the proposed GDL-based imaging method in target shape reconstruction. The GOSR
obtained by the group dictionary can account for the self-similarity information between
image patches, leading to better retaining of the information regarding the plane shape as
compared to the other methods considered here.

Figure 8 shows the imaging results of 50% measurements of plane data, using the
imaging methods considered here. Specifically, the GDL-based imaging method provides
the best results. The fewest artifacts appear in the reconstructed image of GDL as shown in
the regions indicated by the red and blue circles in Figure 8.

From Figure 9 we can see that the ship target can be reconstructed successfully, using
these four methods. It shows the imaging results of the ship target obtained by the GKF,
ONDL, OFDL, and GDL methods, using 50% measurements. By performing a further
comparison of the regions indicated by red circles and blue rectangles, we see that the
result shown in Figure 9d have the fewest artifacts or interferences.

We also see that there are some errors in the results of the GDL method, for example,
the poor reconstruction of the nose of the plane in Figure 7. Note that the target region
is reconstructed exploiting GOSRs that are calculated with Equation (32), which reflects
that the quality of the GOSRs is influenced by the singular value vector of IPG and the soft
thresholding. Therefore, the reasons for the poor reconstruction of the target may be that
the singular value vector of IPG or the soft thresholding are not accurate enough.

5.4. Quantitative Evaluation of Image Quality

Except for the visual comparisons of the imaging results, we also evaluate the image
quality using the metrics introduced in Section 5.2. The evaluations of the imaging results
are listed in Table 3.



Remote Sens. 2021, 13, 2812 14 of 21

10 20 30 40 50 60 70 80

Cross-range

20

40

60

80

100

R
an

g

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

(a)

20 40 60 80

Cross-range

20

40

60

80

R
an

g

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

(b)

Figure 6. The (a) plane image and (b) ship image obtained by RD method using full data.

From the second and third columns in Table 3, we see the results of our method have
the smallest FA and MD, which means that our method can reconstruct the position of
target scatterers most accurately and suppress the artifacts and sidelobe in the background
well. This is consistent with the imaging results shown in Figure 7–9.

As indicated in the fourth, fifth and sixth columns in Table 3, the TCR, ENT and IC
of the GDL-based imaging method show the best values. This is also consistent with the
visual comparison of Figure 7–9.

The last column of Table 3 presents the computing time of each imaging method
considered. It can be seen that the proposed GDL-based imaging method is the fastest
one among all methods. This is due to the non-iterative processing employed in the SVD
during the GDL process as compared to other methods.
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Figure 7. The imaging results of the plane data obtained by (a) GKF imaging method, (b) ONDL imag-
ing method, (c) OFDL imaging method and (d) the GDL imaging method, using 25% measurements.
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Figure 8. The imaging results of plane data obtained by (a) GKF imaging method, (b) ONDL imaging
method, (c) OFDL imaging method and (d) the GDL imaging method, using 50% measurements.

5.5. Discussion on the Parameter Setting

In our experiments, all parameters in GDL based imaging method are shown in
Table 2. The P_size denotes the size of the vectorized image patch, and the P_step denotes
the moving step of the search window on the initial image during the IPG extraction
process. h× w represents the initial size of search window, and l represents the number
of similar image patches in an IPG. The µ and λ are the regularization parameters. The
parameters, including P_size, P_step, h× w, l, µ and λ, are set empirically as shown in
Table 2 and are kept unchanged for all three data sets where λ is adjustable.

Table 3. Evaluation of real ISAR data image quality.

Methods FA MD TCR(dB) ENT IC Time(s)

GKF 144 209 50.0179 5.3205 8.0850 1.3408×103

Plane ONDL 170 173 48.6525 5.4674 7.7229 8.2370
data 1 OFDL 173 130 48.9775 5.5550 7.5045 5.9370

GDL 70 102 57.1222 5.0482 9.5376 3.3620

GKF 86 133 55.5930 5.3800 8.1449 1.221×103

Plane ONDL 45 187 53.4593 5.3152 8.4299 7.2510
data 2 OFDL 55 125 59.9737 5.3395 8.3847 5.8510

GDL 52 104 60.3972 5.2580 8.7278 3.3620

GKF 88 132 56.3161 5.6036 7.5965 1.3301×103

Ship ONDL 155 126 53.6296 5.6388 7.3239 6.3620
data 1 OFDL 148 154 52.5180 5.7109 7.3772 4.3620

GDL 20 55 68.4828 5.1813 9.1454 4.1526
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Figure 9. The target images of ship data yielded by (a) GKF imaging method, (b) ONDL imaging
method, (c) OFDL imaging method as well as (d) the GDL imaging method using 50% measurements.

From Equations (31) and (A1), we know the parameter λ balances the suppression
of the artifacts and the preservation of the details of the target. If λ is too small, the
artifacts cannot be fully suppressed, whereas if λ is too large, the target details may be lost.
Thus, we consider the visual results and the quantitative indices of the imaging results
simultaneously to explore the optimal values of λ for each type of imaging data.

Figure 10 shows the variation of FA, MD, TCR, ENT, IC and Times with different
values of λ, where other parameters, including P_size, P_step, h× w, l, µ are kept constant
for three data sets. We see that as the λ increases, the values of FA and ENT decrease, while
the values of MD, TCR and IC increase. Note that all metrics but MD tend to the optimal
situation with the increase in λ. The higher MD, in fact, indicates the sparser result, which
means that the target structure details in the result may be missing, leading to the relatively
bad appearance.

The target images of three data sets with different values of λ are shown in Figures 11–13,
respectively. From the Figures 11b, 12b and 13b; we can see that three data sets have the
best image quality in the case of λ that equals 0.02, 0.03 and 0.035, respectively. The target
images have the smallest number of artifacts and the best target shape. Furthermore, the
quantitative indices of the three results are better than those of the results obtained by other
imaging methods as shown in Table 3. Thus, the optimal values of λ for plane data 1 and
plane data 2 as well as ship data 1 imaging can be set as 0.02, 0.03 and 0.035, respectively.
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Figure 10. The curves showing the variation of the quantitative indices (a) FA, (b) MD, (c) TCR, (d)
ENT, (e) IC and (f) time of imaging quality with different values of λ for three data sets.
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Figure 11. The imaging results of 25% measurements of plane data reconstructed by GDL method in
the three cases of (a) λ = 0.01, (b) λ = 0.02, and (c) λ = 0.03.
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Figure 12. The target images of 50% measurements of plane data obtained by GDL method in the
three cases of (a) λ = 0.02, (b) λ = 0.03, and (c) λ = 0.04.
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Figure 13. The imaging results of 50% measurements of ship data yield by GDL method in the three
cases of (a) λ = 0.02, (b) λ = 0.035, and (c) λ = 0.04.

6. Conclusions

In this paper, we extended the DL-based ISAR sparse imaging method and presented
the GDL based ISAR sparse imaging method. The GDL without the time-consuming
iteration process has high efficiency. The sparse representation extracted from IPG contains
the self-similarity information between the image patches and the local sparse prior infor-
mation of the target image. The self-similarity information is very helpful in preserving
the target shape or contour during the imaging process. The GDL ISAR sparse imaging
method is better than the state-of-the-art ISAR sparse imaging methods considered in this
paper in both imaging quality and computation speed.
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Appendix A

Theorem A1. Let σ ∈ C
√

n×
√

n, I ∈ C
√

n×
√

n, σGk ∈ C
√np×

√np , IGk ∈ C
√np×

√np , be the error
between σ and I denoted by e = σ − I, where each element in e is represented by ei, i = 1, . . . , n.
Assume that ei is independent and satisfies a distribution with N (0, v2). Then, for ∀ε > 0, the
relationship between ‖σ − I‖2

2 and ∑N
k=1‖σGk − IGk‖ satisfies the following property:

lim
n→∞
K→∞

P{| 1
n
‖σ − I‖2

2 −
1
K

N

∑
k=1
‖σGk − IGk‖

2
2| < ε} = 1 (A1)

Proof. Based on the assumption that each ei is independent, we know that each e2
i is also

independent. Since mean E{ei} = 0 and variance V{ei} = v2, the mean of e2
i can be

expressed as follows:
E{e2

i } = V{ei}+ {E{ei}}2 = v2 (A2)
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By invoking the Convergence in Probability of Law of Large Numbers, for ∀ε > 0, it leads to
the following:

lim
n→∞

P{| 1
n ∑n

i=1 e2
i − v2| < ε

2
} = 1 (A3)

i.e.,

lim
n→∞

P{| 1
n
‖σ − I‖2

2 − v2| < ε

2
} = 1 (A4)

Further, let σG and IG denote the concatenations of all σGk and IGk , respectively.
The error between σG and IG is represented by eG where each element in eG denoted by
ej, j = 1, 2, . . . . . . , K and K = np × l×N. Due to the assumption that each ej is independent
and satisfies a distribution with N (0, v2), the same manipulation with Equation (A3)
applied to e2

j yields the following:

lim
K→∞

P{| 1
K

K

∑
j=1

e2
j − v2| < ε

2
} = 1 (A5)

which can be rewritten as follows:

lim
K→∞

P{| 1
K

N

∑
k=1
‖σGk − IGk‖

2
2 − v2| < ε

2
} = 1 (A6)

From Equation (A4), we know the following:

lim
n→∞

P{− ε

2
< (

1
n
‖σ − I‖2

2 − v2) <
ε

2
} = 1

=⇒ lim
n→∞

P{− ε

2
< (

1
n
‖σ − I‖2

2 −
1
K

N

∑
k=1
‖σGk − IGk‖

2
2)+

(
1
K

N

∑
k=1
‖σGk − IGk‖

2
2 − v2)︸ ︷︷ ︸

=β

<
ε

2
} = 1

=⇒ lim
n→∞

P{− ε

2
− β <

1
n
‖σ − I‖2

2 −
1
K

N

∑
k=1
‖σGk − IGk‖

2
2

<
ε

2
− β} = 1

(A7)

From Equation (A6) we know lim
K→∞

P{β ∈ (− ε
2 , ε

2 )} = 1. Therefore, when K → ∞, we

have − ε
2 − β > − ε

2 − ( ε
2 ) = −ε and ε

2 − β < ε
2 − (− ε

2 ) = ε. Thus, the Equation (A7) can be
scaled to the following:

lim
n→∞
K→∞

P{−ε <
1
n
‖σ − I‖2

2 −
1
K

N

∑
k=1
‖σGk − IGk‖

2
2 < ε} = 1 (A8)

i.e.,

lim
n→∞
K→∞

P{| 1
n
‖σ − I‖2

2 −
1
K

N

∑
k=1
‖σGk − IGk‖

2
2| < ε} = 1 (A9)

Therefore, the Equation (A1) is proved.

Appendix B

Theorem A2.
‖σGk − IGk‖

2
2 = ‖wGk − zGk‖

2
2 (A10)

Proof. According to the definitions of DGk , wGk and zGk , we have the following:
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®
σGk = DGk wGk

IGk = DGk zGk

(A11)

Then,

‖σGk − IGk‖
2
2 = ‖DGk wGk −DGk zGk‖

2
2

= ‖UGk diag(wGk )VH
Gk
−UGk diag(zGk )VH

Gk
‖2

2

= ‖UGk diag(wGk − zGk )VH
Gk
‖2

2

(A12)

where diag(·) denotes the diagonal matrix.
According to the property that the square of F norm of a matrix equals its trace, the

Equation (A12) can be unfolded as follows:

‖UGk diag(wGk − zGk )VH
Gk
‖2

2

= T (UGk diag(wGk − zGk )VH
Gk

(UGk diag(wGk − zGk )VH
Gk

)H)

= T (UGk diag(wGk − zGk ) VH
Gk

VGk︸ ︷︷ ︸
=V−1

Gk
VGk

=E

diag(wGk − zGk )UH
Gk

)

= T (UGk diag(wGk − zGk )diag(wGk − zGk )UH
Gk

)

= T (diag(wGk − zGk )UGk UH
Gk

diag(wGk − zGk ))

= T (diag(wGk − zGk )diag(wGk − zGk ))

= ‖wGk − zGk‖
2
2

(A13)

where T (·) is the operator for calculating the trace of a matrix.
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