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Abstract: Using unmanned aerial vehicles (UAVs) for remote sensing has the advantages of high
flexibility, convenient operation, low cost, and wide application range. It fills the need for rapid
acquisition of high-resolution aerial images in modern photogrammetry applications. Due to the
insufficient parallaxes and the computation-intensive process, dense real-time reconstruction for
large terrain scenes is a considerable challenge. To address these problems, we proposed a novel
SLAM-based MVS (Multi-View-Stereo) approach, which can incrementally generate a dense 3D
(three-dimensional) model of the terrain by using the continuous image stream during the flight. The
pipeline of the proposed methodology starts with pose estimation based on SLAM algorithm. The
tracked frames were then selected by a novel scene-adaptive keyframe selection method to construct
a sliding window frame-set. This was followed by depth estimation using a flexible search domain
approach, which can improve accuracy without increasing the iterate time or memory consumption.
The whole system proposed in this study was implemented on the embedded GPU based on an
UAV platform. We proposed a highly parallel and memory-efficient CUDA-based depth computing
architecture, enabling the system to achieve good real-time performance. The evaluation experiments
were carried out in both simulation and real-world environments. A virtual large terrain scene was
built using the Gazebo simulator. The simulated UAV equipped with an RGB-D camera was used
to obtain synthetic evaluation datasets, which were divided by flight altitudes (800-, 1000-, 1200 m)
and terrain height difference (100-, 200-, 300 m). In addition, the system has been extensively tested
on various types of real scenes. Comparison with commercial 3D reconstruction software is carried
out to evaluate the precision in real-world data. According to the results on the synthetic datasets,
over 93.462% of the estimation with absolute error distance of less then 0.9%. In the real-world
dataset captured at 800 m flight height, more than 81.27% of our estimated point cloud are less then
5 m difference with the results of Photoscan. All evaluation experiments show that the proposed
approach outperforms the state-of-the-art ones in terms of accuracy and efficiency.

Keywords: UAV; SLAM; MVS; real-time 3D reconstruction; embedded GPU; CUDA; Gazebo simulator

1. Introduction

With the rapid development of modern digital cameras and unmanned platforms,
high-quality, low-cost aerial images can be easily captured. Such advances in hardware
technology have significantly promoted photogrammetry to become an essential tool in
various research areas, such as geosciences [1,2], urban construction [3] and monitoring [4],
etc. Therefore, image-based 3D reconstruction is now gaining newfound momentum in
many modern applications, including 3D maps for unmanned driving, smart city planning,
search and rescue in critical environments, etc.

Many commercial software can achieve centimeter-level precision [5] terrain recon-
struction. However, it is usually very time-consuming, and considerable computational
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resources are required. In practice, a number of applications regard efficiency to be as
important as accuracy, and they urgently need the spatial structural information of the envi-
ronment to be recovered as fast as possible. Some of those applications used for emergency
rescue tasks even require real-time. For example, in natural disasters such as landslides and
earthquakes, a 3D model of the disaster area can provide intuitive and helpful information
to support the human operator in quick decision-making [6]. However, since the routes
leading to the disaster area may be damaged or hindered, the close-range survey could be
dangerous for the rescuers. Moreover, large measuring equipment may increase the rescue
burden. Therefore, vision-based remote sensing by using the unmanned aerial vehicles
(UAVs) is a favorable choice due to its excellent SWaP (superior size, weight, and power)
characteristics [7–9]. On the other hand, faster reconstruction can enable quicker urgent
action, and thus the damage could be lower.

Since fast terrain reconstruction is in urgent demand, it is no surprise has received
significant attention. A high volume of efficient 3D reconstruction approaches based on
various sensors have emerged. Due to the weight and size limitation, the LiDAR sensors are
not applicable for lightweight UAV platforms. In addition, stereo or RGB-D cameras (such
as Microsoft Azure-Kinect-DK [10] and Intel RealSense [11]) are only applicable for small
scenes due to the limited the measurement distance. Considering such constraints of those
measuring sensors, the monocular vision has almost become the most preferred sensor.
Despite a great deal of existing work, there are several challenges that lie ahead for real-time
dense reconstruction in large scene. There are two major unsolved problems that result in
limited application. Firstly, it is difficult to obtain stable accuracy for 3D reconstruction
of large scenes or long-distance targets due to the insufficient parallaxes. Secondly, with
the increased volume of large scene data, time costs involved in the localization and dense
depth estimation process cannot be tolerated due to the quadratic relationship between
computational complexity and the number of optimized parameters [12].

To solve these problems, we proposed a monocular reconstruction system running
on embedded GPU, which considered both efficiency and density rate in the surface
reconstruction of large terrain scene. We have implemented the system on a low-cost,
small-size UAV platform. This scheme can promote the broader application of terrain 3D
reconstruction. The main contributions are as follows:

1. Simultaneous localization and dense depth estimation are carried out full automati-
cally without ground control points (GCPs) or other manual intervention;

2. An efficient portable GPU-accelerated pipeline is proposed. Careful engineering
considerations are taken on as highly parallel and memory efficient. The system is
finally implemented on the GPU-equipped UAV platform. Usability and efficiency
are proved on both the real-world and synthesized large-scene aerial data;

3. A new adaptive keyframe selection method is proposed. We analyzed the relation-
ship among the accuracy of depth estimation, the length of the keyframe baseline,
and the angle of optic ray, then proposed a cost function to select the keyframe
for depth estimation dynamically. This method is aimed at the large and incline
scene reconstruction;

4. A novel dynamic search domain for the depth estimation scheme is proposed. This
method utilizes the distribution characteristic of the scene to fit the plane dynamically,
and enables the algorithm to adjust the search scale to improve accuracy without
increasing the iterate time or memory consumption.

2. Related Work

In this section, we will discuss the related inspiring work on real-time dense 3D recon-
struction of large scenes by using embedded GPU, which is the main topic of this paper.

Traditional monocular vision-based 3D reconstruction methods can be roughly di-
vided into three modules according to their functions [13]. The first one involves calculating
the position and orientation of each camera viewpoint. This module is mainly addressed in
the pose localization problem. The goal of the second module is to recover the depth infor-
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mation of the observed scene by the overlapping images. The third module synthesizes the
3D model with each observation depth. Such a process jointly optimizes the point clouds
of the common-view scene, then performs the fusion operation. In a 3D reconstruction
system, these three modules are usually not independent of each other. The pose estimation
module requires the depth of some interest points as a constraint, and the depth estimation
module also depends on the accurate calculation of the pose [14]. The depth fusion module
is a post-processing step used to enhance the effect of dense reconstruction [15].

2.1. Localization

The visual-based localization methods aims to estimate the pose relationships (po-
sition and orientation) among cameras from a set of overlapping images captured at
different viewpoints.

Localization is one of the main tasks in SLAM algorithm, which is a well-established
technique, namely simultaneous localization and mapping (SLAM). Since the concept of
SLAM was initially introduced in 1998 [16], researchers have proposed many approaches
to solve the pose tracking problem. The history of SLAM begins with a filter-based
approach, such as the FastSLAM [17], Montemerlo et al. utilized Rao-Blackwellized particle
filter(RBPF) to recover the pose of camera. Davison et al. proposed MonoSLAM [18], which
is based on extended Kalman filter (EKF) and was the first real-time visual SLAM method.
However, despite many improved filter-based SLAM algorithms emerged, this approach
still encounter some problems such as scale drift, the limited number of landmark, and
quadratic complexity [19,20].

The Parallel Tracking and Mapping (PTAM) [21] algorithm was designed to solve
those problems mentioned above. The authors proposed a breakthrough method which
firstly based on multi-thread processing architecture and nonlinear optimization method.
At present, the mainstream visual SLAM is based on this scheme. Most of the recent
remarkable works [22–25] have inherited the PTAM algorithm. ORB-SLAM3 is one of
those representative works, which is based on graph optimization and sliding window
method. Its time complexity, accuracy, and real-time performance have reached the level of
commercial application. High-precision localization provides a basis for high-precision
depth estimation and 3D reconstruction.

2.2. Depth Estimation

Monocular vision-based depth estimation aims to recover the corresponding depth
information of the pixels from a collection of images taken from known camera position
and orientation [26].

In the 3D reconstruction task, density of the reconstructed model is intensified via
multi-view-stereo (MVS) algorithm. This technique can find correspondences between
overlapping images and produce 3D dense point clouds [27–30]. Many early MVS algo-
rithms focus on small objects reconstruction [31–33], while the tightly controlled imaging
conditions make those algorithms not directly suitable for the large scene, resulting in the
limited application [26]. To further promote MVS application to large scenes like outdoor
or aerial situations, Vu et al. [34] proposed an MVS pipeline that utilized an adaptive
domain and mesh-based variational refinement strategy.

At present, typical MVS methods usually use two major strategies in pixel matching:
global or semi-global [35] optimization. Some of those methods can even be compared
with laser-based reconstruction in some specific scenes [36]. The GPU-based method
DTAM [37] minimizes a photometric error by optimizing the global energy function and
achieves height accuracy dense depth map. However, since the high-performance GPU
is required in the intensive global matching process, DTAM is not suitable for portable
devices. To balance computation cost and accuracy, VI-MEAN [38] uses a semi-global
optimization to regularize the cost volume and implement it on mobile GPU Nvidia TX1.
However, the 4-path 1D cost volume managed in VI-MEAN inevitably produces streak
artifacts on the estimated depth map. To solve this problem, quadtree-mapping [39] uses
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quadtree pixel selection and dynamic belief propagation method to construct a 2D cost
volume so that optimization variables can be transferred in two directions at the same time
for each aggregation. Such a scheme is very effective in filling the depth of low-texture
areas without streak artifacts. However, since this excellent work is designed for drone
navigation in the small or medium scene, it sets the depth in a fixed scale for cost matching,
limiting its application in variable-scale scenes. Besides, our experiments show that for the
case of incline viewing angles, quadtree-mapping in the depth estimation of distant targets
is relatively noisy.

3. Methods
3.1. System Overview

To improve the efficiency and maintainability of the proposed 3D reconstruction
system, the framework is divided into several modules by using a multi-processing archi-
tecture based on a distributed robot operating system (ROS). The pipeline of our system
is shown in Figure 1. It consists of four process modules: image acquisition and pre-
processing module, pose and scale estimation module, dense depth estimation module,
and global fusion module. Each processing module is assigned to an independent thread.

Thread 4: Depth map fusion   
                module

Thread 3: Dense depth estimation module

Thread 2：Pose and scale     
    estimation module

Thread 1: Image acquisition 
and preprocessing module

 image acquisition

Pre-process
(Rectification+

Histogram equalization)

Pose and 3D coordinates 
of Kpts estimation by 

ORB-SLAM3 

Queue 2: Key frame 
grayscale image, pose and 

3D coordinates of Kpts

is KF

Calculate the normal vector of fitting 

plane, update the search domain

Motion stereo matching 

based on the search Domain 

(5 historical KF)

Gradient-guided pixel 

segmentation, Cost 

aggregation, outlier rejection.

Frame1

Frame2

Frame3

Frame4

Frame5

Queue 3: Match the key 
frames in the window

Caculate TSDF and weight 

value for each pixel

update TSDF and weight 

value for each voxel

generate surfaces by 

MarchingCubes

reconstructed mesh

Queue1：
Preprocessed 

image

...

not empty

Yes     Read and deque

Push back

not empty

Yes     Read and deque

...

Search Domain

Sparse disparity
 map

Image + pose + 
Kpts coordinates

Queue4:

color/dense- 

depth image 

and pose

not empty

...

Push back

Push back

Yes     Read and deque

New weighted grade

Figure 1. The framework of multi-processing system.

In this pipeline, modules can perform its functions in parallel and interact with each
other through the data queue, which is filled with a ROS-based callback function. The image
acquisition and pre-processing module acquire the image in real-time and pre-process
it by un-distortion and histogram equalization for stable photometric. Pre-processed
grayscale images will be pushed into the back of queue 1. Subsequently, the pose and scale
estimation module gets the newest frame from the front of queue 1, and de-queue that
frame to keep the size of the queue constant. Then, this module outputs the pose and 3D
coordinates of the keypoints (kpts) by using ORB-SLAM3, which involves the process of
ORB feature extraction and matching, triangulation, and BA optimization. Keyframe (KF)
sets in queue 2 for depth estimating are selected by dynamic baseline constraint, which will
be described in Section 3.2. The dense depth estimation module is mainly implemented
on GPU. This module generates a dense depth map by using the proposed dynamic
searching plane method and will be described in Section 3.3. At last, the final global map is
obtained by fusing the incremental local depth measurements in a memory-efficient way
by using a truncated signed distance function (TSDF) proposed by Zeng et al. [40]. The
process marked with a double-line frame indicates that it is divided into the pixel-by-pixel
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calculation and implemented based on the parallel computing framework of the compute
unified device architecture (CUDA). Such highly parallelized design enables the operation
accelerated to achieve real-time performance, and will be described in Section 3.3.3.

The workflow of ROS-based message passing and synchronizing is shown in Figure 2,
which is a peer-to-peer network of processes that are loosely coupled using the ROS com-
munication infrastructure. This framework can balance the computing load in performing
communication and messaging passing.

 

Figure 2. Workflow of ROS-based message passing and synchronizing.

3.2. Dynamic Baseline Keyframe Selection

In this section, we describe how to select the measurement frame set, which is the
basis of the sliding-window-based depth estimation. The pose and scale estimation module
utilized ORB-SLAM3 to calculate the relative pose of the latest frame and the 3D coordinate
of the sparse feature points. The relative pose reflects the displacement and the orientation
angle of the camera, and the sparse feature point clouds reflect the primary contour and
the structural characteristics of the current scene. This information guided the keyframe
selection method to decide whether to insert the latest frame to the measurement frame set
for depth estimating. In this study, care has been taken to select the keyframe to reduce
redundancy among consecutive frames and keep the parallax sufficiency among frames in
the measurement set.

The relationship between the keyframe baseline length, scene depth distribution, and
the accuracy of depth estimation is described below: let ed be the parallax error, ez be the
depth error, b be the baseline, f (in pixels) be the focal length, and z be the depth. To
facilitate the analysis, we assume that the camera movement is a lateral translation and
only consider the translation vector t. Taking the first order Taylor series approximation
about ed = 0, the depth error can be written in terms of the disparity error ed:

ez =
b f
d
− b f

d + ed
≈ edz2

b f
(1)

assuming that the baseline, focal length, and parallax as constant, the depth error has a
quadratic relationship with depth [41], which indicates that careful selection of baseline
constraint to filtering out some frames can, therefore, effectively improve the accuracy
of depth estimation. The larger the baseline, the smaller the depth error. However, a
baseline threshold should be set to avoid a low percentage of overlap. Unlike most other
3D-reconstruction methods, simply set the baseline threshold as a constant or sets as
dynamic but missing the geometric structure of the scene, we select the frame according to
the center and the normal vector of the scene to achieve disparity stability and sufficient
overlap. Thus, we proposed the following cost function:
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cost(i) =

∣∣∣∣∣sh(1 + sin(ϕ))− bi f

zre f
avg

∣∣∣∣∣+
∣∣∣∣r tan

(
4αi

π

)∣∣∣∣ (2)

where s and r are the constant scale factor, we set to 0.25 and 0.125, respectively, as a rough
indication of the intended overlap between the two images. h is image height, α is the
optical axis angle deviation from the last KF, and ϕ is the angle between optical axes and
normal vector nnn of the fitting plane, which will be described later in Section 3.3. The first
term in Equation (2) indicates that the cost function penalizes deviations from the desired
disparity. Thus, the preferred next KF satisfies the disparity constrain that make the cost
minimum, such that the average disparity is approximately equal to sh(1 + sin(ϕ)). The
scene can be classified into three cases according to the scale trends, as demonstrated in
Figure 3. When the scene is almost parallel to the camera plane (i.e., the scene P1), ϕ is

close to 0 such that the desired baseline is close to sh
zre f

avg
f . In other cases (i.e., the scene P2

and P3) the desired baseline of the next keyframe dynamically adjusted according to ϕ
to achieve scale consistency and higher accuracy. In addition, since large rotation of the
camera may result in insufficient overlapping, the second term of our cost function takes
into account the rotation component. KF baseline becomes longer as the camera rotates or
the average depth become smaller.

Figure 3. P1, P2, and P3 are the fitting plane of three kinds of scene, which indicates three cases of
the scale, i.e., remains stable, getting smaller, and getting larger.

3.3. Multi-View Stereo Matching

In this section, we will first describe the sliding-window-based depth estimation and
explain how we dynamically select a searching plane to construct a disparity matching cost
vector. Then, we will describe the architecture design of embedded-GPU-based parallel-
computation technology for depth-estimate acceleration.

3.3.1. Notation

Let Tw,c ∈ SE(3) be the pose of the camera with respect to the world frame. Similarly,
Tw,r and Tw,k be the pose transformation from reference frame and keyframe to the world
frame, respectively. A landmark P = [x, y, z]T in 3D space is projected into the pixel
coordinate through the perspective projection mapping uuu = π(P̄) =

(
K[x/z y/z 1]T

)
0:1

,

where P̄ is the normalized homogeneous coordinates corresponding to P, K is the camera
intrinsic matrix. Accordingly, P̄ = π−1(uuu) represents the inverse process of projection. To
simplify the expression, use (·)0:1 denotes the vector formed by the first two element of the
vector (·). Γnnn,P denotes a plane with interior point P and normalized vector n.
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3.3.2. Matching Cost

The first step of depth estimation processing workflow involves maintaining a fixed
size queue of recent KFs Ir ∈ R, which are candidates for multi-view stereo match-
ing. Such a fixed-size queue is a sliding window. The new keyframe Ik satisfying the
baseline constraint will be added to the back of this queue. Then, the window shifts
forward to delete the oldest frame so that we can maintain sufficient parallax and constant
computational complexity.

The relative pose from Ir to Ik estimated by the pose estimation module will be
used for triangle constraint to recover depth of pixels in Ik. The most important step in
this process (i.e., depth estimate) is to correctly match corresponding pixel in multi-view
frames. Like other direct or semi-direct method based SLAM, we assume that the imaging
intensity value corresponding to a certain 3D landmark in space remains constant in all
observations. Such an assumption is called pixel grayscale invariance [42]. To eliminate
the impact of illumination change or intensity noise on pixel matching, we consider the
patch-pixel grayscale invariance, i.e., matching the similarities of a n× n patch window
instead of one single pixel. Given a certain depth hypothesis of a pixel in Ik, by projecting
the corresponding 3D coordinate to all candidate matching frames Ir ∈ R, we can obtain
the matching cost by measuring the intensity difference. The process of depth search
equivalent to minimizing the matching cost.

In stereo matching, each selected point in Ik is sampled by Nd depth values, which are
uniformly distributed in certain depth space. The sampling depths of all pixels constitute
Nd depth searching planes. Those depth values are used as the hypothesis for calculating
the matching cost in candidate reference frames one by one. The final value of depth
measurement z∗ is determined by the minimum matching cost. Since the resolution
of depth estimation is decided by the distance between neighboring searching planes,
elaborately selecting depth planes is therefore crucial to depth estimation accuracy. A
comparison of the selected depth searching plane is demonstrated in Figure 4. Unlike the
other methods, which selecting planes parallel to the imaging plane (i.e., (a,c) in Figure 4),
our method allows the plane to be selected with significant flexibility by dynamically fitting
the spatial distribution of depth.

(a) (b)

(c) (d)

Figure 4. The gray plane in (a) is the selected searching plane, which is parallel to the imaging plane,
and (b) shows the plane selected by our method. Gray scale value of the plane indicates depth value,
the darker the point, the larger the depth z. The two different ways to select the searching plane can
lead to different depth distributions along the search direction, as is demonstrated in (c,d).
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Three-dimensional coordinates of keypoints calculated by BA are used as a prior to
predict the spatial distribution of depth in the scene. Figure 5 shows that the distribution of
the keypoints extracted by ORB-SLAM3 is divided into four areas. Let Pm = [xm ym zm]

T

be the focus of the whole scene, and the focus of each area is Pi = [xi yi zi]
T, i = 0, 1, 2, 3,

which can be obtained by calculating the mean 3D coordinates of keypoints in each area.
The depth distribution of the scene can be approximated by a fitting plane Γnnn,Pm , which
passes through the focus Pm, and its normal vector nnn = [a b c]T satisfies:

x1 − xm y1 − ym z1 − zm
x2 − xm y2 − ym z2 − zm
x3 − xm y3 − ym z3 − zm
x4 − xm y4 − ym z4 − zm


 a

b
c

 = Annn = 0 (3)

where nnn can be obtained by using SVD decomposition of A, such that the equation of the
fitting plane is defined as:

Γnnn,Pm(x, y, z) : a(x− xm) + b(y− ym) + c(z− zm) = 0 (4)

Figure 5. Uniformly distributed Oriented FAST and Rotated BRIEF (ORB) feature points are divided
into four areas.

For a given pixel, p with normalized homogeneous coordinates P̄, let γ be the optic
ray (i.e., the green line in Figure 4) that passes through both the optical center and P̄,
finding the 3D coordinates P = (x y z)T of the selected point is equivalent to solving the
intersection point of γ & Γnnn,Pm , which yields:

x
P̄x

=
y
P̄y

= z (5)

Combining Equations (4) and (5), we can solve the candidate depth value on the
searching plane corresponding to P̄ by:

znnn,Pm(P̄) =
axm + bym + czm

aP̄x + bP̄y + c
=

nnnPT
m

nnnP̄T (6)

Distance between the fitted 3D feature point P f and the fitting plane Γ(nnn, Pm) are
calculated by:

d
(

P f , Γ
)
=

Γnnn,Pm

(
P f

)
√
‖nnn‖

(7)

We assumed that d
(

P f , Γ
)

obeyed the normal distribution with covariance σdp . Hence,
take (Γnnn,Pm−3σdp ·nnn, Γnnn,Pm+3σdp ·nnn) as the search range, as demonstrated in Figure 4b, the Nd

candidate depth values of all pixels uniformly covered the whole scene. For any given
pixel uuuk in frame Ik, the corresponding candidate depth d(uuuk, i) is calculated by:

d(uuuk, i) = znnn,Pi

(
π−1(uuuk)0:1

)
(8)
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znnn,Pi (P̄) =
nnn
(

Pm + 2i−Nd
Nd

3σd · nnn
)T

nnnP̄T , i = 0, 1, . . . , Nd − 1 (9)

where the sequence of d(uuuk, i) for i = 0, 1, . . . , Nd − 1 denotes the set of candidate depth
in the searching planes. Then, we can get a set of matching 2D points, denoted as uuuprj

r ,
located in sliding window frames (i.e., history keyframe in R ) by coordinate transform
and projection process:

uuuprj
r = π

(
T−1

w,r Tw,kd(uuuk, i)π−1(uuuk)
)

(10)

As mentioned above, by measuring the intensity difference, we can obtain the match-
ing cost vector:

C(uuuk, i) =
1
|R| ∑

Ir∈R
SAD(Ir, Ik, uuuk, d(uuuk, i)) (11)

where SAD simply calculates the sum of absolute difference of two 3 × 3 pixel patches
located at uuuk and uuuprj

r :

SAD(Ir, Ik, uuuk, d(uuuk, i)) =
∣∣∣Ir

(
uuuprj

r

)
− Ik(uuuk)

∣∣∣ (12)

3.3.3. Parallel Computing

In this section, we described the detailed implementation in the process of depth
searching. Since the calculation of matching cost between pixels is independent of each
other, for the benefit of online computation, we implement every cost calculation in GPU
as an independent thread to accelerate the process.

As shown in Figure 6, the current matching image grid is composed of multiple CUDA
blocks, and each CUDA block is composed of multiple threads, enumerating Nd depth
hypothesis. In each block thread, the matching cost of a 4× 4 pixel patch in all measurement
frameR is carried out independently for Nd depth hypothesis, which means that a block
contains ‖R‖ × Nd threads. We sum the cost result of different threads for each depth
hypothesis and write the results to an Nd array in shared memory, which multiple threads
can access. The final optimal depth d∗ is determined by the minimum matching cost:

arg min
d∗

‖R‖

∑
k=1

cost(k, d) (13)

Reference KFs set

(Device memory)

Reference KFs set

(Device memory)

Block( x , y  )

k

i

...

Current KF image Grid

...

...
...

......

...

...

Thread

(k,i)

Calculate cost [ k ] [ i ]

Thread

(k,i)

Calculate cost [ k ] [ i ]

Cost array

（shared  memory）

blockIdx.y

blockIdx.x

blockIdx.y

blockIdx.x

5 KF

64 depth

Figure 6. The composition of computing structure in GPU. The yellow box on the left represents
block arrays, and the green box on the right represents thread arrays. Device memory can be accessed
by all blocks and threads, while shared memory can be accessed by threads in the same block.
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In CUDA architecture, the smallest computing unit of a warp contains 32 threads [43].
Considering both the memory and computation time, we set the number of histori-
cal keyframes in the sliding window as 5, and set the number of depth hypothesis as
Nd = 64. Each block has 320 threads, which is the integer multiple of 32. The final cost is a
64 dimension array, which is stored in the shared memory of the block and can be accessed
by all block threads. The calculation of each block thread is as shown in Algorithm 1.

Algorithm 1 Pseudocode of optimal depth extraction algorithm.

Input:
1: blockIdx;
2: threadIdx;
3: image intensity of current target keyframe Ik and measurement frame set Ir ∈ R

Output: optimal d∗

4: Pixel col: x ← 4× blockIdx.x
5: Pixel row: y← 4× blockIdx.y
6: Currently matched referent keyframe index: r ← threadIdx.x, r ∈ [0, ‖R‖]
7: Currently matched depth hypothesis index: i← threadIdx.y, i ∈ [0, Nd − 1]
8: define shared memory array: cost[Nd]← 000 B Accessed by all block threads
9: define shared memory array: depth_index[Nd], depth_index[i]← i

10: define local variable: ∆I ← 0
11: uuuk ← (x, y)
12: d(uuuk, i)← Equation (8)
13: uuuprj

r ← Equation (10)
14: for patch_i = −1; patch_i < 2; patch_i ++ do
15: for patch_j = −1; patch_j < 2; patch_j ++ do
16: ppp← (patch_i, patch_j)
17: ∆I ← ∆I +

∣∣∣Ir

(
uuuprj

r + ppp
)
− Ik(uuuk + ppp)

∣∣∣
18: end for
19: end for
20: cost[i]← cost[i] + ∆I B Avoid thread blocking by using atomicAdd()
21: synchronize threads
22: step← Nd/2
23: for step > 0 do
24: if i < Nd/2 and cost[i] > cost[i + step] then
25: cost[i]← cost[i + step] B Parallel rolling scan
26: depth_index[i]← i + step
27: end if
28: step← step/2
29: synchronize threads
30: end for
31: i∗ ← depth_index[0]
32: d∗ ← d(uuuk, i∗)

By using parallel acceleration and rolling scan strategy, we reduced the time complex-
ity of Equation (13) from O(N2

d ) to O(log(N2
d )) in our algorithm, and extract the optimal

depth for each pixel patch in each keyframe with the highest efficiency.

4. Experiment and Results

In this section, we present the evaluation comparison between the proposed method
and other state-of-art methods: REMODE [44], probabilistic-mapping [45], and quadtree-
mapping [39]. Those methods are targeted on dense depth estimation on portable devices.
The system is evaluated in the following three aspects:

1. Accuracy: The relative error rate (% w.r.t m), RMSE(m), and mean error(m) were
calculated for the cross-method evaluations;
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2. Computation time (ms): The average computation time of each selected keyframe
and the total computation cost;

3. Density rate (%): The average percentage of the valid measurement in each depth map.

Two types of experiments were carried out. The first experiment was a depth accuracy
evaluating experiment in which synthetic aerial images and ground truth depth are used.
The second experiment used real large scene aerial video for time consumption and stable
performance evaluation of the system. In addition, we have quantified the difference
between the models generated by our system and commercial reconstruction software
under real scene data.

The system was implemented using C++/CUDA on the embedded platform NVidia
TX2 [46], which is equipped with a quad-core ARM CPU and a 256-core GPU, 8 GB of
memory, and its excellent SWaP (Size Weight and Power) capability makes real-time dense
reconstruction of portable platforms possible. All the experimental for this study are
carried out based on this platform.

4.1. Accuracy Evaluation
4.1.1. Evaluation Data Acquisition

The popular RGB-D datasets, such as the TUM RGB-D SLAM dataset [47], ICL-NUIM
dataset [48], and KITTI dataset [49], were originally designed for odometry, thus they are
not suitable for the evaluation of 3D reconstruction algorithm, especially for algorithms
designed for large-scenes. Moreover, error of depth obtained by the binocular camera
is non-negligible in the large scene. Therefore, it is difficult to obtain the depth ground-
truth of the real large scene. We proposed an experimental approach for evaluating the
depth accuracy based on synthesized data, which is generated by the Gazebo 3D robotics
simulator [50]. To make the synthesized data more realistic, the virtual scene is build up by
sunlight conditions and certain textures that are typically observed in the real world, such
as grass, sands, and rocks, as shown in Figure 7. Besides, simulated RGB-D sensor in this
environment can provide perfect depth ground-truth corresponding to each RGB image.

(a) (b) (c) (d)

Figure 7. The textures of grass (a), sands (b), and rocks (c) were captured in the real world. By applying suitable height
maps, we can fuse all the textures into a whole mixed terrain scene. The fade-in and fade-out fusion was used to eliminate
the image stitching seams. Sunlight conditions also applied to make synthesized data more realistic. Top view of the final
synthesized scene are shown in (d).

As is shown in Figure 8a,b, an 16-bit grayscale depth map with a spatial resolution
of 1 m were obtained by height map generator: terrain.party [51] (data sourced by Open-
StreetMap [52]) from the real-world. This height map enables us to build a real-scale
uneven terrain 3D model with the size of 8000 m × 8000 m in the Gazebo simulator. We
use a simulated s UAV equipped with an RGB-D camera to fly over the scene and acquire
the aerial data. The RGB images are used for system input and the depth maps for accuracy
evaluation. Furthermore, the ground truth pose is given. By modeling sensor noise in
the RGB camera, real-world artifacts in the synthesized data are simulated. Besides, the
simulation environment can provide the physical characteristics of the wind so that the
UAV can swing weakly within the controllable range.

In the photogrammetric terrain mapping tasks, aerial images are usually taken at
different ground heights for the various types of terrain. Considering this, we take the UAV
flight height and the average height difference of terrain as variables to design two kinds of
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datasets for accuracy evaluation. The flight height is the average distance between the UAV
and the ground, and the height difference of terrain is the distance between the highest
and lowest points of the terrain in a top view.

(a) (b) (c)

(d) (e)

Figure 8. Selected area (a) is located in the middle part of the Himalayan, (b) is its corresponding
depth maps generated by terrain.party. (c) shows the s UAV, which is equipped with an RGB-D
camera for RGB video capture and depth ground truth data collection. The depth sampling distance
of the camera is not limited. (d) is the example of registered color image for system input, and (e) is
the ground truth depth map for accuracy evaluation.

The first dataset contains aerial images captured at different ground heights (800 m,
1000 m, and 1200 m) for the same scene. We built a terrain based on the height map shown
in Figure 8 for this dataset. For the second dataset, we built three new height maps with
different height differences (100 m, 200 m, and 300 m). The front view and the side view of
the three scenes are shown in Figure 9. We fixed the relative flight height of the UAV as
300 m to collect the data. To make the experiment unaffected by other factors, the scene
texture mapping used in each case is the same. Figure 10 shows some example images of
the two datasets taken at different spatial positions.

Avg. 

depth 

100m

Avg. 

depth 

200m

Avg. 

depth 

300m

Figure 9. Three synthesized terrains with height differences of 100 m, 200 m, and 300 m, respectively.

4.1.2. Depth Accuracy Evaluation

The synthesized datasets described in Section 4.1.1 are used for cross-method accuracy
evaluation. All algorithms compared in this experiment use the pose generated by ORB-
SLAM3 as the mapping pose. After obtaining the depth maps, the accuracy assessment
procedures were performed. All six image sequences were compared by using the relative
error rate and root mean square errors (RMSE) of estimated depth.
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1200m

2100m

3000m

3900m
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150m
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1050m

1500m

1950m

Position x

(a) Dataset 1 (b) Dataset 2

Figure 10. Example images of the datasets captured at different flight heights (a) and different terrain average height
differences (b). Each of the two datasets contains three synthetic RGB image sequences together with the corresponding
depth image sequences with a resolution of 960 × 540 and a frame rate of 30 per second.

Since the monocular based visual odometry cannot recover the absolute scale of the
pose, depth value estimated by multi-view geometry is proportional to the true value
under a scale factor. To evaluate the depth accuracy in the true scale, we use the scale w.r.t.
the ground-truth translation vector t to scale the depth. Considering that the depth map is
generated between the current KF and the measurement frames inR , set the scale average
of the corresponding pose t as the zoom factor sk of the depth in frame k:

sk =
1
‖R‖ ∑

i∈R

∥∥∥tgt
ik

∥∥∥∥∥test
ik

∥∥ (14)

such that the relative error rate of pixel depth in depth map Dk is defined as:

er =

∣∣∣sk · dest
p − dgt

p

∣∣∣
dgt

p
, p ∈ Dk (15)

and the depth RMSE is calculated by:

RMSE(d) =

√
1
n ∑

Dk∈R
∑

p∈Dk

(
sk · dest

p − dgt
p

)2
(16)

The result is shown in Figure 11, a comparison of pixel percentage of converged
measurements (vertical axis) within a certain relative error rate threshold (horizontal axis).

The curves shown in Figure 11 described the distribution of the estimated values of
the algorithm in different accuracy ranges. The corresponding detailed numerical values
statistics is shown in Table 1. The results indicate that for low altitude and highly uneven
terrain, the performance of different algorithms tends to be relatively close. While for the
flatter and further terrain, adjusting the matching baseline and using planar features of
the scene enable our algorithm to outperform the others in insufficient parallax cases. We
achieved over 81% of estimated depth with error rate less then 1% in this case. For the
lower altitude (300 m) data with different flatness, we achieved typical RMSE of depth
error around 2.3 m.
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Figure 11. Comparison of relative depth error rate (% w.r.t m) in synthesized image sequences, which are divided into 800 m,
1000 m, and 1200 m three mean ground height and 100 m, 200 m, and 300 m three height difference terrain. We calculate the
pixel percentage of converged measurements (vertical axis) within a certain relative error rate threshold (horizontal axis).
The better performance has a higher percentage in any error rate threshold.

Table 1. Detailed numerical values statistics of results of different methods on the synthesized datasets. The best metric
value is highlighted in bold.

Method Metrics Flying Ground Height Terrain Height Difference

800 m 1000 m 1200 m 100 m 200 m 300 m

Ours

Error Rate within 1% (%) 83.741 81.542 85.974 77.273 83.791 78.389
Outlier Rate (%) 0.706 1.227 1.261 0.612 1.347 1.682

RMSE (m) 5.767 7.608 8.288 2.441 2.020 2.448
Mean Error (m) 4.537 5.957 6.516 1.970 1.544 1.910

Quadtree
Mapping

Error Rate within 1% (%) 82.101 77.053 80.62 69.998 74.016 76.113
Outlier Rate (%) 0.632 1.182 0.934 0.899 1.591 0.719

RMSE (m) 5.940 8.322 9.352 2.996 2.559 2.541
Mean (m) 4.701 6.574 7.445 2.296 2.066 2.018

Probabilistic
Mapping

Error Rate within 1% (%) 64.821 60.124 57.403 70.511 76.068 69.464
Outlier rate (%) 3.410 6.183 9.433 2.493 2.533 3.558

RMSE (m) 8.081 12.258 12.953 2.882 2.465 2.879
Mean (m) 6.534 10.024 10.486 2.274 1.941 2.271

REMODE

Error Rate within 1% (%) 67.632 73.210 62.288 69.086 76.842 69.419
Outlier rate (%) 5.113 2.760 13.641 3.3186 1.874 2.610

RMSE (m) 7.839 9.136 11.223 2.985 2.428 2.836
Mean (m) 6.168 7.106 9.016 2.348 1.949 2.280
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4.2. Global Mapping Evaluation

In the last evaluation experiment, we measured the accuracy of each depth estimation,
i.e., the accuracy of Z. For the 3D point, which can reflect the accuracy in terms of X, Y,
and Z three dimensions, we evaluated by the global mapping in this section.

The 3D point cloud generated in this study is originally from the 2D depth map.
By applying mapping transformation through the camera pose, and marginalizing the
redundant estimation by using TSDF, we can build a global map of the entire scene. Depth
maps stability (i.e., consistency of the estimate for the same spatial object point in different
keyframes) plays an important role in this step. We project all the depth maps to the spatial,
as is shown in Figure 12, to evaluate the point cloud stability.

Purple boxes in Figure 12a,b shows the comparison of the reconstructed point cloud
details in the case of an inclined scene. Due to the change of scale and the lack of parallax
of distant points, REMODE has more noise than ours because it cannot maintain the depth
stability of the same 3D landmark in different observations. Moreover, the point cloud
density at the edge of the scene is significantly reduced. Our method adjusts the search
range of different areas to be as close to the scene depth as possible, enables us to achieve
a smoother estimation without a filter. As for the areas of green boxes, the preset search
range is too large for the estimation module of quadtree-mapping, which causes the point
cloud drift in a larger range, resulting in the thick surface point cloud. As is shown of the
detail in the black boxes, the probabilistic-mapping causes streak artifacts due to 4-path
optimization. We use the global 2D update SGM as quadtree-mapping do so that this
problem can be avoided.

(a) (b)

(c) (d)

Figure 12. Global mapping of four methods: (a) proposed method (b) quadtree-mapping (c) REMODE, and (d) probabilistic
mapping. The selected areal shows the detail of point cloud.

The data used in this experiment is the 1000 m height sequence of dataset 1, and the
rest of the datasets produced similar results. The C2C (Cloud to Cloud) absolute distance
error of the final terrain model was carried out using CloudCompare [53] open source
software. The CloudCompare is a 3D processing tool, also known as a evaluation tool,
which calculates the closest distance between each estimated point and the ground truth
point cloud. We set the distance threshold as 30 m, and the error map and respective
absolute error distribution histogram is given.

As the error pseudo-color map illustrated in Figure 13, the proposed method can
maintain stable estimation accuracy in different areas of scene scale change. On the other
hand, we can see that the estimation accuracy is more improved than single depth map
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after depth fusion. Our method achieves percentage of absolute distance error lower then
9 m (0.9% of the absolute distance) is 93.462%, quadtree-mapping 90.088%, REMODE
72.197%, and probabilistic-mapping 83.475%.

Figure 13. Comparison of absolute distance error (m) in sequences of synthesized 1000 m height data.

4.3. Speed Evaluation

We compared our method with the other three methods: REMODE, probabilistic-
mapping, and quadtree-mapping in terms of run-time per keyframe to evaluate the effi-
ciency of the proposed algorithm. This experiment is based on the aerial video captured by
the DJI Air2 UAV platform at 30 fps and resized to 960 × 540 pixels. Results of keyframe
computational cost as shown in Figure 14.
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Probabilistic-mapping does not a have keyframe selection module, and it achieves real-
time performance by abandoning presets number of the frame. Quadtree-mapping transfers
the depth of each frame and iteratively updates it, enabling the system to generate dense
depth for every input image in the tracking model. Hence, the run time is relatively long. The
average cost and the average density rate of the depth map are shown in Table 2, and our
method generates depth maps in a shorter time without losing much of the density rate.

Figure 14. The runtime of the listed algorithms to generate each depth map on real-world data.

Table 2. Results comparison with state-of-art method on aerial video data.

Method Number of
Keyframe

Mean Cost Per
Keyframe (s)

Total
Run-Time (s)

Density
Rate (%)

Ours 248 0.229 62.762 93.391
Quadtree-Mapping 1577 0.346 646.999 97.189

REMODE 41 0.417 64.981 50.695
Probabilistic-Mapping 234 0.657 153.866 96.693

4.4. Evaluation in Real-World Terrain Scenes

In this section, we presented the results obtained from real-world large scene to prove
the usability and efficiency of our system. Since it is difficult to obtain the depth ground-
truth of the real large scene, and there is no aerial datasets contain both RGB and depth
images of the terrain, we chose to compare with the commercial software, PhotoScan
(Agisoft LLC, Russia) [54], which is mainly targeted at the accuracy of reconstruction. It
usually takes a long time to process and requires high level calculation power hardware.
The surface absolute difference among the proposed methods and PhotoScan are obtained
for quantitative comparison.

The UAV platform we used in this experiment was equipped with a UHD camera to
acquire aerial images at 3840 × 2160 resolution and 30 frames per second. Besides, GPS
and IMU values are also recorded, enabling us to classify the data by the approximate
ground high and pitch angle (the angle between the optical axis of the camera and the
horizontal plane). The UAV has flight several times to acquire aerial images on the region
of interest, including town, mountain, and the mixed zone scene. These scenes located
in the Jiushangding mountain, Tianjin, covering the area at approximately nine square
kilometers. Figure 15 shows examples of satellite images acquired by google earth and
aerial images acquired by UAV. These datasets were taken at ground heights ranging from
400 m to 1000 m in different pitch angle. Before feeding the sequences to our system, we
resized all images to 960 × 540 resolution for the balance between run-time and accuracy.
Detailed statistics are as shown in Table 3.
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China

 Town scene Mountain scene Mixed scene

Beijing

Langfang 

Zunhua

Tianjin 

Tangshan

Chengde

N

Jiushangding Mountain, Tianjin, ChinaJiushangding Mountain, Tianjin, China

Figure 15. Examples of satellite images and low altitude aerial images of the town, mountain and the mixed zone scene.

Table 3. Detailed statistics of aerial datasets and results point cloud number of our method.

Image Sequences No. Image
Amount

Approximate
Ground Height (m)

Pitch
Angle (◦)

Point
Amount

Towns
1 1811 400 75 632,758
2 1805 500 75 596,257
3 1823 500 90 613,125

Mountains
1 1806 600 75 563,649
2 1851 800 75 513,699
3 1864 800 90 533,461

Mixed Zone
1 1835 800 75 476,533
2 1840 800 75 451,128
3 1862 1000 90 419,561

In this experiment, the results of Photoscan are used as the benchmark. After obtaining
the models, the ICP algorithm, implemented in CloudCompare, was used to align the
model generated by our method and the model obtained by Photoscan. The absolute
distance difference between the models is then calculated. Note that we only calculate the
distance difference of common parts, no consideration will be given to the differences in
the edges.

Figures 16 and 17 shown two examples of reconstructed results comparison of our and
Photoscan method in real-world aerial data. The surface absolute difference distribution
between Photoscan and proposed method shown in Figure 18 indicate that more than 84%
of sample points’ difference are less than 5 m on the 800 m flight height data Mixed Zone-2.
We downsampled all the data to 960 × 540 and input the two methods for efficiency and
difference evaluation. In order to make Photoscan obtain higher accuracy, the images
were aligned with GPS data. Finally, the hardware environment, time consumption, and
percentage of difference within 5 m of the two methods are shown in Table 4.
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(a) (b) (c)

(d) (e) (f)

Difference（m）

Figure 16. The image sequence data is Mountains-2 in Table 3. Reconstruction results compared with Photoscan. (a,d) are
the top view and the front view of the model generated by Photoscan offline. (b,e) are the corresponding results generated
by our real-time approach. (c,f) are the difference pseudo-color image.

(a) (b) (c)

(d) (e) (f)

Difference（m）

Figure 17. The image sequence data is Mixed Zone-2 in Table 3. Reconstruction results compared with Photoscan. (a,d) are
the top view and the front view of the model generated by Photoscan offline. (b,e) are the corresponding results generated
by our real-time approach. (c,f) are the difference pseudo-color image.
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(b)(a)
(m) (m)

Figure 18. The histogram statistics of the different methods on the data of Mountains-2 (a) and Mixed Zone-2 (b).

Table 4. Time cost compare on datasets in Table 3, T is the Town, M is the Mountains, and MZ is the Mixed Zone.

Methods CPU GPU Time Costs on Aerial Datasets (m′s′′)
T1 T2 T3 M1 M2 M3 MZ1 MZ2 MZ3

Ours
Arm

Cortex
A57

TX2
Embedded

GPU
1′01′′ 1′01′′ 1′02′′ 1′01′′ 1′03′′ 1′03′′ 1′02′′ 1′02′′ 1′03′′

Photoscan
Intel
Core

i9 10850

NVidia
RTX2080ti 37′50′′ 30′17′′ 34′45′′ 29′14′′ 26′32′′ 30′37′′ 25′43′′ 25′58′′ 27′51′′

Percentage of Difference < 5 m (%) 75.31 78.23 81.27 81.68 83.14 88.25 83.85 84.87 89.25

In summary, for real-world aerial images with a flight height of about 500 m, more
than 75.3% of our estimated point cloud are less then 5 m difference with the results of
Photoscan, and for the data with a flight height in range of 800 m to 1000 m, it can reach
80% to 90%. All in all, what the main contribution of our proposed method is online dense
3D reconstruction for large scene, therefore, it is acceptable to sacrifice minor accuracy
within a small range in exchange fo real-time performance.

5. Discussion and Future Works

As two main factors restricting the application of 3D reconstruction, accuracy and effi-
ciency have always been the main topics that scholars are committed to working on. Many
methods tend to pursue accuracy based on ensuring real-time performance. For example,
the methods compared in the experiment in this article are mainly improved in two aspects:
fusion or denoising, and they have obtained considerable results in the typical scenes. The
experiment in Section 4.1.1 also illustrated that, results in different algorithms are similar
under the conditions of small scene, sufficient parallax. Based on these studies, we refine
the research problem to the terrain reconstruction for large scenes, and redesigned the
system framework to achieve higher efficiency. In comparison with commercial software,
our method achieves real-time processing without losing too much precision. Since our
system does not require a height compute capability of GPU or heavyweight sensors but
using just a low-cost RGB camera and a lightweight embedded platform, it shows a great
deal of potential for widening the applicability of 3D reconstruction.

Although our proposal achieved satisfactory results in many experiments, it still
has certain limitations for practical applications, which are worth future investigation.
Specifically, it includes the following aspects:
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1. We only did preliminary research with the aim of real-time terrain 3D reconstruction
and proposed a calculation framework. This study focused on the use of a single
camera for 3D reconstruction, which resulted in the lack of scale of the established
3D model. Thus, the points cannot be registered with the real-world terrain. Using
IMU, GPS or other scale-aware sensors to fuse cameras together for scale registration
can provide constraints under the condition of lack of vision, and the stability of the
system could be improved as well.

2. There is still room for improvement in accuracy. The monocular SLAM algorithm
generally has problems relating to scale drift due to error accumulation. A loop-
closure detection module is necessary for pose correction. Similar concepts can be
used in the 3D reconstruction system. The localization module with closed-loop
function can fuse the previous and current point clouds to build a drift-free 3D model,
which can build a larger scale of terrain scene.

6. Conclusions

In this study, we use the portable embedded platform as a computing device to
implement a real-time 3D reconstruction system for large scenes of various terrains. The
proposed method is well designed by carefully considered from two aspects, i.e., hardware
and algorithm. The algorithm makes full use of the geometric characteristics of the terrain
scene, combines the advantages of SLAM and MVS-based depth estimation, and makes
improvements in keyframe selection and depth searching. In terms of hardware, by
analyzing the structural characteristics of GPU and independence of computation process,
we utilized ROS-based multi-process and CUDA acceleration techniques, which enables
the algorithm to achieve real-time performance. The overall experiments results have
demonstrated that, in the ultra height altitude aerial dataset (≥800 m), more than 83.741%
of the depth estimation error rate are lower then 1% in the simulated scene. In the global
mapping, 93.462% of the estimated point clouds with absolute error distance of less then
0.9%. In the real-world scene, more than 81.27% of our estimated point clouds are less than
5 m difference from the results of Photoscan. The proposed method can be used for various
terrains scenes and outperforms the state-of-the-art embedded GPU-based real-time 3D
reconstruction method in terms of accuracy and efficiency.
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