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Abstract: Unmanned aerial vehicle (UAV) remote sensing has become a readily usable tool for agri-
cultural water management with high temporal and spatial resolutions. UAV-borne thermography
can monitor crop water status near real-time, which enables precise irrigation scheduling based on an
accurate decision-making strategy. The crop water stress index (CWSI) is a widely adopted indicator
of plant water stress for irrigation management practices; however, dependence of its efficacy on
data acquisition time during the daytime is yet to be investigated rigorously. In this paper, plant
water stress captured by a series of UAV remote sensing campaigns at different times of the day (9h,
12h and 15h) in a nectarine orchard were analyzed to examine the diurnal behavior of plant water
stress represented by the CWSI against measured plant physiological parameters. CWSI values were
derived using a probability modelling, named ‘Adaptive CWSI’, proposed by our earlier research.
The plant physiological parameters, such as stem water potential (ψstem) and stomatal conductance
(gs), were measured on plants for validation concurrently with the flights under different irrigation
regimes (0, 20, 40 and 100 % of ETc). Estimated diurnal CWSIs were compared with plant-based
parameters at different data acquisition times of the day. Results showed a strong relationship
between ψstem measurements and the CWSIs at midday (12 h) with a high coefficient of determination
(R2 = 0.83). Diurnal CWSIs showed a significant R2 to gs over different levels of irrigation at three
different times of the day with R2 = 0.92 (9h), 0.77 (12h) and 0.86 (15h), respectively. The adaptive
CWSI method used showed a robust capability to estimate plant water stress levels even with the
small range of changes presented in the morning. Results of this work indicate that CWSI values
collected by UAV-borne thermography between mid-morning and mid-afternoon can be used to
map plant water stress with a consistent efficacy. This has important implications for extending the
time-window of UAV-borne thermography (and subsequent areal coverage) for accurate plant water
stress mapping beyond midday.

Keywords: unmanned aerial vehicle (UAV); remote sensing; thermal infrared (TIR) imagery; adaptive
crop water stress index (Adaptive CWSI)

1. Introduction

The diurnal cycle of plant water status is important to understand the plant behavior
of water uptake and to detect water stress sensitivity. Plant physiological parameters such
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as predawn ψleaf (leaf water potential) and midday ψstem (stem water potential) are known
to detect plant water stress at early stages [1–3]. Due to the mapping capability of airborne
and spaceborne thermography over large spatial extent, canopy temperature analysis has
also been carried out extensively as an indicator of plant water stress. The use of thermal
infrared (TIR) imagery is based on the biophysical links between the canopy temperature
and stomatal opening or closure induced by water availability [4]. The crop water stress
index (CWSI) is a widely adopted measure of plant water stress derived from canopy
temperature to minmiize the need of ground measurements [5–7]. Typically, TIR imagery
for CWSI is collected at midday, since midday CWSI is known to be most sensitive to the
actual plant water stress [8,9].

Recently, unmanned aerial vehicle (UAV) has become a viable remote sensing platform
with a high spatio-temporal resolution [10]. UAV sensing has been employed in agricultural
research with a multi-sensor payload such as multispectral, thermal, hyperspectral camera,
among others [11]. UAV-borne thermal sensing is often used to monitor plant water status
since canopy temperature is one of the physiological parameters of plant, which is related
to water stress and leaf-transpiration rate [12–14]. In addition, UAV-borne multispectral
and hyperspectral sensing is also widely applied to detect plant stress, such as biotic and
abiotic stress [15], and to assess plant vigor by specific vegetation indices (e.g., NDVI,
NDRE) [16]. Thus, UAV remote sensing technologies become a readily usable tool for plant
management in precise agriculture [17].

In the case of CWSI estimation, UAV sensing has also been limited to being conduct
mainly around midday in previous researches: 1) to obtain the highest thermal contrast
between canopy temperature and air temperature [18,19]; 2) to minimize shade effects cast
by a canopy for better image analysis [20]; or 3) to compare with physiological parameter,
midday ψstem acquired at the UAV sensing time [21,22], since midday ψstem is reflects well
the leaf-level physiological response of water status in several plants (e.g., fruit crop [23,24]
and woody crop [25]). However, further research on the proper time of the day for CWSI
estimations is required to optimize data (image) acquisition plans and data analysis [26].
However, there have been only a few attempts to investigate the diurnal changes of CWSI,
including TIR data acquired in the morning using UAV-based remote sensing [9,26,27].
For these studies, either the TIR image processing failed due to low contrast of surface
temperatures, or results of CWSI estimation were inaccurate due to a narrow range of
upper and lower boundary limits or negative Tcanopy − Tair value in the morning hours [28].

Regarding the recent technology advances of photogrammetric software and TIR
sensors, TIR imagery can nowadays be processed even with the low contrast temperature
within the scene [29]. In addition, the new method of CWSI (‘Adaptive CWSI’ hereafter) es-
timation proposed in recent research [19] is not dependent on meteorological data required
for the energy balance method or empirical methods to obtain the lower and upper base-
lines [30–32]. The Adaptive CWSI determines the lower and upper baselines by statistical
probability modelling, enabling estimation of plant water stress level even with the small
range of boundary limits such as those present during the morning time.

This research explores diurnal changes of plant water stress status from a series of UAV
remote sensing with plant physiological parameters. The objective of this research was to
interpret the diurnal response of plant water stress estimated from UAV thermography
with measured plant physiological parameters. The specific objectives are: (1) to evaluate
representativeness of the CWSI values for plant water stress parameters at different times
of the day, from morning to late afternoon; and (2) to show a potential time window
of UAV-borne thermal infrared that could extend the widely adopted acquisition time
around midday. To achieve the objectives, the plant parameters such as ψstem and gs are
measured on plants in different irrigation regimes to investigate the diurnal variations of
water-stressed plants at different times of the day.
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2. Materials and Methods
2.1. Study Site Description

The experimental site is a nectarine orchard (0.7 ha, 150 m× 45 m), located near Tatura,
Victoria, Australia (36◦26′08” S, 145◦16′13” E, 114 m AMSL). The Stonefruit Experimental
Orchard, Tatura SmartFarm is administered by the Department of Jobs, Precincts and
Regions. The climate of Tatura is temperate. The annual average reference crop evapo-
transpiration is 1190 mm, and the annual precipitation is 480 mm in the region. The site
was planted in 2014 with a nectarine called ‘September Bright’ on an Open Tatura training
system (tree height 2.0 m, tree spacing 1.0 m). The nectarine fruit was in stage III of fruit
maturity with the tree canopy under midseason full leaf-up. The Open Tatura (OT) is
V-shaped with two trellis arms, designed to increase light interception and provide more
uniform light distribution for high marketable yields. The trees are planted in a north-south
direction on a fine, sandy, loamy, Shepparton soil. The tree- and inter-row spacing is 1.0 m
and 4.5 m, respectively (2,222 trees/ha).

The study site used a subset of the entire orchard irrigation experiment, focusing on
four experimental plots in close proximity (Figure 1), where four different irrigation levels
were applied as control (W4_100) and water deficit treatments (W1_20, W2_0, and W3_40),
as shown in Table 1. Experimental layout of plots was a randomized block design. Blocks
of sampling trees were selected randomly and treated with designated deficit irrigations.

Figure 1. (a) Study site location, Stonefruit Experimental Orchard (Tatura, Victoria, Australia). (b) Different levels of water
deficit plots are presented in red (0 % ETc), orange (20 % ETc), green (40 % ETc), and blue (100 % ETc) zones.
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Table 1. Summary of irrigation levels applied to control and treatment plots.

Plot ID Cultivar Treatment Irrigation Level

W1_20

Nectarine

Deficit 20 % ETc
W2_0 Deficit 0 % ETc

W3_40 Deficit 40 % ETc
W4_100 Control 100 % ETc

The orchard was drip-irrigated daily, and the irrigation amount was calculated by
a weather-based ETc (crop evapotranspiration) model by FAO-56 approach [33]. A crop
coefficient of ETc was adjusted for tree size, by measuring fractional photosynthetically
active radiation (fPAR) interception [34]. The irrigation amount was controlled daily via
a single drip line comprising of in-line pressure compensated emitters (1.6 l/h discharge,
0.5 m spacing). Each plot of control and water deficit treatments contained three adjacent
rows of eighteen trees to adequately delimit the treatments. The middle three trees in each
plot were used for field and remote sensing measurements.

2.2. Data Acquisition

Three UAV flights were conducted on the 19 January 2017. The aerial TIR imagery
was acquired from morning to afternoon distributed at 9 h, 12 h, and 15 h solar time. The
experimental day was with a clear sky, moderate winds (0.6 m sec−1), air temperature
around 30.6 ◦C and relative humidity 26.7 % at midday, measured from the nearby (<200 m)
meteorological station. The weather condition of each time of UAV campaign is shown in
Table 2.

Table 2. Weather conditions at three times of data acquisition on 19 January 2017, Tatura.

Acquisition Time of Data Air Temperature Relative Humidity Wind Speed

9 h 26.8 ◦C 34.7 % 0.9 m s−1

12 h 30.6 ◦C 26.7 % 0.6 m s−1

15 h 33.2 ◦C 18.8 % 1.2 m s−1

A TIR camera (A65, FLIR Systems, Inc., Wilsonville, OR, USA) was integrated with a
GPS and an onboard computer for geo-tagging and mounted to a multi-rotor UAV platform
(S1000, DJI, Shenzhen, China). TIR images were captured in the spectral wavelength of
7.5–13 µm, a spatial resolution of 640 × 512 pixels, a focal length of 25 mm, and a FOV of
25◦ (H) × 20◦ (V).

All aerial images from the TIR sensor were taken within a short time window (< 10 min)
to minimize the temporal variation of canopy temperature during the flight over the
site. The TIR camera was mounted to a high-performance gimbal to enable stable image
acquisition at nadir view. The UAV was flown at an altitude of 90 m above ground level
(AGL) to capture images with an overlap of 80 % forward and 40 % side, respectively, by
an autonomous flight plan. The footprint of a TIR image is 39 m × 31 m with a ground
sample distance (GSD) of 6 cm.

During the UAV sensing, two types of calibration targets were deployed at the site:
(1) temperature calibration target for TIR images and; (2) ground control point (GCP) and
ground artificial feature (GAF) for image orthomosaicking. The water body and rubber
plates were deployed for calibration targets of TIR images as cold and hot features with
high emissivity. The specific GCP target was designed for performing an accurate and
robust orthomosaicking and GAF targets were designed for increasing key points available
for the photogrammetric matching process presented in previous research [19]. The GCP
target was made of an aluminium plate with a black cross (0.6 m× 0.6 m size) and surveyed
by a differential GPS (DGPS) with higher than 3 cm positional accuracy. The GAF targets
were made of aluminium-coated cardboard with three shapes: triangle, trapezoid, and



Remote Sens. 2021, 13, 2775 5 of 13

rectangle. Both targets were distinctively presented as a cold temperature in thermal
images due to a low emissivity of aluminium material.

With each UAV flight, the measurements of crop physiological data were carried
out at the irrigation treatment plots simultaneously of aerial image acquisition. Gas
exchange measurements using a photosynthesis system (LI-6400, LI-COR Inc., Lincoln,
Nebraska, USA) were conducted on fully expanded leaves (n = 6 leaves × 4 plots = 24
observations) to obtain stomatal conductance (gs, mmol m−2 sec−1) at 9 h, 12 h and 15 h.
Leaf temperature was measured on both sunlit and shaded leaves (n = 10 leaves × 4 plots
= 40 observations) using a thermometer (TN410LCE, ZyTemp, Radiant Innovation Inc.,
Hsinchu City, Taiwan). Midday stem water potential (ψstem, MPa) was measured on two
fully expanded shaded leaves per tree in each plot (n = 4 leaves× 4 plots = 16 observations)
using a Scholander pressure chamber (Model 3000, Soil Moisture Equipment Co., Santa
Barbara, CA, USA). The leaves were selected from branches near the main trunk and were
covered with an aluminium foil bag for a minimum of one hour of equilibration time before
the measurement of ψstem.

2.3. TIR Image Processing

Based on the method of Adaptive CWSI estimation proposed in the previous re-
search [19], all aerial TIR images were processed to estimate plant water stress at each time:
9 h, 12 h and 15 h.

Temperature calibration of thermal images was carried out to retrieve accurate plant
temperatures with a known temperature from calibration targets. As a method, the raw
signal-format TIR images were converted to temperature-based images using a one-point
calibration by the FLIR Systems [35], as shown in Equations (1) and (2). When correlating
the signal to the temperature, the calibration targets made of rubber sheets and water
bodies were used to refer to the actual temperatures as hot and cold features. The TIR
snapshot measured the target temperatures by a handheld thermal imaging camera (T640,
FLIR Systems, Inc., Wilsonville, OR, USA) and a handheld thermometer concurrently with
the UAV flight. The temperature of the calibration target was used to calculate the adjusted
offset parameter (Oadjusted) (Equation 1), and then adjusted temperature was obtained
(Equation 2):

Oadjusted = S− R
e(B/Tknownin Kelvin)−1

(1)

Tadjusted (in Kelvin) =
B

log
(

R
S−Oadjusted

+ 1
) (2)

where S is a 14-bit raw signal value, T an object temperature, R a constant for converting flux
to temperature derived from Planck’s constant h, B a constant derived from Boltzmann’s
constant and Planck’s constant h, O an offset (signal to radiance).

All calibrated TIR images were stitched into a georeferenced image using photogram-
metric software (PhotoScan, Agisoft LLC, St. Petersburg, Russia).

For the extraction of pure canopy pixels from the imagery, the mixed pixels (edges)
along the boundary between canopy and soil pixels were detected by the combined Sobel
and Canny technique in Matlab R2014b. The detected edges were dilated for more conser-
vative exclusion of the mixed pixels and removed from the original orthomosaic image.

2.4. Plant Water Stress Modelling Using Adaptive CWSI Method

The concept of CWSI was used to interpret the level of plant water stress by the
normalization of the difference between canopy temperature of the plant (Tc) and reference
temperatures, where reference implies fully transpiring (Twet) and non-transpiring leaf
(Tdry). The CWSI formula is presented as follows [5]:

CWSI =
Tc − Twet

Tdry − Twet
(3)
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The Adaptive CWSI in an earlier research was proposed to determine site-cultivar
dependency, specifically for reference temperatures based on statistical analysis. This new
method addressed an adaptive approach of CWSI estimation in two aspects: (1) Finding
that the behaviour of canopy temperature was different from cultivar type and canopy
structure even under the identical irrigation regime. Thus, the new Adaptive CWSI method,
employing single reference boundary of Twet and Tdry, could not accommodate to such
behaviour. Thus, the adaptive CWSI with multiple reference boundaries of Twet and Tdry
was proposed by classifying the region into sub-regions of the same crop property. (2)
Determining automatic thresholds of Twet and Tdry by a statistical approach using the
Gaussian mixture modelling (GMM). In this way, Adaptive CWSI hypothesised that Twet
and Tdry can be obtained at two extremes in the distribution of canopy temperatures
under the assumption of the presence of water-stressed and non-water-stressed plants in
the region analysed. Mixed pixels of canopy and non-canopy were discarded to obtain
pure canopy distribution for the temperature histogram, by adopting the method of edge
detection and extraction.

Figure 2 describes the process work flow for Adaptive CWSI estimation. In this
research, the temperature histogram was generated from the edge-free TIR image to analyze
the temperature distribution statistically. Since the study site has a single cultivar (nectarine)
with the same canopy structure (Open Tatura), the site was treated as one property. Thus,
the classification of sub-regions was not required for the site. The GMM was fitted to
the temperature distribution to separate canopy and soil pixels in distinctive bimodal
and normal density distributions and to estimate the reference boundary values, Twet and
Tdry, for the CWSI estimation. The higher-temperature component (2nd distribution) of
the Gaussian distribution, representing soil pixels, was removed to exclude non-canopy
samples. Then, the adaptive threshold of Twet and Tdry was automatically determined
by sampling 0.5 and 99.5 percentile values from the canopy-temperature component (1st

distribution) of Gaussian distribution. The critical value of 99% confidence interval limits
was derived empirically from the previous research [19], assigning the coldest and hottest
temperatures as Twet and Tdry, respectively.

Figure 2. Flowchart of the analysis steps for CWSI estimation based on adaptive reference baselines.
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3. Results
3.1. Relationship of CWSI with Midday Stem Water Potential

Figure 3a shows the estimated CWSI map based on adaptive of Twet and Tdry derived
from the midday UAV flight. The water stress variability over the orchard is visually
presented in the CWSI map. Figure 3b shows the details of four experimental plots in water
deficit and control treatment groups: W1_20, W2_0, W3_40 and W4_100.

Figure 3. (a) Adaptive CWSI map derived from midday UAV remote sensing for the entire exper-
imental nectarine orchard, Tatura. The red rectangles represent the area of irrigation treatments.
(b) Detailed adaptive CWSI map depicting the experimental plots of W1 (20 % ETc), W2 (0 % ETc),
W3 (40 % ETc) and W4 (100 % ETc).

CWSI values of trees from each experimental plot were extracted and averaged from
the CWSI map to show the representative CWSI value for each plot. The CWSI values in all
four irrigation groups exhibited a strong negative correlation with the midday ψstem, with
determination coefficients (R2) of 0.83 (Figure 4). In W1_20 and W2_0 plots, high-water-
stress treatments were applied; subsequently, the measured ψstem of each plot indicated
water deficit condition with a similar value of −2.6 MPa and −2.8 MPa, respectively.
The ψstem values for W3_40 and W4_100 were also shown in close range with values of
−1.7 MPa and −1.6 MPa, respectively, representing low-water-stress condition. All ψstem
from W1–W4 plots were measured with standard deviations (SDs) of 0.11, 0.06, 0.28 and
0.21 MPa, respectively.
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Figure 4. Relationship between midday stem water potential and adaptive CWSI at 12 h.

Similar results were obtained for the estimated CWSI. The CWSIs in W1_20 and W2_0
were estimated in the equivalent values (approx. 0.66 and 0.60, respectively), and were
higher than in W3_40 and W4_100 (approx. 0.49 and 0.44, respectively). CWSIs from
W1–W4 plots were obtained with SDs of 0.07, 0.04, 0.09 and 0.07, respectively.

3.2. Relationship of CWSI with Diurnal Plant Water Stress

The difference between canopy and air temperature (Tc – Ta) was also measured
at three times of the day. Figure 5 shows Tc – Ta of control plot (W4_100) and deficit
plot (W2_0) from morning to afternoon. The canopy-air temperature difference Tc – Ta
changed considerably during the day in both irrigation treatment plots, starting positive
and becoming negative Tc – Ta. In the morning (9 h), the canopy temperature was higher
than the air temperature since the canopy was becoming warm. At midday, canopy
temperature was becoming cooler than air in the control plot. The latter is considered to be
due to transpiration cooling. Tc – Ta approached zero in the case of deficit plot, indicating
higher canopy temperature than control plot, which was derived from water stress. Overall,
the water deficit plot (W2_0) resulted in higher canopy temperature than the fully irrigated
plot (W4_100) during three measurements (≈ 3 ◦C), related to typical daily depression.

Figure 5. Differences between canopy and air temperature at three times of the day in control (100%
ETc) and deficit (0% ETc) plots.
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Stomatal conductance (gs) measurements were used to provide the relationships with
the estimated CWSIs at different times of the day, as shown in Figure 6.

Figure 6. Relationships between stomatal conductance (gs) and adaptive CWSI acquired at: (a) 9 h;
(b) 12 h; (c) 15 h; and (d) all three times.



Remote Sens. 2021, 13, 2775 10 of 13

Similarly, with midday ψstem, a strong relationship was found between gs measure-
ments and the adaptive CWSI at 9 h, 12 h, and 15 h. Specifically, the relationship of each
time was significant with determination coefficients (R2) of 0.92, 0.77 and 0.86, respectively.

From the results at 9h in Figure 6, the measured gs from each plot showed a gradual in-
crease of values according to the irrigation level with gs values from 18.4 (mmol m−2 sec−1)
at W2_0 to 39.8 (mmol m−2 sec−1) at W4_100. Inversed results were found for the estimated
CWSI, showing that the CWSI values gradually dropped with a higher irrigation level.
In Figure 6, the relationships presented were derived from midday and afternoon. Both
CWSIs were significantly correlated with gs measurements.

In the diurnal variation of plant water stress, morning gs showed less variation than
midday and afternoon gs over all the irrigation regimes (0, 20, 40 and 100 % ETc), as shown
in Table 3. However, the distribution of gs, which is the difference of extreme gs in 0 %
ETc and 100 % ETc, became significantly wider from morning to midday, remaining at a
similar scale (slightly wider) from midday to afternoon. Results showed a reduction of
the range of of the distribution of morning gs compared to midday and afternoon values,
which is a typical regulation of gs induced by photosynthetic rate in the morning [36].
However, results also showed that all gs values were highly correlated to water-stressed
levels (Figure 6).

Table 3. Statistics of the extreme gs over all irrigation regimes at three times of the day.

Acquisition Time SD of Extreme gs
(mmol m−2 sec−1)

Mean of Extreme gs
(mmol m−2 sec−1)

Size of Extreme gs
(%)

9 h 9.35 28.61 32.7
12 h 17.46 32.48 53.8
15 h 18.98 30.46 62.3

SD: Standard Deviation.

In the water-stressed plots, the gs of W1_20 and W2_0 responded at the rates of 18–24
(mmol m−2 sec−1) at 9 h. Then, the gs of W1_20 and W2_0 slightly decreased and remained
at 13–24 (mmol m−2 sec−1) at 12 h. Then, gs of W1_20 and W2_0 considerably dropped to
11–17 (mmol m−2 sec−1) at 15 h. The response of gs in water-stressed plants can indicate
that stomatal conductance decreases due to the stomatal closure and less transpiration
during daytime.

In the control plot (W4_100), gs showed higher rates than other deficit irrigation plots at three
times of the day. Particularly, midday gs was obtained at the highest rate, 53 (mmol m−2 sec−1).

Overall, midday and afternoon gs were measured at a similar range, while morning
gs displayed a lower conductance rate than midday and afternoon periods. However, in
water deficit plots, midday and afternoon gs responded at lower rates than morning gs,
indicating that the water-stressed plant behaves with more limited stomatal conductance
during periods of higher evaptorative demand.

4. Discussion

This research explored the behaviour of daytime CWSIs and a plant physiological
parameter (gs) in water deficit irrigation regimes. In general, the magnitude of gs had
a negative linear relationship with respect to the plant water stress level at three times
of measurement.

The estimated CWSIs taken at three times of the day showed a significant correlation
with gs according to the irrigation levels. Unlike the variation of the extreme gs throughout
the day, CWSIs remained in a similar range of the extreme values at each flight time, as
shown in Table 4. The morning CWSI was slightly lower (0.11 of CWSI) than midday and
afternoon CWSIs; a similar trend was visible in morning gs (Figure 6 and Table 4).
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Table 4. Statistics of the extreme adaptive CWSI over all the irrigation regimes at three times of the
day.

Acquisition
Time

SD
of Extreme CWSI

Mean
of Extreme CWSI

Size
of Extreme CWSI

9 h 0.088 0.43 20.5 %
12 h 0.098 0.55 17.9 %
15 h 0.093 0.53 17.5 %

SD: Standard Deviation.

The canopy temperature difference from the extreme irrigation plots (W2_0 and
W4_100) was 2.6 ◦C. Previous CWSI studies based on VPD and air temperature to calculate
Twet and Tdry (or baselines) have shown that the CWSI calculation for morning periods
is challenging and fails to determine the baseline due to a narrow range of temperature
differences between the upper and lower baselines (e.g., 2 ◦C) [26]. As the Adaptive CWSI
method relies on statistical modelling of canopy temperatures, Twet and Tdry can be obtained
at two extremes in the distribution of canopy temperatures under the assumption of the
presence of water decifit and control plants in the region. Thus, the CWSI method can obtain
Twet and Tdry in the small range of temperature differences, making it more sensitive. As a
result, morning CWSI was estimated at a reliable level to interpret plant water stress. This
research also found that the estimated CWSIs were incorporated according to magnitude of
gs during the day, since the size of CWSI range was obtained at a similar scale at each time
of the day. The latter could imply that Adaptive CWSIs enable different water-stressed
plants with high sensitivity and consistent scale from morning to afternoon within the
same day. Nevertheless, the range of Adaptive CWSI can be biased in terms of absolute
quantity due to the limitation of the statistical histogram approach, as described in [19],
since the Adaptive CWSI method has the assumption that a wide range of water stress
levels are presented in fields. However, the bias can be adjusted by a simple relationship
between CWSI and irrigation. It remains a practical method to estimate CWSI across an
area during the day.

5. Conclusions

This study analyzed the diurnal changes of plant water stress using: 1) plant physio-
logical data—stomatal conductance (gs) and stem water potential (ψstem); and 2) estimated
CWSI derived from TIR UAV sensing at three different times of the day: 9 h, 12 h and
15 h. In addition, this study tested the method’s performance in estimating the diurnal
behaviour of water stress in the different deficit irrigation regimes.

The estimation was performed by adopting the method of Adaptive CSWI. Significant
relationships between CWSI and gs (and ψstem) were found at each flight time of the day.
Thus, the adaptive CWSI method showed a capability to interpret plant water stress levels
even with the small range of boundary limits in the morning. Particularly, morning CWSI
presented a relative consistency with midday and afternoon CWSI. Thus, the present re-
search can potentially provide any daytime CWSI estimations since they can be estimated
accurately with low contrast of surface temperatures from late morning to late afternoon.
Subsequently, the method can assist in extending the time window of UAV remote sensing
during the day. In addition, the Adaptive CWSIs estimated from UAV thermal sensing can
provide a practical method to assess the spatially heterogeneous distribution of water stress
within plants at a sub-field scale for precision irrigation management. The method pro-
posed can also feasibly be applied for interpreting plant water stress since it requires only
thermal imagery as an input. The boundary limits of CWSI estimation are automatically
determined by probability modelling.

The research presented, however, was conducted in a single nectarine cultivar in
the summertime. Thus, various crop-cultivar-site- and time-specific experiments will
remain for future work that can use the full advantages of the Adaptive CWSI method.
Future research could show the extent to which the presented approaches are applicable
for precision agriculture.
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