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Abstract: Pansharpening, which fuses the panchromatic (PAN) band with multispectral (MS) bands
to obtain an MS image with spatial resolution of the PAN images, has been a popular topic in remote
sensing applications in recent years. Although the deep-learning-based pansharpening algorithm
has achieved better performance than traditional methods, the fusion extracts insufficient spatial in-
formation from a PAN image, producing low-quality pansharpened images. To address this problem,
this paper proposes a novel progressive PAN-injected fusion method based on superresolution (SR).
The network extracts the detail features of a PAN image by using two-stream PAN input; uses a
feature fusion unit (FFU) to gradually inject low-frequency PAN features, with high-frequency PAN
features added after subpixel convolution; uses a plain autoencoder to inject the extracted PAN
features; and applies a structural similarity index measure (SSIM) loss to focus on the structural
quality. Experiments performed on different datasets indicate that the proposed method outperforms
several state-of-the-art pansharpening methods in both visual appearance and objective indexes, and
the SSIM loss can help improve the pansharpened quality on the original dataset.

Keywords: image fusion; pansharpening; feature fusion unit; superresolution

1. Introduction

The sensors onboard satellite platforms record the digital number of land surfaces
in different spectral channels. The acquired images have formed the basis for mapping
different land surfaces. Thus, the spectral parameters of an image, such as the number
of spectral channels, channel width, and mid-bandwidth, are important for evaluating
the quality of remote sensing imagery. The spatial resolution, which is the area of the
land surface represented by a pixel in remote sensing imagery, is another important
parameter. High-resolution remote sensing imagery can distinctly describe the distribution
and structure in a land surface, which forms the basis for fine surface mapping. Therefore,
obtaining imagery with high spatial and spectral resolutions will enrich the information
content in imagery and enhance the capacity for identifying various land surfaces.

Due to the limitations imposed by the data volume collected by the sensor, the data
transmission between a satellite and Earth, and the incoming radiation energy into sensors
within surface units [1], it is exceedingly difficult to obtain imagery with high spatial and
spectral resolution. To address these problems, one panchromatic (PAN) band and multiple
multispectral (MS) bands can be used when installing several different spectrum monitors
for a sensor. Pansharpening, which can overcome the shortcomings of sensors, increases
the spectral resolution of a PAN band by integrating it with MS bands. This process can
also be viewed as an enhancement of the spatial resolution of the MS bands, with the
optimization objective of maintaining their spectral features while increasing their spatial
resolution. To date, pansharpening has become an important technique for processing
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remote sensing data. Based on whether deep learning (DL) is used, pansharpening methods
can be categorized into conventional methods and DL-based methods.

Component substitution (CS)-based methods are one type of conventional pansharpen-
ing method. Considering that a PAN band receives a relatively broad range of wavelengths,
generally covering the wavelength range of visible light, it is strongly correlated with the
luminous intensity (I) component of the intensity-hue-saturation (IHS) color space. Based
on a previous assumption, the IHS replacement method [2] first transforms an MS image
into an IHS space and subsequently replaces the I component with a PAN band, thereby
imparting the high-resolution information carried by the PAN band to the MS image and re-
alizing pansharpening. As the formation mechanism of the reflectance varies between two
land surfaces, the IHS replacement method is prone to causing color distortions in some
land surface features. The principal component analysis (PCA) method [3] converts an MS
image to multiple independent components that contain the main land surface information
and subsequently replaces the first principal component with a PAN band to produce a
sharpened MS image. However, high computational costs and poor real-time performance
pose challenges for application of the PCA method to image pansharpening. The Gram–
Schmidt adaptive (GSA) method [4] and the partial replacement adaptive component
substitution (PRACS) method [5] are two improved CS-based pansharpening methods.

Another commonly employed pansharpening method is the multiresolution analysis
(MRA)-based method. First, a PAN image and a low-resolution MS image are decomposed
into one group of low-frequency images and one group of high-frequency images; second,
the images at each corresponding scale are fused by using a combing algorithm; and last,
the images are fused again at the original scale to produce a sharpened image. MRA-based
combining methods require pyramid processing algorithms, including Laplacian pyramid
transform, wavelet transforms, and so on. Two such algorithms include the generalized
Laplacian pyramid with modulation transfer function-matched filter and regression-based
injection model (MTF-GLP-CBD) [6] and the à Trous wavelet transform (ATWT) [7].

Because the differences among the regions, resolutions, spectral channels, and resolu-
tion conversion relationships for the channels are not adequately described by simple linear
equations, spectral distortions appear in the pansharpened images. Characterized by non-
linear activation functions and multilayer convolution operations, a DL-based method, the
convolutional neural network (CNN), has been extensively applied in areas that require the
establishment of complex nonlinear relationships (e.g., pansharpening) in recent years. The
CNN is capable of adaptively establishing complex relationships by supervised learning.

DL-based pansharpening methods have produced good results in applications. How-
ever, available methods upscale an MS image to the size of a PAN image simply by
interpolation in a preprocessing procedure and fuse interpolated MS images with PAN
images (e.g., CS-based and DL-based methods). The information content in features fused
using multiscale fusion methods (e.g., MRA-based method) is limited, which generates
some distorted results. Frontier research [8] is also exploring when to fuse or extract multi-
resolution features. In view of these two problems, this study presents a new progressive
PAN-injected fusion method based on SR for remote sensing imagery, referred to as detail
information prior net (DIPNet). The main contributions of this study are summarized
as follows:

(1) We use two-stream PAN input to extract PAN features by using a convolution network.
(2) We use the feature fusion unit (FFU) to gradually inject low-frequency PAN features,

and high-frequency PAN features are added after subpixel convolution to perfect an
upsampled MS image.

(3) We use a plain autoencoder to inject the extracted PAN features.
(4) We use the structural similarity index measure (SSIM) [9] loss to guide the network

during training, focusing on the structural quality.

The remainder of this paper is organized as follows: Section 2 presents related works
in this study. Section 3 details the pansharpening method proposed in this study. Section 4
introduces the experimental data used in this study as well as the methods applied to
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evaluate the results. In Section 5, experimental results and comparisons are presented.
Section 6 focuses on the discussion and evaluation of the results. Section 7 concludes
the paper.

2. Background and Related Work
2.1. Image Upscaling and Pyramid Processing Algorithm

Interpolation-based (e.g., nearest neighbor and bilinear) image upscaling algorithms
are prone to blurring images after increasing their size. This phenomenon becomes more
pronounced as the upscaling factor increases, mainly due to a lack of high-frequency,
detailed spatial information after image upscaling. This blurring phenomenon is similarly
associated with the CNN-based SR method. However, the CNN-based SR method is capa-
ble of adaptively adjusting the SR equation based on the image content and, consequently,
inhibiting blurring to a certain extent. Nevertheless, the CNN-based SR method is unable
to completely eliminate blurring.

The Gaussian–Laplacian pyramid-based processing algorithm integrates high- and
low-frequency information at multiple scales and has shown relatively good performance
in the merging and fusion of images. Similarly, for pansharpening, detailed features can
be restored by adding the high-frequency information contained in a PAN image to an
SR-upscaled MS image at multiple scales. This study presents a pansharpening method
referred to as DIPNet that uses high-frequency, detailed information and the fusion of
low-frequency PAN information.

2.2. Deep-Learning-Based Pansharpening

Based on the selected model, DL-based pansharpening methods can be categorized
into four main types, namely image-feature-based methods, autoencoders, SR methods,
and GANs.

Image-feature-based methods: Image-feature-based pansharpening methods have
effective network architectures designed to correspond to the features of fused images. An
MSDCNN [10], which involves the use of convolution kernels of varying sizes to extract
multiscale features to improve the fusion performance, was designed to take full advantage
of the multiscale information contained in image features. A network for pansharpening,
referred to as PanNet [11], was proposed to improve the fusion of high-resolution satellite
imagery. In the PanNet architecture, high-frequency image information is employed to
train a residual network (ResNet) [12] to obtain the details missing in low-resolution images.
Based on the general idea of PanNet, a deep multiscale detail network (DMDNet) [13] was
designed by superseding the conventional residual module with a grouped, multiscale
dilated convolutional residual module. The performance of DMDNet is superior to that of
PanNet in migration, fusion, and reconstruction. Moreover, in the field of image restoration,
You Only Look Yourself (YOLY) [14] uses image features to design an unsupervised image
dehaze model. Therefore, the design of the network, which is based on image features, can
achieve improved performance.

Autoencoders: An autoencoder converts an input image to deep features through a
series of nonlinear mapping operations and subsequently restores the original image by
decoding. Sparse [15] and convolutional [16] autoencoders encode the PAN and MS bands
into sparse matrix features and subsequently enhance the spatial resolution of the MS
image with the PAN image by decoding. TFNet [17] is a pansharpening network based on
a convolutional autoencoder. Through a two-stream architecture, TFNet extracts features
from an MS image and a PAN image and ultimately reconstructs a high-spatial-resolution,
high-spectral-resolution image using a decoder.

SR methods: SR-based pansharpening methods view pansharpening as an SR prob-
lem in MS bands under the constraints of a PAN band. Using the SRCNN [18] architecture,
the PNN method [19] integrates the spatial information in a PAN band during the SR
process by introducing upsampled MS and PAN information and produces results superior
to those produced by conventional methods. To further enhance the spatial resolution
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of imagery, a deep residual PNN [20] method was introduced by improving the PNN
method with the ResNet architecture. A bidirectional pyramid network [21] extracts fea-
tures from a PAN image by convolution operations and produces good pansharpening
results by subpixel convolutional SR fusion of MS and PAN image features at correspond-
ing scales. The PCDRN [22] method progressively fuses images through ResNets and
interpolation based on the scale relationship between MS images and PAN images. The
PCDRN method has shown good fusion performance in high-resolution satellite imagery.
The SR-guided progressive pansharpening based on a deep CNN (SRPPNN) [23] method
upscales a low-resolution MS image by progressive SR and integrates it with a multiscale,
high-frequency PAN image. This method has yielded good results in the pansharpening of
remote sensing imagery.

GANs: The GAN architecture contains a generator coupled with a discriminator and
achieves collaborative optimization through adversarial training. This architecture has
achieved good results in areas such as image generation and style transfer. As pansharp-
ening can be viewed as an image generation problem, deep networks based on the GAN
architecture can be also employed in pansharpening. For example, the pansharpening
GAN (PSGAN) [24] reconstructs high-spatial-resolution multiband images with TFNet as
a generator and a conditional discriminator. Similarly, through the improvement of the
PSGAN architecture, a residual encoder-decoder conditional GAN [25] was designed to
further enhance the capacity to fuse remote sensing imagery. GAN-based pansharpening
methods can help to describe the nonlinear mapping relationships among remote sensing
images and produce relatively good results.

3. Method
3.1. Framework of the Method

The core ideas of the DIPNet are described as follows:

(1) A PAN band contains potential information in the MS bands. Low-frequency PAN
information can reflect the main MS information. High-frequency PAN information
can reflect the details in the PAN band.

(2) In this study, pansharpening is viewed as a PAN band-guided SR problem. High-
frequency PAN information is added to ameliorate the SR-induced blurring problem.

(3) Multiple SR processes are required to obtain an MS image with the same spatial
resolution in the PAN band. In conventional methods, single-scale fusion is inordi-
nately simple, while features fused at multiple scales have limited information content.
Multiscale high- and low-frequency deep PAN and MS features can be combined to
better describe the mapping relationship between PAN bands and MS bands and to
achieve higher-accuracy pansharpening.

(4) A multiscale auxiliary encoder with detailed PAN information and potential MS
information in the PAN band is used to further reconstruct spatial information for the
MS image.

For clarity, Figure 1 shows the workflow of our proposed work. Figure 2 shows the
network architecture designed in this study based on the abovementioned ideas.
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Figure 1. The workflow of the DIPNet.

Figure 2. The detailed architecture of our proposed work in this study. The PAN image is decomposed into a high-pass
component and low-pass component, which are two-stream PAN extracting inputs. They are then injected into the SR
process and plain autoencoder of an MS image.

To facilitate the description of the problem, let h and l be the spatial resolutions of
the PAN image P and the MS image M, respectively. To ensure a clear discussion, the
PAN image and MS image are denoted Ph and Ml , respectively. Pansharpening fuses these
two images into an MS image M̃h with a spatial resolution of h. DIPNet involves four
main steps:
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(1) Frequency decomposition. In this step, Ph is decomposed into a high-pass com-
ponent Ph

H and a low-pass component Ph
L . Ph

H reflects the high-frequency details (e.g.,
boundaries) of Ph. Ph

L reflects the complete spectral features (e.g., color features in a rela-
tively large local area) of Ph. Frequency spectrum decomposition is achieved by Gaussian
filtering. First, a Gaussian filter matrix with a window size of Wr is established. Second, Ph

is filtered, and the result is treated as Ph
L . The difference between Ph and Ph

L is treated as Ph
H .

Ph
H = Ph − Ph

L (1)

(2) Feature Extraction. Features are extracted from Ph
H and Ph

L using a 3 × 3 convolution
operation followed by the ResNet module. Features F(Ph

H) and F(Ph
L), each with a spatial

resolution of h and a total of K channels, are thus obtained. In addition, features are
extracted from Ml using a 3 × 3 convolution operation. MS image features F(Ml) with a
total of K channels and a resolution of l are also obtained.

In many cases, the spatial-resolution multiples (e.g., two, four, or eight iterations) vary
between a PAN image and MS image. In each convolutional downsampling operation, the
output feature size is half the input feature size. The number of downsampling iterations
required to downsample the PAN image to the spatial resolution in the MS bands also
varies. For ease of the description of the problem, let m be the intermediate resolution. For
example, when the resolution ratio of an MS image to a PAN image is 4, l is 4, m is 2, and h
is 1; when the resolution ratio of an MS image to a PAN image is 6, l is 6, m is 2, and h is
1. This paper discusses a situation in which the resolution ratio of an MS image to a PAN
image is 4, which is suitable for most high-resolution satellite images.

F(Ph
H) and F(Ph

L) are downsampled by a 3 × 3 convolution operation with a step size
of 2. Features are further extracted using the ResNet module. A high-pass component
and a low-pass component, each with a spatial resolution of m, are thus obtained; they
are denoted as F(Pm

H ) and F(Pm
L ), respectively. Similarly, a high-pass component and a

low-pass component, each with a spatial resolution of l, can be obtained; they are denoted
as F(Pl

H) and F(Pl
L), respectively.

From this process, a low-frequency PAN information feature group F(Ph,m,l
L ) and a

high-frequency PAN information feature group F(Ph,m,l
H ) are obtained:

F(Ph,m,l
L ) = {F(Ph

L), F(Pm
L ), F(Pl

L)} (2)

F(Ph,m,l
H ) = {F(Ph

H), F(Pm
H ), F(Pl

H)} (3)

(3) Feature Fusion (FF). F(Pl
L) and F(Ml) are fused using an FFU. Features F(Mm

F )
with a resolution of m are obtained by SR and subsequently added to F(Pm

H ) pixel by
pixel. This process is repeated, and ultimately, MS features F(Mh

F) with a resolution of h
are obtained.

In this process, MS features are fused with low- and high-frequency PAN features at
multiple scales. Thus, progressively fused MS features have more information content than
features extracted from an interpolation-upscaled MS image.

(4) Image Reconstruction. An autoencoder is used to reconstruct the structure based
on F(Ph,m,l

L ), F(Ph,m,l
H ), and F(Mh

F) (fused features obtained by FF-based SR). A PAN image
with an enhanced spatial resolution is thus obtained. In this process, multiscale PAN
features are injected into the decoder to further increase the information content of the
MS image.

Regarding the network activation function, a leaky rectified linear unit with a param-
eter of 0.2 is set as the activation function for all the convolutional layers, except for the
ResNet module and the subpixel and output convolutional layers for SR.

The following section introduces an FF-based SR module and image reconstruction
module into which high- and low-frequency PAN information is injected.
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3.2. FF-Based SR Module (Step 3)

Prior to SR, the FFU is used to fuse F(Pl
L) and F(Ml) in the following manner:

F(Ml
F) = Conv1×1(F(Ml)©F(Pl

L)©(F(Ml)⊕ F(Pl
L))) (4)

where © represents an operation that connects feature images in series, ⊕ denotes an
operation that adds feature images pixel by pixel, Conv1×1 is a convolution function with a
convolution kernel size of 1, and F(Ml

F) is the fused MS features (the subscript F indicates
fused features). The FFU produces combined features with a total of 3K channels through
a serial connection operation and subsequently performs a 1 × 1 convolution operation
on the combined features to produce fused features with a total of K channels. Thus, the
extracted features are linearly fused by using rich per-added features.

Subsequently, the ResNet module is used to extract features from F(Ml
F):

Fres(Ml
F) = RBs(F(Ml

F))⊕ F(Ml
F) (5)

where RBs represents the extraction operations by a total of L ResNet modules. The input
features F(Ml

F) are added for residual learning. Thus, F(Ml
F)-based deep features Fres(Ml

F)
are obtained. For the extraction of PAN features in Step 2, the residual module similarly
consists of a total of L ResNet modules.

Subpixel convolution [26] is an upsampling method based on conventional convolu-
tion and pixel arrangement in feature images and can be used to achieve image SR. Let r
be the upscaling factor and c× h× w (c, h, and w are the number of channels, height, and
width, respectively) be the size of the initial input feature image Fres(Ml

F). First, through
convolution operations on Fres(Ml

F), a total of r2c convolution kernels is extracted, and an
output feature image with a size of r2c× h× w (i.e., a total of h× w vectors each with a
length of r2c) is obtained. Second, all the vectors, each with a length of r2c, are arranged
into a c× r× r pixel matrix. Thus, a feature image with a size of c× hr× wr is obtained.
As the current resolution of this image is m, it is denoted by F(Mm

↑ ).
In conventional image SR, due to a lack of sufficient information for predicting the

postupscaling pixel values, the post-SR image lacks detailed spatial features, i.e., the post-
SR image is blurry. To address this problem, high-frequency features are fused to sharpen
the blurry areas. The previously obtained F(Mm

↑ ) and the high-frequency information
image F(Pm

H ) of the corresponding size extracted by convolution operations are added to
restore a feature image that has become blurry after upscaling (i.e., F(Mm)), as shown in
the following equation:

F(Mm) = F(Mm
↑ )⊕ F(Pm

H ) (6)

Based on these steps, the resolution of the MS image features is improved from l to m.
Similarly, the image features can be improved from m to h. Ultimately, fused MS and

PAN image features F(Mh) are obtained.

3.3. Image Reconstruction Module into Which High- and Low-Frequency PAN Information Is
Injected (Step 4)

A convolutional autoencoder can effectively encode an image to produce
high-dimensional coded information and decode deep information by reversing the encod-
ing process to reconstruct the input image. Thus, an autoencoder is employed to reconstruct
the image based on F(Mh):

F(eh), F(em), F(el) = E(F(Mh)) (7)

where E represents a three-layer convolutional encoding operation (the first layer is a
convolutional operation with a step size of 1 performed to produce coded features with a
total of K channels and a resolution of h; the last two layers are convolutional operations
with a step size of 2 performed to produce coded features with a total of 2K channels and a
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resolution of m and coded features with a total of 4K channels and a resolution of l), and
F(eh), F(em), and F(el) are coded features with scales of h, m, and l, respectively.

Conventional convolution operations produce feature images with specific sizes based
on the convolution kernel size, weight, and step size of the sliding window. Generally,
convolution operations reduce the feature size. To preserve the feature size, it is possible to
fill numerical values at the boundaries of the feature image.

The encoder applied in this study encodes each feature image by taking advantage of
the properties of convolution to recover multiscale feature information and thus facilitate
the injection of multiscale PAN features.

To utilize important multiscale PAN information, the high-frequency PAN information
feature group F(Ph,m,l

H ) and low-frequency PAN information feature group F(Ph,m,l
L ) are

injected into the features that require decoding through the decoder architecture as follows:

F(dm) = DeConv1(F(el)©F(Pl
L)©F(Pl

H)) (8)

F(dh) = DeConv2(F(dm)©F(em)©F(Pm
L )©F(Pm

H )) (9)

F(d) = Conv3×3(F(dh)©F(eh)©F(Ph
L)©F(Ph

H)) (10)

where © represents an operation that connects feature images in a series based on the
number of channels, and DeConv represents a deconvolution operation, which is the
reverse process of convolution and can upscale and output feature images with specific
numbers of channels. Both DeConv1 and DeConv2 are 2 × 2 deconvolution operations with
a step size of 2; Conv3×3 represents a conventional 3 × 3 convolution operation; and F(dm),
F(dh), and F(d) are fused high-frequency features, fused low-frequency features, and fused
coded features, respectively, with resolutions of l, m, and h and 3K, 3K, and K channels,
respectively. The decoder used in this study upscales and decodes coded features by taking
advantage of the properties of deconvolution.

F(d) is converted by a 1 × 1 convolution operation to the number of channels required
for the MS image, to which the upsampled MS image Ml

↑l/h
is added. Thus, a high-

resolution MS image M̃h is obtained, as shown here:

M̃h = Conv1×1(F(d)) + Ml
↑l/h

(11)

3.4. Loss Function

Based on the abovementioned architecture, the whole pansharpening network archi-
tecture can be represented by the following equation:

M̃h = fAE( fSR(Ml , fE(Ph)), fE(Ph); θ) (12)

where θ is a network parameter, fE represents the extraction of multiscale features from the
high- and low-pass components of the PAN image, fSR represents FF-based SR, and fAE is
a function of the autoencoder structure .

The SSIM function can quantitatively reflect the differences in brightness, contrast,
and structure between two images. This function can make the network focus on the
structural information of the image rather than the distance between the result and ground
truth (e.g., MAE and MSE). The SSIM loss function is used to train the model in this study
in the manner shown by the following equation:

min
θ

∑
i

1− SSIM( fAE( fSR(Ml , fE(Ph)), fE(Ph); θ), Mh
i ) (13)

where Ml
i , Ph

i , Mh
i represent the ith training sample.

As it is impossible to obtain true high-resolution MS images, the training data are
preprocessed according to Wald’s protocol [27]. Specifically, the downsampled MS and
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PAN images are input into the network model; the original MS image is treated as the
true-value image; and Equation (13) is applied to calculate and update the network.

4. Data and Evaluation Methods
4.1. Datasets

Three datasets produced by different satellites were selected for evaluating DIPNet
and the comparison methods. The following subsection details information (i.e., sensors,
wavelength, spatial resolution, and number of bands) about the datasets.

4.1.1. QuickBird Dataset

This dataset contains imagery for six regions in different geographic locations, which
is from [23]. The surface cover types in these regions include forests, farmlands, buildings,
and rivers. The MS images contain the visible-light band (RGB channels) and the near-
infrared (NIR) band. The PAN images cover the RGB and NIR bands of the MS images.
The spatial resolution (0.7 m) of the PAN images is four times that (2.8 m) of the MS images.

4.1.2. WorldView 2 Dataset

This dataset, provided by MAXAR (https://resources.maxar.com/optical-imagery
(accessed on 1 June 2021)), contains data for Washington D.C. (an urban area), USA. The
MS images have a spatial resolution of 1.6 m and contain eight (coastline, blue, green,
yellow, red, red-edge, NIR-1, and NIR-2) bands. The PAN images have a spatial resolution
of 0.4 m.

4.1.3. IKONOS Dataset

This dataset originated from Meng et al.’s [28] pansharpening evaluation dataset. The
surface cover types include cities, vegetation, rivers, and lakes. The MS images have a
spatial resolution of 4 m and contain four (blue, green, red, and NIR) bands. The PAN
images have a spatial resolution of 1 m.

4.1.4. Dataset Preprocessing

The images have an 11-bit radiometric resolution, ranging from 0 to 2047. In this study,
the images were not subjected to any relevant radiation corrections. The abovementioned
images differ in size. To facilitate testing and training, the MS images and PAN images for
the corresponding areas were cropped to 256 × 256 image blocks and 1024 × 1024 image
blocks, respectively, which were then randomly divided into a training set and testing set.
Table 1 summarizes the number of image blocks obtained.

Table 1. Number of image blocks for the experiment.

Dataset Total Numbers Training Numbers Testing Numbers

QuickBird 714 514 200
WorldView 2 506 356 150

IKONOS 200 150 50

In this study, labels were prepared according to Wald’s protocol for model train-
ing. The procedure is detailed as follows: first, the MS image and PAN image were
downsampled fourfold based on the MTF low-pass filter of the corresponding sensor
to a 64 × 64 image M↓4 and a 256 × 256 image P↓4, respectively. Eventually, a simulated
image pair (M↓4, P↓4, M) was obtained to allow for the use of the original MS image as a
supervision objective for training. For the training set, each original MS–PAN image pair
was similarly downsampled to obtain a simulated image pair (M↓4, P↓4, M). The results
were evaluated.

https://resources.maxar.com/optical-imagery
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4.2. Experimental and Comparison Methods

During the training process, an Adam optimizer with an initial learning rate of
0.0001, a weight decay parameter of 10−8, and other parameters set to their respective
default values was employed to train 1000 epochs to compare DIPNet with other methods.
The training parameters are detailed as follows: the training batch size was set to 16.
Prior to training, all the initial weights of the neural network were initialized using a
normal distribution with a mean of 0 and a variance of 0.02. All the other parameters
were set to their respective default values. During the training process, several data
augmentation techniques, including random horizontal flipping, random vertical flipping,
random rotation by 90°, and random cropping, were used. In the random cropping process,
each simulated image pair (M↓4, P↓4, M) was cropped to a 32 × 32 M↓4, a 128 × 128 P↓4,
and a 128 × 128 M.

With respect to the parameters of the experimental method, the size Wr and variance of
the Gaussian filter kernel were set to 11 and 1, respectively, and the number of convolution
kernels K and number of residual blocks L were set to 64 and 2, respectively. To prevent
randomness from affecting the experimental results, the same seed was set for deterministic
calculations to ensure that the experimental results were reproducible.

Four conventional methods (GSA, PRACS, ATWT, and MTF-GLP-CBD) and five DL
methods (PNN, MSDCNN, PanNet, TFNet, and SRPPNN) were selected for comparison in
this study. The MATLAB code for pansharpening provided by Vivone et al. [29] was used
for the conventional pansharpening methods and comparison calculations. The experiment
was conducted on a computer with an AMD Ryzen 5 3600 3.6 GHz processor, 32 GB of
memory, and an NVIDIA RTX 2070 Super graphics card. The coding environment involved
Windows 10 (64 bit), MATLAB (R2013a), Python 3.7.4, and PyTorch 1.6.0.

4.3. Quantitative Evaluation Indices

Several quantitative indices, including the relative dimensionless global error in
synthesis (ERGAS) [30], spectral angle mapper (SAM) [31], universal image quality index
(UIQI) [32] and its extended index Q2n [33], spatial correlation coefficient (SCC) [34], and
quality without reference (QNR) [35], were employed in the experiment. According to the
types of indicators, we divided them into three parts to provide a detailed description.

(1) Indices for spectrum: The ERGAS and SAM primarily reflect the spectral distortions
in an enhanced image compared to a reference image. Lower values of ERGAS and SAM
indicate that the spectral distribution of an enhanced image is similar to that of the reference
image. The details are provided as follows:

RMSE(x, y) =

√
1
m

m

∑
i=1

(xi − yi)
2 (14)

EDRAS(x, y) = 100
h
l

√√√√ 1
N

N

∑
i=1

(
RMSE(xi, yi)

MEAN(yi)

)2

(15)

SAM(x, y) = arccos(
x · y

‖x‖ · ‖y‖ ) (16)

where x and y are the pansharpened image and ground truth, respectively; m is the number
of the pixels in the images; h and l are the spatial resolution of the PAN image and MS
image, respectively; and MEAN(yi) is the mean of the ith band of the ground truth which
has a total of N bands.

(2) Indices for structure: UIQI and Q2n represent the quality of each band and the
quality of all the bands. High values of the UIQI and Q2n suggest that the quality of the
resultant and reference images is similar. Their equations are expressed as follows:

UIQI(x, y) =
4σxy · µx · µy

(σ2
x + σ2

y )(µ
2
x + µ2

y)
(17)
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Q2n(x, y) =
4σXY · µX · µY

(σ2
X + σ2

Y)(µ
2
X + µ2

Y)
(18)

For UIQI, µx and µy are the means of x and y, respectively; σx and σy are the variances
of x and y, respectively; and σxy denotes the covariance between x and y. Generally, the
index is calculated by a kernel.

For Q2n, X and Y are the hypercomplex numbers of x and y, respectively; µX and µY
are the means of X and Y, respectively; σX and σY are the variances of X and Y, respectively;
and σXY denotes the covariance between X and Y.

The SCC is a spatial evaluation index that primarily reflects the difference in high-
frequency details between two images, and a value of SCC near 1 indicates a good spatial
resolution of the resultant image, as follows:

Filter =

−1 −1 −1
−1 8 −1
−1 −1 −1

 (19)

SCC(x, y) =

w
∑

i=1

h
∑

j=1
(Filter(x)i,j − µFilter(x))(Filter(y)i,j − µFilter(y))√

w
∑

i=1

h
∑

j=1
(Filter(x)i,j − µFilter(x))

2
w
∑

i=1

h
∑

j=1
(Filter(y)i,j − µFilter(y))

2

(20)

where Filter is a high frequency kernel, which is used to process images; µFilter(x) and
µFilter(y) are the means of Filter(x) and Filter(y), respectively; and w and h are the weight
and height, respectively, of an image.

(3) Indices for no reference: The QNR mainly reflects the fusion performance in the
absence of true reference values, which consists of Ds and Dλ. An index of Ds near 0
represents good performance of a structure; an index of Dλ near 0 shows good fusion in a
spectrum; and a value of QNR near 1 indicates a good original pansharpening performance.

Dλ(x, M) = p

√√√√ 1
C(C− 1)

C

∑
c=1

C

∑
r=1(r 6=c)

|UIQI(xc, xr)−UIQI(Mc, Mr)|p (21)

Ds(x, P) = q

√√√√ 1
C

C

∑
c=1
|UIQI(xc, P)−UIQI(Mc, P ↓)|q (22)

QNR(x, M, P) = (1− Dλ(x, M))i · (1− Ds(x, P))j (23)

where p and q denote positive integer exponents; M and P are the MS image and PAN
image, respectively; i and j are the weighted parameters to quantify the spectral distortion
and spatial distortions, respectively; and C is the number of the bands in an MS image. In
our experiment, p, q, i, and j are set to 1.

5. Results and Evaluations
5.1. Experimental Results

This section presents a visual comparison of DIPNet and the comparison methods. To
facilitate visualization, the RGB portion of each image was cropped and extended at 2% to
an 8-bit color image. To clearly visually compare the reconstructed images, the absolute
difference between the true-value and fused images was increased by factors of 10, 4, and 4
for the QuickBird dataset, WorldView 2 dataset, and IKONOS dataset, respectively.

Figure 3 shows the performance of each method on the QuickBird dataset. With respect
to the original data, as shown in Figure 3I,IV, DIPNet performed the best in preserving
both spectral information and structural information, whereas PanNet produced bright
color spots at the edges of the buildings, and TFNet distorted the spectral information.
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With respect to the simulated data, as shown in Figure 3II,V, the result produced by DIPNet
was the closest to the true-value image, while the four DL-based methods, namely PNN,
MSDCNN, TFNet, and SRPPNN, also performed considerably well. However, as shown
by the residual images in Figure 3III,VI, the performance of PanNet was inferior to that of
the other DL methods in data reconstruction on the QuickBird dataset.

Figure 3. Results produced by DIPNet and the comparison methods on the QuickBird dataset and their residuals. (a) GSA;
(b) PRACS; (c) ATWT; (d) MTF-GLP-CBD; (e) PNN; (f) MSDCNN; (g) PanNet; (h) TFNet; (i) SRPPNN; and (j) DIPNet.
Rows (I,IV) show pansharpening on the original scale; rows (II,V) show pansharpening on a reduced scale; and rows
(III,VI) show residuals on a reduced scale.

Figure 4 shows the performance of each method on the WorldView 2 dataset. With
respect to the original data, as shown in Figure 4I,IV, DIPNet notably outperformed the
other methods in fusion and reconstruction (evidenced, for example, by the structural edges
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of the trees and the swimming pool to the right of the building within the red box). With
respect to the simulated data, as shown in Figure 4II,V, the results produced by DIPNet
were the closest to the true-value image. In addition, DIPNet far outperformed the other
methods in representing the edge information for the swimming pool within the red box.
These findings, with the residual images in Figure 4III,VI, show that DIPNet outperformed
the other methods in the reconstruction of the structural details on the WorldView 2 dataset.

Figure 4. Results produced by DIPNet and the comparison methods on the WorldView 2 dataset and their residuals. (a)
GSA; (b) PRACS; (c) ATWT; (d) MTF-GLP-CBD; (e) PNN; (f) MSDCNN; (g) PanNet; (h) TFNet; (i) SRPPNN; and (j) DIPNet.
Rows (I,IV) show pansharpening on the original scale; rows (II,V) show pansharpening on a reduced scale; and rows
(III,VI) show residuals on a reduced scale.

Figure 5 shows the performance of each method on the IKONOS dataset. With respect
to the original data, as shown in Figure 5I,IV, the edges of the buildings within the red box
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in the image produced by DIPNet were the smoothest and consistent with those in the
original PAN image, whereas the edges of the buildings within the red box in the image
produced by each of the other DL-based methods were distorted. While the buildings in
the images produced by the conventional methods were structurally distinguishable, their
colors differed from those in the true-value image. The simulated data in Figure 5II,V and
the residual images in Figure 5III,VI show that DIPNet outperformed the other methods in
the reconstruction of structural details on the IKONOS dataset.

Figure 5. Results produced by DIPNet and the comparison methods on the IKONOS dataset and their residuals. (a) GSA;
(b) PRACS; (c) ATWT; (d) MTF-GLP-CBD; (e) PNN; (f) MSDCNN; (g) PanNet; (h) TFNet; (i) SRPPNN; and (j) DIPNet.
Rows (I,IV) show pansharpening on the original scale; rows (II,V) show pansharpening on a reduced scale; and rows
(III,VI) show residuals on a reduced scale.
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5.2. Comparison of the Quantitative Indices

This section presents a numeric assessment of DIPNet and the comparison methods.
To facilitate a numeric comparison, the best performance, second-best performance, and
third-best performance in Tables 2–4 are shown in red, green, and blue, respectively.

Table 2 summarizes a comparison of the values of the indices for the methods on 200
images from the QuickBird dataset. As demonstrated by the values of the first five indices,
DIPNet outperformed the other methods in the preservation of the spectral and structural
information. Regarding the last three indices, the Dλ value for PRACS was the lowest,
indicating that the PRACS method outperformed the other methods in terms of preserving
the spectral information on the original scale. The Ds value for DIPNet was the lowest,
suggesting that the DIPNet far outperformed the other methods in preservation of the
structural information and took full advantage of the multiscale high- and low-frequency
feature information contained in the PAN image. When evaluated by the total index QNR,
DIPNet was second only to SRPPNN. This finding is attributed to the notion that DIPNet
does not adequately consider spectral information and that the Dλ value of DIPNet is
higher than that of SRPPNN.

Table 3 summarizes a comparison of the values of the indices for the methods on
150 images from the WorldView 2 dataset. As demonstrated by the first five indices,
DIPNet outperformed the other methods in preservation of the spectral and structural
information. Regarding the last three indices, PRACS similarly performed the best in
preservation of spectral information, followed by DIPNet, suggesting good performance of
DIPNet in preservation of the original MS information on the WorldView 2 dataset. The
Ds value for PanNet was the lowest, indicating good performance in the fusion of data
acquired by the high-resolution satellites of the WorldView series. When evaluated by the
total index QNR, DIPNet outperformed PanNet because DIPNet optimizes the nonlinear
relationships between low-frequency PAN and MS information and high-frequency PAN
and MS information at multiple scales.

Table 4 summarizes a comparison of the values of the indices for the methods on
50 images from the IKONOS dataset. As demonstrated by the first five indices, DIPNet
outperformed the other methods in preservation of the spectral and structural information.
With respect to the last three indices, the Dλ value for DIPNet was the lowest, suggesting
that DIPNet performed the best regarding preservation of the MS information in a low-
resolution satellite. The Ds value for DIPNet was also the lowest. Thus, DIPNet performed
the best in preservation of the structural information and total index QNR.

Table 2. Quantitative results of various methods on QuickBird.

Method ERGAS↓ SAM↓ SCC↑ Q2n↑ UIQI↑ Dλ↓ Ds↓ QNR↑
GSA 1.8814 2.4336 0.8984 0.8126 0.7906 0.0506 0.0916 0.8640

PRACS 1.8067 2.3154 0.9020 0.7974 0.7810 0.0231 0.0774 0.9015
ATWT 1.8478 2.4240 0.9022 0.8068 0.8029 0.0929 0.1182 0.8030
MTF-
GLP-
CBD

1.8584 2.4074 0.8992 0.8146 0.7916 0.0426 0.0693 0.8921

PNN 1.3068 1.7034 0.9438 0.8783 0.8792 0.0470 0.0493 0.9072
MSDCNN 1.2697 1.6403 0.9463 0.8836 0.8847 0.0402 0.0537 0.9096
PanNet 1.4373 1.8319 0.9393 0.8687 0.8738 0.0477 0.0482 0.9072
TFNet 1.0756 1.3809 0.9731 0.8929 0.9039 0.0618 0.0419 0.9000

SRPPNN 1.0090 1.3318 0.9736 0.9052 0.9058 0.0403 0.0434 0.9190
DIPNet 0.9203 1.2373 0.9797 0.9128 0.9180 0.0672 0.0264 0.9096
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Table 3. Quantitative results of various methods on WorldView 2.

Method ERGAS↓ SAM↓ SCC↑ Q2n↑ UIQI↑ Dλ↓ Ds↓ QNR↑
GSA 4.4955 7.7368 0.8198 0.8525 0.8275 0.0758 0.1488 0.7877

PRACS 5.4284 7.5695 0.7489 0.7705 0.7569 0.0149 0.0887 0.8980
ATWT 4.7309 7.2916 0.8405 0.8344 0.8217 0.0902 0.1420 0.7819
MTF-
GLP-
CBD

4.6106 7.6830 0.8178 0.8446 0.8212 0.0788 0.1347 0.7983

PNN 3.2127 5.3787 0.9229 0.9073 0.9049 0.0434 0.0614 0.8986
MSDCNN 3.0133 4.9910 0.9347 0.9164 0.9138 0.0539 0.0629 0.8886
PanNet 3.4526 5.6125 0.9250 0.8985 0.9044 0.0359 0.0519 0.9145
TFNet 2.7642 4.5205 0.9471 0.9265 0.9237 0.0538 0.0751 0.8777

SRPPNN 2.7717 4.5596 0.9461 0.9267 0.9245 0.0478 0.0631 0.8937
DIPNet 2.7368 4.4226 0.9518 0.9313 0.9288 0.0287 0.0533 0.9210

Table 4. Quantitative results of various methods on IKONOS.

Method ERGAS↓ SAM↓ SCC↑ Q2n↑ UIQI↑ Dλ↓ Ds↓ QNR↑
GSA 1.5683 2.2253 0.9172 0.8252 0.8199 0.1382 0.2044 0.6944

PRACS 1.7359 2.2594 0.9040 0.7993 0.7959 0.0748 0.1432 0.7979
ATWT 1.6331 2.2373 0.9173 0.8188 0.8208 0.1606 0.2104 0.6714
MTF-
GLP-
CBD

1.5929 2.2356 0.9166 0.8245 0.8179 0.1411 0.1923 0.7025

PNN 1.4814 2.1211 0.9310 0.8348 0.8429 0.0826 0.1032 0.8304
MSDCNN 1.3676 1.9286 0.9411 0.8462 0.8594 0.0969 0.1134 0.8123
PanNet 1.5728 2.3126 0.9262 0.8402 0.8428 0.0769 0.1124 0.8232
TFNet 1.4147 1.9169 0.9406 0.8459 0.8561 0.0971 0.0785 0.8401

SRPPNN 1.2263 1.6641 0.9500 0.8693 0.8745 0.0831 0.1043 0.8302
DIPNet 1.2300 1.6446 0.9521 0.8725 0.8764 0.0739 0.0664 0.8679

6. Discussion
6.1. Ablation Experiment

In DIPNet, the high- and low-frequency PAN feature groups and MS features are
progressively fused through means such as an SR module, an FFU module, and feature
addition. An ablation experiment was conducted to examine the effectiveness of DIPNet.
The SR of the MS features, fusion with low-frequency PAN information, fusion with
high-frequency PAN information, low-frequency PAN information autoencoder, and high-
frequency PAN information autoencoder are denoted as MSR, PL, PH, AEL, and AEH,
respectively. The network parameters for the ablation experiment were set to L = 2 and
K = 64. To facilitate numeric comparison, the best performance, second-best performance,
and third-best performance in Tables 5–7 are shown in red, green, and blue, respectively.

Table 5. Quantitative results produced by various modules on the QuickBird dataset.

Row Method ERGAS↓ SAM↓ SCC↑ Q2n↑ UIQI↑ Dλ↓ Ds↓ QNR↑
1 MSR+MSE 2.3216 2.5047 0.7618 0.7639 0.7667 0.0399 0.1050 0.8592
2 MSR+PL+MSE 1.0015 1.3234 0.9752 0.9049 0.9082 0.0529 0.0277 0.9219
3 MSR+PH+MSE 1.3479 1.7686 0.9482 0.8620 0.8758 0.0424 0.0384 0.9212
4 MSR+PL+PH+MSE 1.0656 1.4245 0.9726 0.8973 0.8993 0.0474 0.0281 0.9265
5 MSR+PL+PH+AEL+MSE 0.9127 1.2211 0.9788 0.9788 0.9148 0.0596 0.0280 0.9146
6 MSR+PL+PH+AEH+MSE 0.9574 1.2716 0.9771 0.9122 0.9154 0.0510 0.0260 0.9252
7 DIPNet-FFU+MSE 0.9303 1.2446 0.9772 0.9122 0.9136 0.0421 0.0327 0.9271
8 DIPNet+MSE 0.9378 1.2392 0.9781 0.9043 0.9129 0.0447 0.0356 0.9217
9 DIPNet+MAE 0.8980 1.1908 0.9799 0.9160 0.9193 0.0460 0.0288 0.9275

10 DIPNet 0.9203 1.2373 0.9797 0.9128 0.9180 0.0672 0.0264 0.9096
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Table 6. Quantitative results produced by various modules on the WorldView 2 dataset.

Row Method ERGAS↓ SAM↓ SCC↑ Q2n↑ UIQI↑ Dλ↓ Ds↓ QNR↑
1 MSR+MSE 5.7362 5.9000 0.7018 0.7762 0.7757 0.0440 0.0865 0.8730
2 MSR+PL+MSE 2.8065 4.4839 0.9470 0.9265 0.9241 0.0317 0.0606 0.9113
3 MSR+PH+MSE 2.9345 4.7894 0.9430 0.9211 0.9185 0.0279 0.0668 0.9082
4 MSR+PL+PH+MSE 2.8237 4.5604 0.9465 0.9239 0.9223 0.0275 0.0593 0.9161
5 MSR+PL+PH+AEL+MSE 2.7183 4.4147 0.9502 0.9279 0.9257 0.0282 0.0610 0.9141
6 MSR+PL+PH+AEH+MSE 2.6557 4.3223 0.9530 0.9294 0.9273 0.0227 0.0596 0.9205
7 DIPNet-FFU+MSE 2.6529 4.3328 0.9529 0.9304 0.9278 0.0279 0.0611 0.9148
8 DIPNet+MSE 2.6550 4.3369 0.9528 0.9293 0.9270 0.0274 0.0624 0.9136
9 DIPNet+MAE 2.6374 4.3099 0.9534 0.9316 0.9289 0.0252 0.0625 0.9157

10 DIPNet 2.7368 4.4226 0.9518 0.9313 0.9288 0.0287 0.0533 0.9210

Table 7. Quantitative results produced by various modules on the IKONOS dataset.

Row Method ERGAS↓ SAM↓ SCC↑ Q2n↑ UIQI↑ Dλ↓ Ds↓ QNR↑
1 MSR+MSE 2.4161 2.3731 0.7590 0.7025 0.7077 0.0757 0.1232 0.8113
2 MSR+PL+MSE 1.3314 1.8612 0.9442 0.8505 0.8561 0.0696 0.0799 0.8615
3 MSR+PH+MSE 1.5921 2.2924 0.9215 0.8191 0.8320 0.0688 0.0973 0.8439
4 MSR+PL+PH+MSE 1.5200 2.1522 0.9325 0.8252 0.8431 0.0708 0.1087 0.8330
5 MSR+PL+PH+AEL+MSE 1.2163 1.6557 0.9528 0.8703 0.8770 0.0836 0.0717 0.8566
6 MSR+PL+PH+AEH+MSE 1.1551 1.5570 0.9564 0.8787 0.8821 0.0866 0.0759 0.8501
7 DIPNet-FFU+MSE 1.2595 1.6962 0.9510 0.8650 0.8719 0.0945 0.0902 0.8320
8 DIPNet+MSE 1.2227 1.6230 0.9533 0.8583 0.8764 0.0754 0.0776 0.8578
9 DIPNet+MAE 1.2186 1.6399 0.9525 0.8711 0.8769 0.0782 0.0766 0.8567

10 DIPNet 1.2300 1.6446 0.9521 0.8725 0.8764 0.0739 0.0664 0.8679

6.1.1. Network Architecture

To verify the performance improvement resulting from the integration of the high- and
low-frequency PAN feature groups with MSR, the architecture of DIPNet was split into the
following: MSR; FFU-based SR of the MS and low-frequency PAN information (MSR+PL);
MSR combined with high-frequency PAN information (MSR+PH); FFU-based SR of the
MS and low-frequency PAN information combined with high-frequency PAN information
(MSR+PL+PH); FFU-based SR of the MS and low-frequency PAN information combined
with high-frequency PAN information and low-frequency PAN information autoencoder
(MSR+PL+PH+AEL); and FFU-based SR of the MS and low-frequency PAN information
combined with high-frequency PAN information and high-frequency PAN information
autoencoder (MSR+PL+PH+AEH). Rows 1, 2, 3, 4, 5, 6, and 8 in each of Tables 5–7 show
the results produced by these six components and the complete DIPNet under the same
training conditions. As demonstrated in these three tables, MSR alone could not produce
relatively good quantitative results due to a lack of PAN information. Adding PH to MSR
slightly improved the indices due to the addition of some high-frequency information
after upsampling of the network. Adding PL to MSR improved the indices to a far greater
extent than adding PH, due to the inclusion of MS-band information in the PAN image.
The improvement in the indices from integrating a combination of PL and PH with MSR
differed insignificantly from that from integrating PL alone with MSR. Introducing the
features into the autoencoder for reconstruction further improved the indices compared to
those with the integration of MSR and PL, suggesting that an autoencoder with multiscale
high- and low-frequency PAN features can improve the robustness of the network. On the
IKONOS dataset, however, using the low-frequency PAN information autoencoder can
increase the number of reduced indices.

6.1.2. Function of the FFU

Equation (2) details the fusion method for the FFU. We believe that a simple feature
addition damages the detailed outline features at the edges that can be potentially extracted.
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A comparison of rows 7 and 8 in Tables 5–7 under the same conditions shows that the
proposed FFU significantly improved the fusion performance on the IKONOS dataset.
While the FFU did not improve the fusion performance on the images acquired by the
other satellites, it did not have a significant impact. Figure 6 visualizes the effects of the
FFU on the network. A comparison of Figure 6a,c with Figure 6d,f reveals that the fused
feature image produced by the network with the FFU showed no distortion compared to
the extracted MS features, that the network with the FFU exhibited good stability, and that
the fused feature image produced by simply adding the feature images pixel by pixel was
overexposed, affecting network learning.

Figure 6. Feature images produced with and without FFU-based fusion. (a) MS features extracted without FFU-based
fusion. (b) PAN features extracted without FFU-based fusion. (c) Fused features extracted with the ResNet but without
FFU-based fusion. (d) MS features extracted with FFU-based fusion. (e) PAN features extracted with FFU-based fusion.
(f) Fused features extracted with FFU-based fusion and ResNet.

6.1.3. Loss Function

Equations (12) and (13) were used to optimize and fit DIPNet. A comparison of rows
8, 9, and 10 in each of Tables 5–7 shows that the Ds value for DIPNet was far smaller than
those for the methods that use the MSE and MAE losses in image reconstruction on the
QuickBird, WorldView 2, and IKONOS datasets and that the SSIM loss enhanced the image
fusion performance at the original size. A comparison of the first five indices in rows 9 and
10 in Table 6 reveals that the use of the MAE loss was superior to that of the SSIM loss on
the simulated WorldView 2 data. However, a comparison of the last three indices indicates
that the use of the SSIM loss led to better fusion performance on the original data. Thus,
based on the evaluation of the simulated and original data and by taking into account
the ultimate fusion application needs and performance, the SSIM loss-based DIPNet was
selected as the ultimate method proposed in this study.

6.2. Experiments on the Network Performance
6.2.1. The Setting of the Parameters

The effects of K on the fusion performance were investigated. While the architecture
of the network was maintained and the SSIM loss function was used in each case under
the same experimental conditions, K was set to 16, 32, 48, and 64 and L was set to 2 on
all three datasets. In addition, the effects of L on the fusion performance were examined.
While the architecture of the network was maintained and the SSIM loss function was
used in each case under the same experimental conditions, L was set to 0, 1, 2, and 3
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and K was set to 64 on all three datasets. To facilitate a numeric comparison, the best,
second-best, and third-best performance in Table 8 are shown in red, green, and blue,
respectively. Table 8 summarizes the quantitative results. Clearly, increasing K could
effectively improve the fusion performance. However, if L was too high or too low, the
performance deteriorated. Thus, by comprehensively considering the experimental results,
computational expenditure, and performance on different datasets, a K of 64 and an L of 2
were selected as the parameter settings for the proposed method.

Table 8. Quantitative results produced using various K and L values on each dataset.

Satellite Setting ERGAS↓ SAM↓ SCC↑ Q2n↑ UIQI↑ Dλ↓ Ds↓ QNR↑
K = 16, L = 2 1.2379 1.7441 0.9678 0.8824 0.8936 0.0753 0.0397 0.8885
K = 32, L = 2 1.0561 1.4008 0.9739 0.9051 0.909 0.0693 0.0298 0.9039
K = 48, L = 2 0.9563 1.2997 0.9783 0.9102 0.9162 0.0734 0.0298 0.8993

QuickBird K = 64, L = 2 0.9203 1.2373 0.9797 0.9128 0.9180 0.0672 0.0264 0.9096
K = 64, L = 0 0.9907 1.3051 0.9750 0.9107 0.9113 0.0373 0.0329 0.9318
K = 64, L = 1 0.9371 1.2326 0.9788 0.9114 0.9167 0.0516 0.0277 0.9229
K = 64, L = 3 0.9417 1.2574 0.9788 0.9065 0.9184 0.0785 0.0301 0.8944

K = 16, L = 2 3.1457 5.0293 0.9316 0.9175 0.915 0.0394 0.0582 0.9071
K = 32, L = 2 2.7602 4.5033 0.9491 0.9280 0.9262 0.0281 0.0586 0.9172
K = 48, L = 2 2.7013 4.4241 0.9520 0.9318 0.9290 0.0294 0.0567 0.9174

WorldView 2 K = 64, L = 2 2.7368 4.4226 0.9518 0.9313 0.9288 0.0287 0.0533 0.9210
K = 64, L = 0 2.9046 4.7474 0.9418 0.9251 0.9226 0.0409 0.0657 0.8982
K = 64, L = 1 2.6723 4.3898 0.9531 0.9304 0.9295 0.0243 0.0582 0.9204
K = 64, L = 3 2.6614 4.3438 0.9527 0.9317 0.9295 0.0263 0.0590 0.9177

K = 16, L = 2 1.7051 2.2201 0.9293 0.7845 0.8249 0.1314 0.1491 0.7497
K = 32, L = 2 1.2711 1.7153 0.9496 0.8657 0.8713 0.0871 0.0599 0.8605
K = 48, L = 2 1.7708 2.1385 0.9478 0.7866 0.8595 0.1318 0.0703 0.8121

IKONOS K = 64, L = 2 1.2300 1.6446 0.9521 0.8725 0.8764 0.0739 0.0664 0.8679
K = 64, L = 0 1.3735 1.7784 0.9484 0.8574 0.8758 0.0793 0.1006 0.8374
K = 64, L = 1 1.3626 1.8421 0.9483 0.8459 0.8724 0.0825 0.0985 0.8350
K = 64, L = 3 1.2676 1.6887 0.9539 0.8572 0.8792 0.0700 0.0725 0.8667

6.2.2. Number of Parameters

The number of parameters for our proposed work is compared with other prior
networks according to Table 9. As shown in Tables 2–4 and 8, the setting of K of 32 and L
of 2 has fewer parameters than prior networks but achieves the same performance.

Table 9. The parameters of different networks.

Method PNN MSDCNN PanNet TFNet SRPPNN

Parameter (M) 0.08 0.19 0.08 2.36 1.83

Method DIPNet (K = 16, L = 2) DIPNet (K = 32, L = 2) DIPNet (K = 48, L = 2) DIPNet (K = 64, L = 2)

Parameter (M) 0.18 0.73 1.65 2.92

6.2.3. Efficiency of the Network

Due to the limitation of our computing resources, in the prediction and pansharp-
ening stage, we divide the high-resolution image into small pieces of a certain size for
pansharpening and then combine them into the whole image.

In the original resolution evaluation experiment for QuickBird, we record the average
running time of the different DL methods. The corresponding results are summarized
in Table 10. As shown in Tables 2–4 and 8, the setting of K of 32 and L of 2 has been as fast
as prior networks. Although the running time of our proposed method, which has deeper
features, is slower than that of other DL methods because a larger number of parameters
reduces the efficiency of the network, our method outperforms other methods.
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Table 10. Efficiency of different networks on 200 full-resolution satellite images from QuickBird.

Method PNN MSDCNN PanNet TFNet SRPPNN

Time (s) 0.38 0.83 0.39 0.64 0.65

Method DIPNet (K = 16, L = 2) DIPNet (K = 32, L = 2) DIPNet (K = 48, L = 2) DIPNet (K = 64, L = 2)

Time (s) 0.49 0.72 1.15 1.45

7. Conclusions

This study presents a new DL-based pansharpening method referred to as DIPNet.
DIPNet addresses two difficult problems, namely the need for upsampling and serial
fusion at a single scale and limited information content in multiscale fused features. In
regard to preprocessing, different from other methods that fuse upsampled MS images,
DIPNet separates the frequency information contained in a PAN image and then obtains
the corresponding features by convolution operations as prior information. To achieve im-
proved fusion performance, DIPNet uses an SR module to fuse the prior PAN information
and the MS features and learns nonlinear mapping relationships through the conventional
encoder–decoder architecture to produce an enhanced remote sensing image. To enable
the network to focus on the structural quality, the SSIM loss function is applied instead of
the conventional MSE loss function to train the network to facilitate the high-quality fusion
of remote sensing images. The experimental results demonstrate the superiority of DIPNet
to the other methods.

Although we have achieved gratifying results, the method of frequency decomposition,
in which we simply use a Gaussian filter, is common. We did not discuss the impact of
other backbones (in this paper, we use ResNet) for extracting PAN features on network
performance and efficiency or even design a better module for pansharpening. In the near
future, we will focus on a novel way to pre-extract PAN image features and the design of a
novel panchromatic image feature extraction network. For reconstruction, we will develop
a new method to reconstruct an image to further improve the quality. As an application,
we will also apply this method to other low-resolution satellites, such as Landsat 8 and
Sentinel 2.
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