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Abstract: The intra-pulse modulation of radar emitter signals is a key feature for analyzing radar
systems. Traditional methods which require a tremendous amount of prior knowledge are insufficient
to accurately classify the intra-pulse modulations. Recently, deep learning-based methods, especially
convolutional neural networks (CNN), have been used in classification of intra-pulse modulation
of radar emitter signals. However, those two-dimensional CNN-based methods, which require
dimensional transformation of the original sampled signals in the stage of data preprocessing, are
resource-consuming and poorly feasible. In order to solve these problems, we proposed a one-
dimensional selective kernel convolutional neural network (1-D SKCNN) to accurately classify the
intra-pulse modulation of radar emitter signals. Compared with other previous methods described
in the literature, the data preprocessing of the proposed method merely includes zero-padding,
fast Fourier transformation (FFT) and amplitude normalization, which is much faster and easier to
achieve. The experimental results indicate that the proposed method has the advantages of faster
speed in data preprocessing and higher accuracy in intra-pulse modulation classification of radar
emitter signals.

Keywords: intra-pulse modulation classification; radar emitter signals; convolutional neural network;
one-dimensional selective kernel convolutional neural network

1. Introduction

Intra-pulse modulation classification of radar emitter signals is a key technology,
which helps to analyze the radar systems. It plays an important role in electronic support
measure (ESM) systems, electronic intelligence (ELINT) systems and radar warning re-
ceivers (RWRs) [1–3]. The accurate classification of intra-pulse modulation of radar emitter
signals could increase the reliability of estimating the function of radar and provide the
presence the potential threat, such that necessary measures or counter measures against
enemy radars could be taken by the ELINT system.

Traditional methods of intra-pulse modulation classification require the features which
are usually extracted manually. For example, in [4], Yang et al. calculated the higher-order
cumulants (HOC) of radar emitter signals and trained the support vector machines (SVM)
to classify different automatic modulations. In [5], Park et al. used wavelet features and
SVM to classify eight different digital modulations. However, these traditional methods
require a great deal of prior knowledge and their performance is poor when the radar
emitter signals are on low signal-to-noise ratio (SNR).

In recent years, deep learning [6] has attracted great attention in the field of artificial
intelligence. Some deep learning-based methods, especially convolutional neural network
(CNN) [7–11], have been applied in classification problems. A large amount of research
on intra-pulse modulation classification of radar emitter signals have been proposed.
In [12], a CNN model which use time-frequency images extracted by Cohen class time-
frequency distribution as the input, was used to recognize the intra-pulse modulation
of radar signals. Kong et al. [13] used Choi-William Distribution (CWD) images of low

Remote Sens. 2021, 13, 2799. https://doi.org/10.3390/rs13142799 https://www.mdpi.com/journal/remotesensing

https://www.mdpi.com/journal/remotesensing
https://www.mdpi.com
https://doi.org/10.3390/rs13142799
https://doi.org/10.3390/rs13142799
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.3390/rs13142799
https://www.mdpi.com/journal/remotesensing
https://www.mdpi.com/article/10.3390/rs13142799?type=check_update&version=1


Remote Sens. 2021, 13, 2799 2 of 16

probability of intercept (LPI) radar signals and recognize the intra-pulse modulations.
Besides, in [14], the authors proposed a novel blind modulation classification method
based on the time–frequency distribution and convolutional neural network, where the
experiment results show that the method proposed in this study is efficient and robust and
enables a high degree of automation for extracting features, training weights and making
decisions. Liu et al. [15] proposed an algorithm of radar emitter signal recognition, which
uses the time-frequency images as the input of CNN. In [16], a joint feature map, which
combines time-frequency image and instantaneous autocorrelation image, was used as the
input of CNN to classify the modulation of radar emitter signals. In [17], the data were
firstly preprocessed by Short-Time Fourier Transformation and then a CNN model was
trained to classify intra-pulse modulation of radar signals.

However, the above methods are mainly based on 2-D CNN and time-frequency
transformation of original sampled radar emitter signals. In the real environment, the
quantity of radar emitters is huge, which lead to the situation that the pulse widths of the
received radar emitter signals usually vary in a range. When the sampling frequency is
given, the length of the sampled data is determined accordingly. Although these proposed
2-D CNN-based methods use time-frequency images to circumvent the problem where the
length of the sampled radar signals is always different with each other, the preprocessing
stage, especially the dimensional transformation of radar signals, still consumes more time
and storage space. Moreover, as the length of sampled radar signals varies, it is hard to
choose a suitable shape of time-frequency image (TFI) for CNN’s input to balance the speed
for training and testing and classification accuracy, which leads to the poor feasibility.

Considering these limitations and inspired by [18], which employed a multi-branch
convolutional network and a dynamic selection mechanism in CNNs that allows each neu-
ron to adaptively select its receptive field size based on multiple scales of input information,
this paper proposed a 1-D selective kernel convolutional neural network (1-D SKCNN) for
intra-pulse modulation classification of radar emitter signals. In the stage of data prepro-
cessing, the sampled signals are processed by zero-padding, fast Fourier transformation
(FFT) and amplitude normalization, which are much faster than the dimensional transfor-
mation in those 2-D CNN-based methods. Then, the results of the data preprocessing: the
normalized frequency-domain sequences, will be used to train the proposed 1-D SKCNN.
This proposed method could classify eleven different intra-pulse modulations of radar
emitter signals, which have a relatively wide interval for both duration and bandwidth.
And the experimental results show that this method has the advantages of higher accuracy.

This paper is organized as follows: In Section 2, the proposed method, including the
structure of 1-D SKCNN and the preprocessing of data, is introduced in detail. The dataset,
parameters setting, experimental results of proposed method are shown in Section 3. The
comparisons with other methods and discussions are shown in Section 4. The conclusion is
present in Section 5.

2. The Proposed Method

Intra-pulse modulation classification of radar emitter signals refers to classifying each
pulse of radar emitter signal to a certain modulation type. Thus, in this paper, we proposed
a 1-D selective kernel convolutional neural network named 1-D SKCNN for intra-pulse
modulation classification. This method consists of the following parts: (1) Preprocess
the 1-D raw data of radar emitter signals, which includes zero-padding, fast Fourier
transformation and amplitude normalization. (2) Design the 1-D SKCNN model to extract
features and conduct per-pulse classification. (3) Train the 1-D SKCNN.

2.1. The Structure of Proposed 1-D SKCNN

Traditional CNN models are usually designed to process 2-D data. However, the radar
emitter signals are usually in 1-D form and it is time-consuming and storage-consuming
to do the dimensional transformation such as time-frequency transformation. In order
to improve the timeliness, in this paper, we proposed the 1-D SKCNN to classify the
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intra-pulse modulation of radar emitter signals. The overall architecture of the proposed
1-D SKCNN is shown in Figure 1.

Figure 1. The overall architecture of the proposed one-dimensional selective kernel convolutional
neural network (1-D SKCNN).

The input of 1-D SKCNN is the frequency-domain sequence, and this will be intro-
duced later. There are four main blocks in 1-D SKCNN and each block contains a selective
kernel convolutional block, a max-pooling layer and a batch-normalization layer [19].
Figure 2 shows the structure of the selective kernel convolutional block.

Figure 2. The structure of selective kernel convolutional block.

In the selective kernel convolutional block, two convolutional layers are designed to
extract the feature at the same time. Inspired by the fact that in the neuroscience community,
the receptive field size of visual cortical neurons is modulated by the stimulus, the size of
the kernel in these two convolutional layers is set to be different, which is hoped to extract
the features from different scale adaptively. Assuming that Fin ∈ RW×C is the input feature
map, the calculation of the two convolutional layers with padding operation would be:

fupper : Fin → Xupper ∈ RW×C (1)
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flower : Fin → Xlower ∈ RW×C (2)

where fupper and flower are composed of two kinds of normal convolution with different
size of kernel and “ReLU” activation function [20]. Then we choose addition as the
fusing operation and fuse the two matrices in channel way. The fused result at this stage,
X f used ∈ RW×C could be shown as:

X f used = Xupper + Xlower (3)

Like [21], we use channel-wised global-average pooling to get the global information.
As the channel number of Xfused is C, the output result of global-average pooling will be a
vector named xgap ∈ RC. This process could be shown as:

xgap(i) = fgap(X f used) =
1

W

W

∑
j=1

X f used(j, i) (4)

Then xgap is sent to a Multi-Layer Perceptron (MLP) which contains a shared weight
hidden layer and two independent output layer. The activation function in the shared
weight hidden layer is “ReLU”. The output shape of this MLP is same as the shape of
xgap. Therefore, we could get two output vector named xupper ∈ RC and xlower ∈ RC. This
processing is shown as:

xupper = Wupper(δ(Wsharedxgap)) (5)

xlower = Wlower(δ(Wsharedxgap)) (6)

where Wshared means the weight of the shared weight hidden layer, δ means the “ReLU”
function, Wupper and Wlower are the weight of two independent output layer.

Next, we choose soft attention to weight to importance of the convolutional result:
Xupper and Xlower. Therefore, a SoftMax operation is applied to xupper and xlower. The process
of the smoothing operation could be shown as:

zupper(i) =
exupper(i)

exupper(i) + exlower(i)
(7)

zlower(i) =
exlower(i)

exupper(i) + exlower(i)
(8)

where zupper ∈ RC and zlower ∈ RC are the corresponding smoothing result of xupper
and xlower. And the final output feature map of the selective kernel convolutional block,
V ∈ RW×C, which is thought as the reweighted feature maps, could be obtained through
the attention and the original Xupper and Xlower:

V = zupper ⊗c Xupper + zlower ⊗c Xlower (9)

where “⊗c” stands for channel-wised elements multiply computation. Specifically, Equa-
tion (9) could be expressed as:

V(i, j) = zupper(j) · Xupper(i, j) + zlower(j) · Xlower(i, j) (10)

2.2. Preprocessing of Data

In the task of intra-pulse modulation classification of radar emitter signals, the radars
may have multiple wave modes where the pulse widths could range from a microsecond
to hundreds of microseconds. However, the commonly used wave mode of radars is the
short pulse width mode and the pulse could be collected separately according to their
pulse widths.

Therefore, assuming that the pulse widths of radar emitter signals vary in a certain
range, when the sampling frequency is given, the length of the sample radar signals is
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determined. Unlike IQ-sampling, we sample the time-domain radar emitter signals only
in one channel based on the theory of Nyquist sampling. Therefore, each pulse of radar
emitter signal in analog domain will be converted to a 1-D time-domain sequence in
digital domain.

CNN always requires a fixed-shaped input due to the full connection layer. As the
pulse width varies in a certain range, we need to choose a suitable transformation to ensure
that the input shape of each sample is the same. Although the easiest way to preprocess the
data is by padding with enough zeros to ensure that the length of all preprocessed samples
is the same, too many useless zeros may have a negative impact and the classification
performance based on these time-domain sequences is not good. To explain this, an
experiment will be introduced later.

In 1-D SKCNN, we choose to use the amplitude sequence of the signal in frequency
domain as the input. First, we need to find the upper limitation of the pulse width and set
a proper value of pulse width to ensure all the samples could be covered under this value.
Then based on the sampling frequency, the corresponding length could be calculated. Next,
we pad enough number of “0” at the end of the sampled sequence in time domain to ensure
that the length of all padded sample is same. This process is shown as:

xpadded = [x, 0, . . . , 0] (11)

where the length of xpadded is equal to the result which is calculated by multiplying the
sampling frequency and the set proper value of pulse width. x refers to one of the 1-D
sampled signals in time domain.

Then, we use FFT to transform xpadded and calculate the modulus of the result of FFT.
This process is shown as:

x f f t = FFT(xpadded) (12)

xam_ f f t =

√(
x f f t · x∗f f t

)
(13)

where FFT(·) means the process of FFT. As the result, xam_ f f t is a real sequence where the
values of the elements are all greater or equal to zero. x∗f f t refers to the conjugation of x f f t.

To reduce the influence of different amplitudes on classification, data normalization is
needed. This process is shown as:

xinput =
xinput

max(xinput)
(14)

where xinput is the input data for 1-D SKCNN. max(·) means the process of finding the max
value in the sequence. Therefore, the value of each element in xinput ranges from 0 to 1.

3. Dataset and Experiments

In this section, a simulation dataset will be used to train and test the proposed method
and other baseline methods. In all the experiments, a computer equipped with an Intel
10900K CPU, 64 GB RAM and RTX 3090 GPU hardware capabilities. MATLAB 2021a
software, Keras and Python programming language have been used.

3.1. Dataset and Parameters Setting

Typically, the carrier frequency of radar could be from 300 MHz to 300 GHz, and it is
not possible to sample those high-frequency signals directly based on the theory of Nyquist
sampling. As for the receivers, they usually have adaptive local oscillators which could
down mix the frequency of the received signals and output the signals with lower frequency
after the low-pass filter. The output signals with lower frequency are the final signals for
sampling and analyzing. Besides, relatively short pulse width mode is commonly used
and it is the typical wave mode of radar.



Remote Sens. 2021, 13, 2799 6 of 16

Based on the above reasons, in this letter, we use the simulation dataset to train and
test the proposed method. Eleven different varieties of radar emitter signals whose pulse
widths vary from 2 µs to 50 µs, including single-carrier frequency (SCF) signals, linear
frequency modulation (LFM) signals, sinusoidal frequency modulation (SFM) signals,
binary frequency shift keying (BFSK) signals, quadrature frequency shift keying (QFSK)
signals, even quadratic frequency modulation (EQFM) signals, dual frequency modulation
(DLFM) signals, multiple linear frequency modulation (MLFM) signals, binary phase shift
keying (BPSK) signals, Frank phase-coded (Frank) signals, and composite modulation
(LFM-BPSK) signals. The sampling frequency is 1 GHz and the parameters of signals are
shown in Table 1.

Table 1. Parameters of radar emitter signals with eleven different intra-pulse modulations.

Type Carrier Frequency Parameter

SCF 100~400 MHz None

LFM 100~300 MHz Bandwidth: 5 MHz to 150 MHz

SFM 100~400 MHz Bandwidth: 5 MHz to 100 MHz

BFSK 100~400 MHz
100~400 MHz 5,7,11,13-bit Barker code

QFSK

100~400 MHz
100~400 MHz
100~400 MHz
100~400 MHz

16-bit Frank code

EQFM 100~400 MHz Bandwidth: 5 MHz to 100 MHz

DLFM 100~300 MHz Bandwidth: 10 MHz to 150 MHz

MLFM 100~300 MHz
100~300 MHz

Bandwidth: 10 MHz to 150 MHz
Bandwidth: 10 MHz to 150 MHz

Segment: 20–80%

BPSK 100~400 MHz 5,7,11,13-bit Barker code

FRANK 100~400 MHz Phase number: 4–7

LFM-BPSK 100~300 MHz Bandwidth: 5 MHz to 150 MHz
5,7,11,13-bit Barker code

SNR is controlled as the power of the signals over the noise, which is defined as:

SNR[dB] = 10 log10
Psignal

Pnoise
(15)

where Psignal is the power of pure radar signal and Pnoise is the power of noise. And the
calculation of signal power is shown as:

P =

L
∑

i=1
x(i)2

L
(16)

where P means the power of signal, x ∈ RL means the sampled sequence in time domain.
In the simulation, the type of noise is additive white Gaussian noise (AWGN) [22] and SNR
ranges from −14 dB to 0 dB with 2 dB increment. The sampled radar emitter signal with
AWGN could be written as:

y = xpure + nnoise (17)

where xpure ∈ RL means the pure sampled intra-pulse radar emitter signal sequence
without noise, nnoise ∈ RL means the sampled AWGN, and y ∈ RL is the sampled radar
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emitter signal with AWGN. Figure 3 shows the original waveforms of eleven intra-pulse
modulations radar emitter signal samples in time domain when the SNR is 0 dB.

Figure 3. The original waveforms of eleven intra-pulse modulations radar emitter signal samples in time domain when the
SNR is 0 dB.

At each value of SNR, the quantity of samples for each intra-pulse modulation signal
at each value of SNR is 1800, where 800 samples are used for training, 200 samples are used
for validation and 800 samples are used for testing. That is, there are 70,400 samples in the
training dataset, 17,600 samples in the validation dataset and 70,400 samples in the testing
dataset.

The reason why the number of samples in the testing dataset is much greater than
that in the validation dataset and equal to that in the training dataset is that, in real
applications, the number of samples which need to be tested could be larger than that in the
validation dataset. As the parameters, like carrier frequency, pulse width and bandwidth,
are changing in a wider range, the testing dataset with a large number of samples could
include as many situations as possible. Besides, the average classification accuracy of the
well-trained model in [23] on a testing dataset containing 385,000 samples is almost 4%
lower than that in a validation dataset containing 30,800 samples. Therefore, in order
to increase the reliability of the classification and evaluate the real performance of the
methods, we decide to use a large testing dataset. The influence of the amount of training
data will be discussed in Section 3.3.4.

Due to the sampling frequency and the max value of pulse width, we set 50 µs as the
proper value of the pulse width. Therefore, the length of xpadded in the experiment is set to
50,000. Figure 4 shows the frequency-domain amplitude spectra of the same samples in
Figure 3 after data preprocessing stage.
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Figure 4. The frequency-domain amplitude spectra of the same samples in Figure 3 after data preprocessing stage where
the length of xpadded is set to 50,000.

3.2. Baseline Methods

In order to provide some evidence for not choosing the time-domain sequence as the
input, we use the same structure of 1-D SKCNN to conduct the experiment, which is named
1-D SKCNN-time. For this baseline method, the data preprocessing contains same zero
padding (see Equation (11)) and amplitude normalization. The amplitude normalization
for 1-D SKCNN-time is shown as:

xtime =
xpadded

max(
√(

xpadded · x∗padded

)
)

(18)

where xtime is the input sequence for 1-D SKCNN-time. x∗padded refers to the conjugation of
xpadded.

Besides, to show the effectiveness of the selective kernel and attention mechanism, we
organize three models. All three model have the same full connection layers. The structure
of first two single models, named CNN-kernel_size16 and CNN-kernel_size9, are with two
fixed kernel size (16 and 9, respectively) and include four blocks, where the convolutional
layer, max-pooling layer and batch-normalization layer are connected one by one. And the
third model named CNN-nonAP is transferred by deleting the attention part.

In addition, we employ some representative methods as the baselines including CNN-
Qu [12], CNN-Kong [13], CNN-Zhang [14], GoogLeNet [17]. These methods are based on
time-frequency transformation and have been proved that they have advantage of good
accuracy on intra-pulse modulation classification.

3.3. Experiments on 1-D SKCNN
3.3.1. Experimental Settings of 1-D SKCNN

The two kernel sizes in the selective kernel block are 9 and 16, respectively. The
pooling size and stride in each max-pooling layer are set to be 7. The full connection unit
contains one hidden layer with 512 neurons and “ReLU” activation function. The activation
function for the output layer is “SoftMax”.
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At the stage of training 1-D SKCNN, the cross-entropy function is selected as the loss
function. The optimization algorithm for the proposed 1-D SKCNN is adaptive moment
estimation (ADAM) [24]. The batch size is 64 and we have run 20 epochs for training,
where the learning rate in the first 15 epochs is 0.001 and in the last five epochs is 0.0001.
The weights used for the testing section is saved when the accuracy of validation dataset
is highest.

3.3.2. Experimental Results of 1-D SKCNN

The proposed 1-D SKCNN model was trained based on the preprocessed data in
Section 3.1. The value of average accuracy during the training session are shown in
Figure 5.

Figure 5. The value of average accuracy on validation dataset during the training session.

Figure 5 shows that after training several epochs, the accuracy of the model on
validation dataset turned to stable, which denotes that the model converged. Next, we test
the classification performance of the proposed model with the weights where the accuracy
of validation dataset is highest.

The classification performance under different SNR of the proposed 1-D SKCNN has
been tested. Table 2 gives the classification accuracy of eleven intra-pulse modulations
based on the 1-D SKCNN. When SNR is greater than or equal to −10 dB, the average
classification accuracy is above 97%, and the accuracy increases as the value of SNR rises.
When SNR is greater than or equal to −6 dB, the classification accuracy of each intra-pulse
modulation is over 99%.

Table 2. The classification accuracy of eleven intra-pulse modulations based on 1-D SKCNN.

SNR/dB −14 −12 −10 −8 −6 −4 −2 0 Average

SCF 0.9975 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 0.9997
LFM 0.4750 0.6375 0.8025 0.9125 0.9762 0.9962 0.9975 1.0000 0.8497
SFM 0.9538 0.9550 0.9887 0.9962 0.9887 0.9925 0.9912 0.9950 0.9827
BFSK 0.9388 0.9762 0.9937 0.9975 0.9987 0.9962 0.9975 0.9987 0.9872
QFSK 0.9613 0.9700 0.9887 0.9975 0.9987 0.9975 0.9987 1.0000 0.9891
EQFM 0.9438 0.9887 0.9975 1.0000 1.0000 1.0000 1.0000 1.0000 0.9913
DLFM 0.7563 0.9025 0.9725 0.9937 1.0000 1.0000 1.0000 1.0000 0.9531
MLFM 0.6187 0.7663 0.8687 0.9275 0.9762 0.9887 0.9900 0.9862 0.8903
BPSK 0.9525 0.9837 0.9962 0.9987 1.0000 1.0000 1.0000 0.9987 0.9912

FRANK 0.9538 0.9700 0.9925 0.9950 0.9975 0.9987 0.9975 0.9987 0.9880
LFM-BPSK 0.4650 0.6375 0.8138 0.9337 0.9725 0.9950 1.0000 1.0000 0.8522

Average 0.8197 0.8898 0.9468 0.9775 0.9917 0.9968 0.9975 0.9980 0.9522



Remote Sens. 2021, 13, 2799 10 of 16

In order to analyze the specific classification result, the confusion matrix is given in
Figure 6. Combined with the average accuracy in Table 2, we could find that the main errors
are from the classification that some LFM signals and LFM-BPSK signals are classified
mistakenly as each other. Besides, there are some DLFM signals being classified as MLFM
signals, and MLFM signals being classified as LFM signals. For the other types of intra-
pulse modulation signals, the 1-D SKCNN could classify them accurately even when the
SNR in the extreme low condition.

Figure 6. The confusion matrix of the classification result based on 1-D SKCNN.

3.3.3. Learned Features

We investigate the extracted features from the proposed 1-D SKCNN. And some
features filtered after the first, the second and the third main block based on one SFM
sample are shown in Figure 7a–c, respectively. Figure 7 shows that as the depth of layer
increases, the extracted features become sparser and more abstract, which indicates some
intrinsic patterns in that SFM signal.

Besides, to visualize the attention part in the selective kernel convolutional blocks, we
analyze the value of zupper which refers to the attention part for the kernel size 9 and zlower
which refers to the attention part for the kernel size 16 by using the same SFM sample. The
values of the attention part in the first, second and third selective convolutional block is
shown in Figure 8a–c, respectively. It indicates that the features filtered by the convolutional
layer with different kernel size are weighted by the soft-attention part. In other words, for
each output channel from the selective convolutional block, it was fused from its original
two channels that gain weights differently based on the attention part.
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Figure 7. Features of one SFM signal sample filtered after the first, the second and the third main
block when the SNR is −10 dB.
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Figure 8. Values of the attention part in the first, the second and the third selective convolutional
block with the same SFM sample.

3.3.4. The Influence of Volume of Training Data Size

We investigated the performance of the proposed method with different training data
sizes. The validation dataset and testing dataset are the same as before. 0%, 5%, 10%, 25%,
50%, 75% and 100% of the whole training dataset are used for training 1-D SKCNN. The
weights were saved when the accuracy of validation dataset is the highest and they were
used for the testing section. Figure 9 shows the average accuracy of 1-D SKCNN on testing
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dataset when the volume of training dataset is 0%, 5%, 10%, 25%, 50%, 75% and 100% of
the original training dataset.

Figure 9. The average accuracy of 1-D SKCNN on testing dataset when the volume of training dataset
is 0%, 5%, 10%, 25%, 50%, 75% and 100% of the original training dataset.

As Figure 9 shows, the average accuracy of 1-D SKCNN increases logarithmically
based on volume of training data size, which satisfies the conclusions in [25]. Besides it
could be concluded that the scale of the original training dataset with 70,400 samples is
enough for training the proposed 1-D SKCNN.

4. Comparisons with the Baselines and Discussion

In order to show the superiority of the proposed method, in this section we will
compare the proposed method with the baseline methods. For the task of intra-pulse
modulation classification of radar emitter signals, the process of these method mainly focus
on two things: (1) Time and storage usage and (2) the classification performance. Therefore,
the comparisons could be divided into two parts: (1) Comparisons among the methods in
the time and storage space usage. (2) Comparisons among the methods in classification
performance.

4.1. Comparisons with the Baselines in the Time and Storage Space Usage

The scale of parameter for the model is a typical feature to measure the storage space
usage. As the result, we provide the parameters for each CNN model in the methods in
Table 3. As the table shows, 1-D SKCNN is light-design with fewer parameters compared
with the 2-D CNN based model.

Table 3. The scale of parameter of the models in different methods.

Model Parameters

1-D SKCNN 1,620,755
1-D SKCNN-time 1,620,755

CNN-kernel_size16 1,696,131
CNN-kernel_size9 1,545,379

CNN-nonAP 1,587,515
CNN-Qu [12] 5,856,875

CNN-Kong [13] 12,308,171
CNN-Zhang [14] 4,263,701
GoogLeNet [17] 5,979,711
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Then, we evaluate the time usage of the methods. The time usage could be divided
into two part: 1. The stage of data preprocessing. 2. The stage of training model. The
data preprocessing for all methods was done by MATLAB 2021a. We randomly selected
500 samples from the dataset to do the data preprocessing for all methods, and the time
usage is shown in Table 4.

Table 4. The time usage of the methods to preprocess 500 randomly selected samples.

Model Time/500 Samples

1-D SKCNN 1.07 s
1-D SKCNN-time 0.86 s

CNN-kernel_size16 1.07 s
CNN-kernel_size9 1.07 s

CNN-nonAP 1.07 s
CNN-Qu [12] 3900 s

CNN-Kong [13] 3870 s
CNN-Zhang [14] 202 s
GoogLeNet [17] 110 s

It is obvious that those 2-D CNN based methods which require time-frequency trans-
formation need much more time to prepare the data for training models. And compared
with the baselines, the FFT-based data preprocessing is easier to be accomplished.

Next, we evaluate the time usage in the stage of training model. Table 5 gives the time
usage per training epoch which includes the validation part and the number of epoch used
for training. It could be seen that 1-D CNN-based methods require more time than the
2-D CNN-based methods. The main reason for this is that the input for 1-D CNN model
is a vector with the shape of 1 × 50,000. However, the input for those 2-D CNN models
requiring less training time is a matrix with the shape of 64× 64 or 128× 128. As the result,
there will be more multiplication and addition operations in 1-D CNN-based methods.

Table 5. The time usage for training the model in different methods.

Model Time/Epoch Number of Epoch Total Time

1-D SKCNN 122 s 20 2440 s
1-D SKCNN-time 128 s 20 2560 s

CNN-kernel_size16 121 s 20 2420 s
CNN-kernel_size9 126 s 20 2520 s

CNN-nonAP 110 s 20 2200 s
CNN-Qu [12] 11 s 20 220 s

CNN-Kong [13] 31 s 20 620 s
CNN-Zhang [14] 27 s 20 540 s
GoogLeNet [17] 170 s 20 3400 s

4.2. Comparisons with the Baselines in the Classification Performance

In this section, we will evaluate the classification performance of the methods with
different evaluation metrics, including average accuracy (AA), kappa coefficient (KC),
recall, precision and F1-score. Table 6 gives the classification accuracy of different methods
on the testing dataset and the KC, the recall, the precision and the F1-score are given in
Table 7.

The comparison between 1-D SKCNN-time and 1-D SKCNN shows that although the
structure of the model is the same, the frequency-domain sequence, instead of time-domain
sequence, could bring a much positive classification result when it is used as the input.
Then, except for 1-D SKCNN-time, we find that the classification performance of 1-D
CNN-based methods are superior to those 2-D TFI-based CNN methods based on the
given metrics. Although GoogleNet performs best among the 2-D CNN methods and its
classification accuracy could be near to 100% when SNR is high, its rate of accuracy falls
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faster when compared with other 1-D CNN-based method except 1-D SKCNN-time. And
when SNR is −10 dB, all of the 1-D CNN model except 1-D SKCNN-time could remain a
good classification accuracy with over 90%.

Table 6. The time usage for training the model in different methods.

SNR/dB −14 −12 −10 −8 −6 −4 −2 0 AA

1-D SKCNN 0.8197 0.8898 0.9468 0.9775 0.9917 0.9968 0.9975 0.9980 0.9522
1-D SKCNN-time 0.4810 0.5980 0.6669 0.6999 0.7139 0.7249 0.7312 0.7373 0.6691

CNN-kernel_size16 0.8067 0.8752 0.9312 0.9692 0.9852 0.9937 0.9939 0.9966 0.9440
CNN-kernel_size9 0.8118 0.8737 0.9287 0.9674 0.9800 0.9889 0.9910 0.9909 0.9416

CNN-nonAP 0.7877 0.8633 0.9260 0.9663 0.9812 0.9926 0.9950 0.9959 0.9385
CNN-Qu [12] 0.6507 0.7042 0.7327 0.7565 0.7782 0.8000 0.8086 0.8268 0.7572

CNN-Kong [13] 0.6032 0.6827 0.7407 0.7852 0.8230 0.8622 0.8865 0.9049 0.7860
CNN-Zhang [14] 0.6731 0.7268 0.7798 0.8273 0.8709 0.9127 0.9345 0.9586 0.8355
GoogleNet [17] 0.7436 0.8067 0.8689 0.9500 0.9868 0.9960 0.9975 0.9972 0.9183

Table 7. The time usage for training the model in different methods.

Scheme KC Recall Precision F1-Score

1-D SKCNN 0.9474 0.9522 0.9522 0.9522
1-D SKCNN-time 0.6360 0.6691 0.6736 0.6668

CNN-kernel_size16 0.9384 0.9440 0.9445 0.9440
CNN-kernel_size9 0.9357 0.9416 0.9421 0.9415

CNN-nonAP 0.9324 0.9385 0.9387 0.9386
CNN-Qu [12] 0.7329 0.7572 0.7572 0.7561

CNN-Kong [13] 0.7646 0.7860 0.7886 0.7866
CNN-Zhang [14] 0.8190 0.8355 0.8373 0.8358
GoogleNet [17] 0.9102 0.9183 0.9241 0.9181

Besides, the comparisons among 1-D SKCNN, CNN-kernel_size16, CNN-kernel_size9
and CNN-nonAP show that 1-D SKCNN performs best not only in the overall average
accuracy, but also in every condition of SNR. And based on the analysis of time and storage
usage in Section 4.1, we could find that the selective kernel convolutional blocks, which
contain selective kernel convolutional layers and soft-attention part at the same time, cost
little computation resource and could provide a better classification result.

5. Conclusions

In this paper, we have proposed 1-D SKCNN for intra-pulse modulation classification
of radar emitter signals. The proposed method uses a 1-D frequency-domain sequence
as input, which has the advantage of fast speed in the stage of data preprocessing. The
comparisons with the baseline methods in both time, storage usage and classification
performance show that the proposed method, which employs selective kernel convolutional
layers and a soft-attention part at the same time, has superior performance in intra-pulse
modulation classification of radar emitter signals under various SNR scenarios.
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