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Abstract: Accurate crop type maps play an important role in food security due to their widespread
applicability. Optical time series data (TSD) have proven to be significant for crop type mapping.
However, filling in missing information due to clouds in optical imagery is always needed, which
will increase the workload and the risk of error transmission, especially for imagery with high
spatial resolution. The development of optical imagery with high temporal and spatial resolution
and the emergence of deep learning algorithms provide solutions to this problem. Although the
one-dimensional convolutional neural network (1D CNN), long short-term memory (LSTM), and gate
recurrent unit (GRU) models have been used to classify crop types in previous studies, their ability
to identify crop types using optical TSD with missing information needs to be further explored due
to their different mechanisms for handling invalid values in TSD. In this research, we designed two
groups of experiments to explore the performances and characteristics of the 1D CNN, LSTM, GRU,
LSTM-CNN, and GRU-CNN models for crop type mapping using unfilled Sentinel-2 (Sentinel-2)
TSD and to discover the differences between unfilled and filled Sentinel-2 TSD based on the same
algorithm. A case study was conducted in Hengshui City, China, of which 70.3% is farmland.
The results showed that the 1D CNN, LSTM-CNN, and GRU-CNN models achieved acceptable
classification accuracies (above 85%) using unfilled TSD, even though the total missing rate of the
sample values was 43.5%; these accuracies were higher and more stable than those obtained using
filled TSD. Furthermore, the models recalled more samples on crop types with small parcels when
using unfilled TSD. Although LSTM and GRU models did not attain accuracies as high as the other
three models using unfilled TSD, their results were almost close to those with filled TSD. This research
showed that crop types could be identified by deep learning features in Sentinel-2 dense time series
images with missing information due to clouds or cloud shadows randomly, which avoided spending
a lot of time on missing information reconstruction.

Keywords: crop type mapping; Sentinel-2; missing information; time series data; CNN; LSTM; GRU

1. Introduction

Accurate crop type information plays an important role in food security due to its
widespread applicability, such as in yield estimates, crop rotation, and agricultural disaster
assessment [1,2]. Optical time series data (TSD) have been proven to be efficient for crop
type mapping, because the phenological evolution of each crop produces a unique temporal
profile of reflectance [3]. However, filling in missing information due to clouds in optical
imagery is always needed [4–7]. Although many different methods of missing information
reconstruction have been developed [8–10], the majority of the high-precision methods are
time-consuming and need a significant amount of computing resources [11], especially
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for images with high spatial resolution. In addition, the results with TSD after filling in
missing information always include a degree of uncertainty for crop type classification.

With the launch of remote sensing satellites with sessions providing high spatial and
temporal resolution optical TSD, such as Sentinel-2 with 5-day revisit intervals and 10
m spatial resolution, increasing non-cloud covered information in TSD can be used [12].
Moreover, the 13 spectrum bands of Sentinel-2 provide abundant spectral information for
crop type identification using TSD with missing information; specifically, its three red-edge
(RE) bands have been found to be of importance in the discrimination of different crop
types due to their sensitivity to different leaf and canopy structures [13–15]. In addition,
except for tropical or very arid regions, most crop systems have one or two (winter and
summer) growing seasons each year. For example, in southern China, even in the summer
growing season with more clouds and rain, very few areas are completely covered by
clouds during the completely growing season [16]. Therefore, if the information that is
not covered by clouds in dense Sentinel-2 TSD is fully utilized, the heavy work of missing
information reconstruction and the risk of error transmission in crop type mapping may be
avoided in most situations.

Deep learning provides an important solution for mining distinguishable features
of different crop types from the dense TSD with missing information. In deep learning
algorithms, the recurrent neural network (RNN) [17] and one-dimensional convolutional
neural network (1D CNN) [18] have demonstrated excellent performance in the extraction
of temporal features [19,20]. Moreover, in order to solve the problem of gradient disappear-
ance or explosion of the RNN in increasing time series, long short-term memory (LSTM)
and the gate recurrent unit (GRU) were developed [21,22]. Although the above models
have been used in crop type identification [7], the potential application of CNN and RNN
in optical TSD has been inadequately explored [5]. In fact, it has been proved that the RNN
could use TSD with missing values for classification problems [23–25]. Meanwhile, the
CNN can classify images with missing data via the convolution kernel operation [26,27].

At present, in the remote sensing community, the cloud pixels in optical imagery have
been treated as noise in RNN models [28–30] or zeros in CNN models [31]. In addition,
to the best of our knowledge, there is almost no research that has systematically analyzed
the performance of different deep learning algorithms for crop type mapping using dense
Sentinel-2 TSD with missing information to identify crop types. Therefore, in order to
explore the capabilities of the CNN, LSTM, GRU, LSTM-CNN, and GRU-CNN models
for crop type mapping using Sentinel-2 TSD with missing information due to clouds, we
conducted two groups of experiments to address the research questions that follow:

1. What accuracies can different deep learning models achieve for crop type classification
by using the Sentinel-2 TSD with missing information (unfilled TSD)?

2. Can these models achieve higher accuracies when using the Sentinel-2 TSD after
filling in missing information (filled TSD) than when using unfilled TSD?

2. Materials
2.1. Study Site

Hebei Province (Figure 1) is located in North China, and Hengshui City is situated be-
tween 37◦03′–38◦23′ N and 115◦10′–116◦34′ E, covering an area of 8.12× 103 km2 (Figure 1),
of which farmland occupies 5.17× 103 km2 (approx. 70.3%) [32]. Rotation of winter wheat
and summer maize dominates the agricultural activities in the region, while the main eco-
nomic crops are cotton, chili, common yam rhizome, fruit trees, and vegetables. The typical
growing season for winter wheat is from early October to the middle of the following
June, while summer maize is planted at the end of the winter wheat season and harvested
in late September. The growth seasons of cotton, chili, and common yam rhizome are
early April–end of October, mid-June–end of September, and mid-April–end of October,
respectively. The growth periods of the fruit trees and greenhouse vegetables generally last
the entire year.
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Figure 1. The study area and sample distribution: (a) Hebei Province; (b) Samples in Hengshui.

2.2. Ground Reference Data

A field investigation in the study area was conducted in July 2019, when the summer
crops were in their reproductive period. First, we planned the sampling route based on
expert knowledge in order to collect the samples of the major crop types. Second, we
traveled along the sampling route and recorded the crop types and geographic coordinates
of raw samples. Ultimately, we acquired 1377 samples from the field survey. Following
this, 805 samples were obtained by the manual interpretation of Google Earth Map data,
and manual samples and the survey samples were located in the same parcels. Therefore, a
total of 2182 sample points (Figure 1) were obtained from ground surveys for seven main
types of local vegetation in the summer season: (1) greenhouse vegetables, (2) summer
maize, (3) cotton, (4) chili, (5) common yam rhizome, (6) fruit trees, and (7) forests. The
distribution of the number of samples per type is listed in Table 1, and the crop calendars
of main crop types, i.e., summer maize, cotton, chili, and common yam rhizome, are listed
in Table 2.

Table 1. Number of samples per type.

Class Label 1 2 3 4 5 6 7 Total

Class Type Greenhouse
Vegetables

Summer
Maize Cotton Chili Common

Yam Rhizome
Fruit
Trees Forests

Number 123 897 385 116 85 286 290 2182

Table 2. Crop calendars of summer maize, cotton, chili, and common yam rhizome in Hengshui, China. DOY, day of year.

Class Type Sowing Developing Maturation
Date DOY Date DOY Date DOY

Summer maize June 15–30 166–181 July 1–September 15 182–259 September 16–30 260–274
Cotton April 1–15 91–106 April 16–August 31 107–244 September 1–October 31 245–305
Chili June 15–25 166–176 June 26–August 31 177–244 September 1–30 245–274

Common yam
rhizome April 1–15 91–106 April 16–October 10 107–284 October 11–31 285–305

In Table 1, the sample size of different crop types is quite different; specifically, the
sample size of summer maize is as high as 897. This is because summer maize is the main
food crop in the study region with a large planting area. At the same time, considering the
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influence of geographical environment and other factors, we sampled summer maize more
evenly along the sampling route. In Table 2, the calendars are expressed in two ways, date
and day of year (DOY), to facilitate analysis.

2.3. Sentinel-2 Data and Preprocessing

Sentinel-2A/2B imagery (Level-1C) time series (with a temporal resolution of five
days) were downloaded from the European Space Agency’s (ESA) Sentinel Scientific
Data Hub (https://scihub.copernicus.eu/dhus/#/home). In the study area, there were
148 images (tiles T50SLG, T50SLH, T50SMG, and T50SMH) acquired from day DOY 91–273
(1 April –30 September) 2019, covering the growing seasons of the main crops. Hence, the
length of the time series was 37. The satellite product is equipped with a sensor with blue,
green, red, and near-infrared 1 (NIR1) bands at 10 m; RE1, RE2, RE3, NIR2, shortwave
infrared 1 (SWIR1), and SWIR2 at 20 m; and three atmospheric bands at 60 m. The three
atmospheric bands were not used in this paper since they are primarily dedicated to
atmospheric correction and cloud screening [12]. In other words, 10 bands with resolutions
of 10 m or 20 m would be used because deep learning methods could deeply extract the
separable features of different crop types.

The preprocessing stages of the Sentinel-2 images included the following:

(1) Atmospheric calibration. The Sen2Cor plugin v2.5.5 was employed to process im-
ages from top-of-atmosphere Level-1C Sentinel-2 to bottom-of-atmosphere Level-2A
(http://www.esa-sen2agri.org/ (accessed on 6 April 2020)).

(2) Masking of clouds. Fmask (Function of mask) 4.0 [33] was utilized to mask clouds
and cloud shadows (the parameter of the cloud probability threshold was set as 50%).
Fmask 4.0, the most recent version of Fmask [34] can work on Sentinel-2 images in
Level-1C. All masks have a 20-m resolution, and both clouds and cloud shadows were
marked as missing data. It should be noted that compared with cloud confidence
layers in the output of Sen2Cor, most Fmask 4.0 results are more accurate in our
study area.

(3) Resampling. The images of the RE1, RE2, RE3, NIR2, SWIR1, and SWIR2 bands from
step (1) and the cloud masks from step (2) were resampled to 10 m using the bilinear
interpolation method [35].

Finally, we obtained the time series of samples marked with missing elements in
pixel scale.

3. Methodology
3.1. LSTM and GRU for TSD with Missing Values

As mentioned earlier, 10 bands (variables) of Sentinel-2 images with cloud tags were
used in this research, and the sequence length of these images was 37. LSTM units cannot
compute null values (i.e., miss values) during the training process; as discussed in Section 1,
if we set null values as zeros, the training and testing results will be highly biased. Thus,
inspired by Che et al. [23], a Mask layer to overcome the problem of missing values in
time series was adopted, which made the pixels covered by the cloud not participate in
the calculation, and the networks were labelled as Mask LSTM RNNs. Figure 2 presents
the details of the Mask layer in a Mask LSTM RNN. We express the ith sample as Xi =
(x1i, x2i, . . . , xTi), where T = 37, xti ∈ RD denotes the tth observation of all variables,
and xd

ti represents the value of the dth variable of xti. First, for all of the samples, the
missing values were set as “0”. Then, in order to keep the “0” element unchanged after
normalization, channel L2 normalization (a Mask layer to overcome the problem of missing
values in time series was L2-norm) was performed on the surface reflectance, as expressed
in Equation (1) [36], where 2182 is the number of samples, and Xd

t represents the normalized
vector of the dth variable in the tth observation. Note that the channel here is a band of
Sentinel-2 data of all of the samples on an acquisition date, and in the feature vector after
the L2-norm, “0” elements have not been changed. Then, when a batch of samples is input
into Mask LSTM RNNs, the Mask layer will produce a mask matrix with the shape of the
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input data, and the values of the mask matrix can be calculated using Equation (2). When
the LSTM cells find md

ti = 0, the corresponding xd
ti will be skipped, and the output of the

(t− 1)th LSTM unit will be delivered to the (t + 1)th LSTM unit. The detailed operations
are illustrated in Equations (3)–(8), where f d

t+1,i, pd
t+1,i, and od

t+1,i are the outputs of the

forget gate, input gate, and output gate of the dth channel of the (t + 1)th LSTM unit,
respectively; C is the cell memory state; C′ represents the update values of unit status; h
is the hidden state; W and b are the corresponding weights and biases. It is worth noting
that if there are two or more LSTM layers in a Mask LSTM RNN, the mask matrix will be
delivered until it reaches the last LSTM layer.

∥∥∥Xd
t

∥∥∥ = (
∣∣∣xd

t1

∣∣∣2,
∣∣∣xd

t2

∣∣∣2, . . . ,
∣∣∣xd

t2182

∣∣∣2)1/2
(1)

md
ti =

{
1, i f xd

ti 6= 0
0, i f xd

ti = 0
(2)

f d
t+1,i = σ(W f •[hd

t−1,i, xd
t+1,i] + b f ), (3)

pd
t+1,i = σ(Wp•[hd

t−1,i, xd
t+1,i] + bp), (4)

od
t+1,i = σ(Wo•[hd

t−1,i, xd
t+1,i] + bo), (5)

C′dt+1,i = tanh(WC•[hd
t−1,i, xd

t+1,i] + bC), (6)

Cd
t+1,i = f d

t+1,i � Cd
t−1,i + pd

t+1,i � C′dt+1,i (7)

hd
t+1,i = od

t+1,i � tanh(Cd
t+1,i). (8)

Similarly, when the LSTM units shown in Figure 2 are replaced with GRU units [21], a
Mask GRU RNN for processing TSD with missing values will be obtained.

Figure 2. A masked long short-term memory recurrent neural network (mask LSTM RNN) for
multiple variables. LSTM, long short-term memory.

3.2. 1D CNN for TSD with Missing Values

The 1D CNN is a special form of CNN that employs one-dimensional convolution
(Conv1D) kernels (also known as filters) to capture the temporal pattern or shape of the
input series [37]. Unlike LSTM and GRU models, the convolutional operation is the dot
product between the filters and local regions of the input. Therefore, we express the ith

sample of the input layer as X0
i = (x0

1i, x0
2i, . . . , x0

Ti). Consider that the length of the first
layer convolution kernel is k; then, the output value of the first layer at time point t can be
calculated using Equation (9), where conv1D ( . . . ) is a regular 1D convolution, 0 ≤ k′ ≤ k,
and W1

k′ is the weight vector. When x0
(t+k−k′),i = 0, the extracted feature of the first layer x1

ti
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does not contain the missing elements of the input data. Therefore, the output layer of the
1D CNN does not contain the features of elements denoted as zeros.

x1
ti =

k

∑
k′−1

conv1D(W1
k′ , x0

(t+k−k′),i) (9)

A rectified linear unit (ReLU) layer (also known as the activation function) always
follows the Conv1D layer. In addition, it is common to incorporate other components, such
as dropout [38], batch normalization (BN) [39], and the fully connected (FC) layer, [40]
into CNN architectures. For classification tasks, all of the above layers followed a softmax
logistic regression layer, which acts as a classifier [41,42].

3.3. Experimental Configurations

The following experiments (shown in Figure 3) were designed for the 1D CNN, LSTM,
GRU, LSTM-CNN, and GRU-CNN models to address the two questions raised in Section 1.
In Figure 3, the text in italics includes the hyper-parameters that need to be trained. We
implemented our models using the Keras API with TensorFlow backend, using an Nvidia
GeForce GTX Titan X (12-Gb RAM).

Figure 3. Experimental configurations of five deep learning models using unfilled Sentinel-2 time series data in the first
group of experiments and using filled Sentinel-2 time series data in the second group of experiments. T, the length of
Sentinel-2 time series data. layer_num, the number of layers; channel_num, the number of channels in a convolutional layer;
kernel_len, the length of kernels in a convolution layer; fc_num, the cell number of a fully connected layer; dropout_rate,
the dropout rate; cell_num, the number of LSTM or GRU units in a layer. 1D CNNs, one-dimensional convolutional
neural networks; RNNs, recurrent neural networks; LSTM, long short-term memory; GRU, the gate recurrent unit; OA,
overall accuracy.
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The first group of experiments was designed to answer the first question by building
networks based on the five aforementioned models using unfilled TSD; and these networks
were then named as (Mask) 1D CNNs, Mask LSTM RNNs, Mask GRU RNNs, Mask LSTM-
CNNs, and Mask GRU-CNNs. The raw spectral information from each band of Sentinel-2
during the growing season (defined as DOY 91–273 in intervals of 5 days) was input to the
training networks, and all missing elements due to clouds were set as zeros.

In the second group of experiments, filled TSD was used to build networks based
on the five aforementioned models; and these networks were named as 1D CNNs, LSTM
RNNs, GRU RNNs, LSTM-CNNs, and GRU-CNNs. First, we filled in missing information
in TSD using time series linear interpolation based on good-quality observations, since
linear interpolation is usually appropriate for TSD with short gaps [43]. The Sentinel-2
images observed in March and October 2019 were used as well because there were clouds
in the images observed in early April and late September. Second, we utilized the Savitzky–
Golay filter to reconstruct each band value, using a moving window of seven observations
and a filter order of two [44]. Third, the spectral information of all 10 bands of the filled
Sentinel-2 TSD was input to the training networks.

Experiential values and the grid search method were used together to train the hyper-
parameters of all networks. For example, the experiential values of the dropout rate were
0.3, 0.5, and 0.8 [45], and the cell numbers in LSTM and GRU (module) were selected
from {64,128,256,512} [7,46,47]. The training of parameters for networks was performed
by using the Adam optimizer with cross entropy loss [48]; some classification tasks of
TSD have demonstrated this to be successful [47,49]. In addition, we monitored each
training process with the ModelCheckpoint callback function [50] and saved the model
when a better model of the training set was found. For each type of network, to reduce
the influence of random sample splitting bias, we repeated the random split five times,
and this allowed us to compute the average performances. Moreover, for each split, we
randomly selected 70% and 10% of the samples per crop type to form the training set and
the validation set, respectively; the remaining samples (20%) constituted the test set since
the distribution of sample sizes per crop type was uneven.

Figure 4a–c show the architectures and optimal hyper-parameter values of (Mask) 1D
CNNs, Mask LSTM RNNs, Mask GRU RNNs, Mask LSTM-CNNs, and Mask GRU-CNNs
obtained using unfilled TSD in the first group of experiments. In the second group of
experiments, five architectures similar to those shown in Figure 4 were built, first. Then,
these architectures were trained by using filled TSD since the number of features and the
temporal length of the input data in the two groups were the same. Finally, we obtained
the architectures and optimal hyper-parameters of 1D CNNs, LSMT RNNs, GRU RNNs,
LSMT-CNNs, and GRU-CNNs. There were two main differences between these networks
in the second group and those shown in Figure 4. First, the number of channels of the three
convolutional layers of 1D CNN were 128,256, and 128, respectively. Second, there were no
mask layers in LSMT RNNs, GRU RNNs, and LSMT (and GRU) modules of LSMT-CNNs
and GRU-CNNs.
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Figure 4. Networks in the first group using unfilled Sentinel-2 time series data. (a) Mask LSTM RNNs and Mask
GRU RNNs; (b) (Mask) 1D CNNs; and (c) Mask LSTM-CNNs and Mask GRU-CNNs. channel_num, the number of
channels in a convolutional layer; kernel_len, the length of kernels in a convolution layer; dropout_rate, the dropout
rate; cell_num, the number of LSTM or GRU units in a layer; BN, batch normalization; FC, fully connected; Conv1D,
one-dimensional convolution.

3.4. Evaluation Methods

Except for the confusion matrices of the test set, the accuracy of crop type classification
was evaluated in terms of overall accuracy (OA) [51]. The accuracy of each crop type was
assessed using the F1 score (F1), which is the harmonic mean of precision and recall [52]. In
order to evaluate the stability of different models, for each type of networks, we calculated
the standard deviations of OA and F1 of the networks upon application to five test sets.
Moreover, we calculated the time spent to fill in missing information of Sentinel-2 time
series data covering a typical mapping region in the study area to evaluate the efficiency of
crop type mapping using unfilled TSD.

4. Results
4.1. Unfilled and Filled Sentinel-2 TSD

The proportions of cloud-free samples in Hengshui City from 1 April to 30 September
2019 are shown in Figure 5 to illustrate the number of missing values in TSD. In Figure 5, the
x-axis is the DOY when the Sentinel-2 imagery was acquired, the y-axis is the accumulated
proportion of samples for each crop type that was not covered by clouds or cloud shadows,
and each color represents a crop type. Throughout the growth season, there were 10 dates
when the values of all samples were missing, and only nine dates when the proportion of
cloud-free samples was 100%; on the other 18 dates, a part of the samples was covered.
Statistics revealed that the total missing rate of sample values was 43.5%.
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Figure 5. Proportions of cloud-free samples.

The missing elements of samples in the TSD were filled in using time series linear in-
terpolation and Savitzky–Golay smoothing. The average bottom-of-atmosphere reflectance
profiles of each crop type are shown in Figure 6, which illustrates the potential of filled
TSD for contributing to crop type classification. In Figure 6, the x-axis is the DOY, and the
y-axis is the average bottom-of-atmosphere reflectance value of samples per type.

For the visible spectral bands shown in Figure 6a–c, the reflectance curves of the
different crop types exhibited obvious differences from DOY 93–183 and more intersections
and overlaps after DOY 183 (i.e., early July) because they were all in the developing
period, resulting in similar features in the visible spectra. For the RE1–RE3 bands, the
reflectance curves of RE1 were similar to those of the red bands, and RE2 and RE3 displayed
more similarity with each other. Compared with NIR1 and NIR2, which had very similar
reflectance curves for the same crop type, the SWIR1 and SWIR2 profiles exhibited larger
differences. In addition, similar to the visible spectra, the SWIR1 and SWIR2 profiles of all
of the vegetation types were very close after DOY 183. Overall, these results showed that
RE2–3 and NIR1–2 spectra were valuable for crop type classifications in the study area. It
should be noted that since the width of the vegetable greenhouse is generally 5–6 m and
the resolution of Sentinel-2 is 10 m, the spectra of the vegetable greenhouse samples were
similar to those of other vegetation due to mixture pixels.

Figure 6. Cont.
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Figure 6. (a–j) Bottom-of-atmosphere reflectance profiles of each crop type from the filled Sentinel-2 time series data.

4.2. Classification Accuracy with Unfilled TSD

Figure 7 shows the average OAs and standard deviations of different networks over
five different random splits in the first group of experiments using unfilled TSD. First, we
found that Mask LSTM-CNNs achieved the highest average OA (86.57%), improving by
0.14% from (Mask) 1D CNNs; meanwhile, the average OA of Mask GRU-CNNs was 85.98%,
which was worse than that of (Mask) 1D CNNs. Second, Mask LSTM RNNs attained the
lowest average OA (81.21%), while Mask GRU RNNs achieved the second lowest average
OA. Therefore, from the perspective of OA, 1D CNN, LSTM-CNN, and GRU-CNN could
extract more discriminative features from unfilled TSD than LSMT and GRU. From the
perspective of the stability of different networks, (Mask) 1D CNNs attained the lowest OA
standard deviation over five different random splits, indicating that 1D CNN was the most
stable model for crop type classification using unfilled TSD, followed by LSTM-CNN.

Figure 7. Average overall accuracies and standard deviations (over five different random splits) of
five deep learning models using unfilled Sentinel-2 time series data.

Figure 8a–e show confusion matrices of the networks based on five deep learning
models using unfilled TSD. The values in the matrices are the percentage of points available
in the “true label” and are the averages of the five test sets, that is, the values on the principal
diagonal are the recalls of crop types [53]. First, the recalls of vegetable greenhouse were
almost above 95% with different networks due to the non-vegetation characteristics of
the greenhouse. Second, fruit tree and forest were easily confused with each other; for
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example, Mask LSTM-CNNs, which best distinguished them, inadvertently classified 9.79%
of fruit trees as forests and 8.28% of forests as fruit trees. The main reason can be gleamed
from Figure 6; the overlap ratio of the Sentinel-2 multi-spectral reflectance curves of the
two types is very high. These two situations belong to non-crop monitoring and different
“forest” land classification, respectively. Next, we discuss the other four crop types.

Figure 8. (a–e) Confusion matrices of different networks using unfilled Sentinel-2 time series data. Values in matrices are
the percentage of points available in the “true label” and are the averages of the five test sets. VG, vegetable greenhouse;
SM, summer maize; CT, cotton; CHL, chili; CYR, common yam rhizome; FT, fruit trees; FR, forests.

The confusion matrices obtained by different networks had similar performances on
the other four crop types. First, cotton and common yam rhizome were most likely to be
inadvertently classified as summer maize, and chili was more likely to be inadvertently
classified as common yam rhizome. These results can be explained by the reflectance
curves shown in Figure 6; chili and common yam rhizome show obvious discrepancies on
the visible spectra and RE1 spectrum, but their reflectance curves are very close on other
spectra. This illustrates that the missing values in the Sentinel-2 TSD did not affect the
distinguishable characteristics across crop types. Besides, Mask LSTM-CNNs and Mask
GRU-CNNs achieved higher recalls on common yam rhizome with 85 samples than other
networks, which indicated that the networks of hybrid models attained high recalls for the
crop type with a small sample size using unfilled TSD.

This study used F1, the harmonic mean of precision and recall, to explore the perfor-
mances of different networks per crop type. The F1 results of experiments using unfilled
TSD are shown in Figure 9 alongside the average F1s and standard deviations from appli-
cation to the five test sets.

It is to be noted that (Mask) 1D CNNs achieved the highest average F1s on cotton,
chili, and common yam rhizome; conversely, Mask LSTM-CNNs achieved the highest
average F1s on vegetable greenhouse, summer maize, fruit tree, and forest. These results
illustrate that these two types of networks had different advantages in the detection of
different crop types in the study area, even though their OAs are very close. However,
for summer maize and vegetable greenhouse, both networks achieved high F1s (above
90%) due to the non-vegetation characteristics of vegetable greenhouses (as discussed
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above) and the large area of summer maize parcels. At the same time, we found that all
five types of networks achieved the lowest average F1s on chili. This is mainly because
the chili parcels in the study area were always smaller than the spatial resolution of 10 m,
resulting in mixed pixels. From the perspective of the stability of different networks on
crop type detection, all five types of networks attained the smallest F1 standard deviations
on summer maize, larger F1 standard deviations on cotton and common yam rhizome, and
the largest F1 standard deviations on chili. The above-mentioned mixed pixels were one of
the factors that caused these phenomena. In addition, a large sample size of the crop type
was beneficial to the stability of the deep learning models.

Figure 9. (a–e) The average F1 scores and standard deviations (from five split test sets) of each crop type with five types of
networks using unfilled Sentinel-2 time series data. VG, vegetable greenhouse; SM, summer maize; CT, cotton; CHL, chili;
CYR, common yam rhizome; FT, fruit trees; FR, forests.

4.3. Comparison of Classification Accuracy with Filled and Unfilled TSD

Table 3 shows the average OAs and standard deviations of five deep learning models
using unfilled TSD in the first group and filled TSD in the second group, calculated over
five random split test sets. The 1D CNN, LSTM-CNN, and GRU-CNN all had acceptable
average OAs (above 85%) with filled TSD and unfilled TSD; meanwhile, LSMT and GRU
attained lower OAs with filled TSD and unfilled TSD. In addition, the OAs of these models
in different groups were close. These results indicated that the five models could deep
learn features of different crop types from Sentinel-2 dense TSD with missing information,
even though the missing rate of Sentinel-2 TSD of all of the samples was 43.5%. Moreover,
we found that the standard deviations of each model using filled TSD were larger than
those using unfilled TSD, which was mainly caused by the transfer error of interpolation
and smoothing methods.

The average confusion matrices of the five test sets obtained by the different deep
learning models using filled TSD are shown in Figure 10. As stated in Section 4.2, the
values in the matrices are the percentage of points available in the “true label diagonal,”
and the values on the principal are recalls. First, we found that the ability of each model
to distinguish between every pairing of crop types when using filled TSD is similar to
that when using unfilled TSD. For example, common yam rhizome and cotton were easily
classified as summer maize in both groups. This indicates that the missing values caused
by clouds did not reduce the separability between different crop types because the low
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proportion of cloud-free samples (Figure 5) were mainly on the dates when the reflectance
profiles of different crop types were close (Figure 6). The recalls of cotton, chili, and
common yam rhizome shown in Figure 10 are smaller than those shown in Figure 8. For
example, the maximum recall of common yam rhizome is 80.0% in Figure 10 but 84.71%
in Figure 8. This indicates that filling in missing values may reduce the recalls of the crop
types with mixed pixels due to smaller parcels.

Table 3. Average overall accuracies and standard deviations (over five different random splits) of five deep learning models
using Sentinel-2 TSD with missing information and filled Sentinel-2 TSD. SD, standard deviation.

Model 1D CNN LSTM GRU LSTM-LSTM GRU-CNN

Networks (Mask)
1D CNNs 1D CNNs

Mask
LSTM
RNNs

LSTM
RNNs

Mask
GRU
RNNs

GRU
RNNs

Mask
LSTM-
CNNs

LSTM
-CNNs

Mask
GRU-
CNNs

GRU-
CNNs

OA 86.43 86.25 80.57 82.18 81.53 81.67 86.57 85.75 85.98 85.61
SD 1.25 2.62 1.87 2.84 1.79 1.87 1.41 2.26 1.82 2.32

Figure 10. (a–e) Confusion matrices of different networks using filled Sentinel-2 time series data. Values in matrices are the
percentage of points available in the “true label” and are the average of the five test sets. VG, vegetable greenhouse; SM,
summer maize; CT, cotton; CHL, chili; CYR, common yam rhizome; FT, fruit trees; FR, forests.

The average F1s and standard deviations of each crop type attained by the five deep
learning models using unfilled TSD and filled TSD are shown in Table 4. The mask networks
used unfilled TSD in the first group of experiments, and the other networks used filled
TSD in the second group of experiments. The values in bold are the higher average F1s
per crop type between results of different networks based on the same model. Obviously,
except for LSTM, the other four models obtained higher F1s when using unfilled TSD than
when using filled TSD. In addition, the F1 standard deviations of different crop types using
unfilled TSD are similar to those using filled TSD. For example, in both groups, all five
models achieved small F1 standard deviations on summer maize and large F1 standard
deviations on chili.
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Table 4. Average F1 scores and standard deviations (over five different random splits) per crop type attained by the five deep learning models using unfilled Sentinel-2 time series data (the
“Mask” networks) and filled Sentinel-2 time series data; the values in bold are the higher average F1s per crop type based on the same model. VG, vegetable greenhouse; SM, summer
maize; CT, cotton; CHL, chili; CYR, common yam rhizome; FT, fruit trees; FR, forests.

Model 1D CNN LSTM GRU LSTM-CNN GRU-CNN

Networks (Mask) 1D
CNNs 1D CNNs Mask LSTM

RNNs LSTM RNNs Mask GRU
RNNs GRU RNNs Mask

LSTM-CNNs LSTM-CNNs Mask
GRU-CNNs GRU-CNNs

VG 96.83 ± 2.91 96.81 ± 0.94 93.57 ± 3.43 94.76 ± 3.29 95.64 ± 2.26 93.92 ± 3.45 96.88 ± 3.14 97.63 ± 2.27 96.81 ± 2.61 98.41 ± 1.45
SM 91.31 ± 1.46 90.94 ± 1.39 88.68 ± 1.45 89.43 ± 1.46 89.01 ± 1.21 88.68 ± 1.65 91.40 ± 1.41 91.02 ± 0.70 91.29 ± 1.63 90.59 ± 1.44
CT 83.40 ± 3.85 83.25 ± 5.46 78.51 ± 1.02 80.11 ± 5.75 79.09 ± 2.42 77.90 ± 3.40 83.04 ± 3.40 82.56 ± 5.64 82.65 ± 3.14 81.38 ± 5.74

CHL 73.75 ± 8.66 71.28 ± 5.66 65.08 ± 7.21 63.52 ± 5.81 62.53 ± 5.08 66.97 ± 7.46 72.28 ± 6.93 69.13 ± 4.67 72.01 ± 7.92 68.86 ± 5.05
CYR 85.71 ± 3.76 84.84 ± 3.95 74.31 ± 7.24 79.67 ± 2.98 80.43 ± 1.99 79.05 ± 5.15 84.60 ± 5.32 85.03 ± 3.36 84.76 ± 6.29 82.73 ± 3.96
FT 81.20 ± 2.07 83.11 ± 5.08 71.64 ± 4.34 74.53 ± 5.56 74.00 ± 5.75 76.86 ± 4.44 82.21 ± 0.93 81.64 ± 4.77 81.44 ± 2.96 82.46 ± 4.09
FR 80.66 ± 4.37 79.58 ± 6.70 72.48 ± 4.63 71.80 ± 7.00 70.53 ± 4.65 69.92 ± 5.70 81.75 ± 5.01 78.58 ± 6.37 79.09 ± 5.06 80.31 ± 5.87
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4.4. Crop Type Mapping

Since the reconstruction of missing values in long-term series is a time-consuming
task, we selected a typical region (Figure 11a) in the study area, over which summer
maize, cotton, chili, common yam rhizome, and fruit tree/forest were mapped, and two
non-vegetation masks were used. The first one was the NIR1 reflectance image (without
clouds) attained on 21 August 2019, because the NIR spectrum showed great potential
in discriminating between vegetation and non-vegetation [54,55]. The NIR1 reflectance
of vegetation was above 0.31, which was obtained by subtracting the mean standard
deviation from the mean value of vegetation land cover (cropland and natural vegetation).
In addition, because of the obvious non-vegetation characteristics of greenhouses, the
buildings and roads in the farmland can be easily inadvertently classified as vegetable
greenhouses. Therefore, we used the results of vegetable greenhouse as another non-
vegetation mask to supplement the first one.

Figure 11. The crop type maps attained by the five deep learning models. (b–f) are the results with
unfilled Sentinel-2 time series data; (g–k) are the results with filled Sentinel-2 time series data.

In the first group of experiments, the crop type mapping results of the five deep
learning models using unfilled TSD are shown in Figure 11b–f, covering a region with
329,181 pixels. First, we found that there are similar crop type distributions in the maps of
(b) (mask) 1D CNNs, (e) mask LSTM-CNNs, and (f) mask GRU-CNNs. Moreover, there are
more common yam rhizome pixels in (e) and (f), which is consistent with the conclusion
obtained in Section 4.2, i.e., compared with (mask) 1D CNNs, the hybrid networks achieved
higher recalls for crop types with small sample sizes or small parcels.

In the second group of experiments, we first used linear interpolation and the Savitzky–
Golay filter to fill in the missing values of the regional time series images, which took
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61.3 min. The computing environment was the Windows 10 OS on a PC with a dual-core
processor (@2.10 GHz) and 64 GB memory. The mapping results of the five models using
the reconstructed TSD are shown in Figure 11g–k. By comparing the mapping results of the
five models in the two groups, we found that there are more cotton, chili, and common yam
in Figure 11b,e,f than in Figure 11g 1D CNNs, (j) LSTM-CNNs, and (k) GRU-CNNs. This is
consistent with the conclusion in Section 4.3, i.e., filling in missing values may reduce the
recalls of crop types with mixed pixels due to smaller parcels.

5. Discussion
5.1. Performances of Different Models

We summarize the performance of the five deep learning models in the following
three points.

(1) The 1D CNN has the potential to learn highly discriminative features for crop type
mapping by using TSD with missing information. First, it achieved acceptable accu-
racy (above 85%) using unfilled TSD; moreover, its OA was higher and performances
more stable than those with filled TSD. Second, it attained higher F1s on different crop
types when using unfilled TSD than when using filled TSD, especially on cotton, chili,
and common yam rhizome, which could easily be inadvertently classified. Third, it
had higher recalls on cotton, chili, and common yam rhizome when using unfilled
TSD than when using filled TSD (see Figure 11, which illustrates that the interpolated
and smoothed TSD may reduce the recalls of crop types with small parcels). Although
LSTM and GRU did not attain accuracies as high as 1D CNN using unfilled TSD, their
results were almost close to those with filled TSD.

(2) In the two groups of experiments, the performance of LSTM-CNN and GRU-CNN
was similar to that of 1D CNN (as discussed in (1)). However, in the mapping results
using unfilled TSD, their recall rates of chili and common yam rhizome with small
samples and small parcels were higher than that of 1D CNN. This showed that for
crop type identification using TSD with missing information, the hybrid model of
CNN and RNN (LSTM or GRU) has more advantages than a single model.

(3) When using the networks in the second group for crop type mapping, we first filled in
the missing values in the time series images of the mapping area. In this study, there
were 329,181 pixels in the mapping area (shown in Figure 11a), and it took 61.3 min to
fill in gaps. If we map the crop types of the entire Hengshui City (8.12× 103 km2) and
use a computer (configured as stated in Section 4.4) to fill in the missing values, it will
take about 11.5 days. This is very detrimental to the efficiency of crop monitoring over
large areas. Therefore, we believe that this study is of great significance for improving
the efficiency of crop monitoring over large areas.

5.2. Limitations

It is worth noting that there are some limitations and uncertainties in this study. The
first one is that in the study area (Hengshui City, located in northern China), the missing
rate of Sentinel-2 values of samples was approximately 43.5%, and the low proportion
of cloud-free samples (Figure 5) were mainly on the dates when the reflectance profiles
of different crop types were close to each other (see Figure 6). In contrast, rainy weather
and cloud cover are frequent in southern China, and as much as 80% of the Sentinel-2
images of that region acquired throughout the year may include clouds (note that 80% is
not the percentage of cloud coverage) [49]. In this case, the networks based on the above
deep learning models may fail for crop type detection using TSD with missing values
because the missing information are more easily on the key dates for distinguishing close
reflectance profiles of crop types. Therefore, the reduction of the cost of missing information
reconstruction through deep learning methods for crop type mapping in cloudy and rainy
areas will be the focus of our future work.

In addition, this study used linear interpolation and the Savitzky–Golay filter to fill in
the missing information of time series images; these are currently widely employed in crop
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type classification based on dense TSD and deep learning methods [4–7]. However, some
gap-filling methods achieve higher precision by collaboratively using temporal, spatial, or
spectrum information [11], although they will require more time and computing resources
than those employed in the present study. Therefore, the second group of experiments
using filled TSD achieved lower accuracies, which might relate to the missing information
reconstruction method we adopted. This work needs to be further verified in the future.

6. Conclusions

Cropland is the most complex land-use type since both human activity and the natural
environment affect it. Deep learning methods could identify crop types by learning these
complex relationships in depth. However, we often need to reconstruct the missing values
in the remote-sensed optical imagery due to clouds, which increases the workload and
the risk of error transmission. In this paper, we explored the performance of five deep
learning models (i.e., the 1D CNN, LSTM, GRU, LSTM-CNN, and GRU-CNN) for crop
type mapping using Sentinel-2 (Sentinel-2) time series data (TSD) with missing information.
The results show that although the total missing rate of the sample TSD was approximately
43.5%, the 1D CNN, LSTM-CNN, and GRU-CNN all achieved acceptable classification
accuracy (above 85%). Moreover, when compared with using filled TSD, they recalled
more samples on crop types with small parcels than when using unfilled TSD. Although
LSTM and GRU did not attain accuracies as high as the other three models using unfilled
TSD, their results were almost close to those with filled TSD. This study is important
for both scientific and practical uses, although it has some limitations and uncertainties,
as stated in Section 5.2. It showed that crop types could be identified by deep learning
features in Sentinel-2 dense time series images with missing information due to clouds
or cloud shadows randomly, which avoided spending extra time on missing information
reconstruction. In the future, the networks can be extended to two dimensions to complete
the semantic segmentation of time series images with missing values.
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