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Abstract: Trees have a fractal-like branching architecture that determines their structural complexity.
We used terrestrial laser scanning technology to study the role of foliage in the structural complexity
of urban trees. Forty-five trees of three deciduous species, Gleditsia triacanthos, Quercus macrocarpa,
Metasequoia glyptostroboides, were sampled on the Michigan State University campus. We studied
their structural complexity by calculating the box-dimension (Db) metric from point clouds generated
for the trees using terrestrial laser scanning, during the leaf-on and -off conditions. Furthermore, we
artificially defoliated the leaf-on point clouds by applying an algorithm that separates the foliage
from the woody material of the trees, and then recalculated the Db metric. The Db of the leaf-on
tree point clouds was significantly greater than the Db of the leaf-off point clouds across all species.
Additionally, the leaf removal algorithm introduced bias to the estimation of the leaf-removed Db of
the G. triacanthos and M. glyptostroboides trees. The index capturing the contribution of leaves to the
structural complexity of the study trees (the ratio of the Db of the leaf-on point clouds divided by the
Db of the leaf-off point clouds minus one), was negatively correlated with branch surface area and
different metrics of the length of paths through the branch network of the trees, indicating that the
contribution of leaves decreases as branch network complexity increases. Underestimation of the Db

of the G. triacanthos trees, after the artificial leaf removal, was related to maximum branch order. These
results enhance our understanding of tree structural complexity by disentangling the contribution
of leaves from that of the woody structures. The study also highlighted important methodological
considerations for studying tree structure, with and without leaves, from laser-derived point clouds.

Keywords: terrestrial laser scanning; fractal dimension; box-dimension; foliage; urban ecology;
Gleditsia triacanthos; Quercus macrocarpa; Metasequoia glyptostroboides

1. Introduction

Trees have an inherent fractal-like branching architecture [1–3] mirroring principles of
fractal geometry [4]. However, tree branching networks are not perfect fractals, lacking
self-similarity across all scales of the branching hierarchy [1,5,6]. Nonetheless, major theo-
ries linking tree morphology to tree physiology (e.g., pipe model theory [7–10]; metabolic
scaling theory [11]) and mechanical stability (e.g., resisting wind stress [12]) have been
advanced by assuming that the fractal-like character of trees explains the structural com-
plexity of their crowns [13] and how they grow to occupy space [14,15]. One of the main
challenges in testing such theories is finding reliable ways to accurately measure the
structural complexity of trees in a way that reflects the fractal dimension of tree crowns.

The growing environment of a tree affects its crown architecture and competition for
light from neighboring trees [16] significantly disrupts the inherent fractal-like character of
trees growing in forest stands and plantations [17,18]. According to Seidel [13], Douglas-fir
trees growing in forest gaps had more complex crowns compared to trees of the same

Remote Sens. 2021, 13, 2773. https://doi.org/10.3390/rs13142773 https://www.mdpi.com/journal/remotesensing

https://www.mdpi.com/journal/remotesensing
https://www.mdpi.com
https://orcid.org/0000-0001-7781-3390
https://orcid.org/0000-0003-4131-9424
https://doi.org/10.3390/rs13142773
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.3390/rs13142773
https://www.mdpi.com/journal/remotesensing
https://www.mdpi.com/article/10.3390/rs13142773?type=check_update&version=1


Remote Sens. 2021, 13, 2773 2 of 20

species growing in closed canopy conditions; this implies that the light regime signifi-
cantly affects the fractal dimension of a tree, which negatively relates to competition [19].
Therefore, we expect that the typically lower number, or complete absence of, neighboring
trees in cities should allow urban trees to better express their inherent fractal character;
this was an important reason to focus on urban open-grown trees in this study. Of course,
cities have heterogeneous growing conditions [20–26], characterized by anthropogenic
barriers to root and crown expansion [27–29], systematic tree pruning [29,30], increased
atmospheric temperatures and reduced water infiltration [22,31,32], air pollutants [33],
and heterogeneous soil properties [34,35], which can affect the fractal dimension of tree
crowns [36]. Nonetheless, the inherent fractal-like character of open-grown trees should be
more evident compared to trees growing in competition with other trees.

Open-grown trees can be found both in urban and rural forest conditions, but for urban
conditions there is a shortage of robust models. This limits our understanding of the basic
ecological services of urban forests [37], despite the fact that urban trees provide a range of
significant ecological services, e.g., carbon storage [35,38–40], air pollutant uptake [41–43],
water purification, pollination, biodiversity, and energy savings for buildings [23,24,41,44].
In order to optimize the benefits of urban forests, we need to study the structure and
function of trees in cities. For example, we know that the fractal dimension of tree crowns
relates to their ability to tolerate shade [45,46], which affects the shading benefits of trees,
as well as their ability to tolerate the drought and the heat of cities [36].

New advances in terrestrial laser scanning (TLS) technology allow for accurate, di-
rect measurements of the three-dimensional structure of trees [6,47] and many studies
have utilized TLS to quantify stem profiles and timber volume [48–52], leaf and crown
attributes [53–55], and above-ground tree biomass [56–61]. TLS creates ‘point clouds’ of
trees by emitting laser pulses and analyzing the returned energy as a function of either time
(time-of-flight systems) or shift in the phase of the light wave of the emitted laser beam
(phase-shift technology) [56,62]. One way to generate data for analyzing the fractal-like
character of tree branching networks from TLS point clouds is the generation of Quanti-
tative Structure Models (QSMs), by fitting cylinders to a tree’s point cloud that preserve
branch and stem topology [63–67]. Lau et al. [68] generated QSMs of tropical trees to
study the theoretical scaling exponents derived from the metabolic scaling theory [11] that
describes the fractal-like structure of trees.

Another approach is the “box-counting” method [15], which considers the number of
boxes that are needed to encapsulate all points of a laser-scanned tree, as box size iteratively
reduces. Seidel [13] showed how the “box-dimension” metric can be calculated from the
point cloud of a tree to describe its fractal dimension in terms of structural complexity. The
box-dimension metric has no units and its possible values range between one and three.
Trees with great structural complexity and “space-filling character” have box-dimension
values closer to three, whereas a box-dimension value equal to one implies a perfectly
cylindrical stem with no branches, e.g., a dead tree [13]. Box-dimension values smaller
than one imply that the lower “cut-off” has not been properly defined because the mean
distance between points is greater than the edge-length of the smallest box. Values of three
(or greater) would imply that a tree is a solid cube, which is not valid. The box-dimension
is a more direct and simple way to measure the fractal-like character of a tree because it
lacks the assumptions and stochasticity inherent in QSMs, using only the raw point cloud
data generated by TLS.

Leaves increase uncertainty in the underlying branching architecture because they
occlude underlying branches and move more in the wind [47,69]. Davison et al. [70], for
example, showed how leaf phenology affects the estimation uncertainty of metrics of forest
structural diversity when laser scanning data are used. “Leaf-off” laser scanning data can
provide better estimates of the crown architecture of deciduous tree species [70] because
leaf occlusion effects are avoided.

There are several studies that have explored how leaf-off and leaf-on airborne laser
scanning data compare for the estimation of forest volume and other forest inventory
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attributes [71–74], but few, if any, have examined the effects of leaf-on computation of the
fractal metrics of tree branching architecture. Perhaps more importantly, we lack a basic
understanding regarding the role of foliage in the structural complexity of trees, which is
fundamental to understanding how trees position their leaves and branches to maximize
light capture and minimize self-shading [45,46,75], optimize crown architecture to improve
water transport and resist drought [36], and reduce wind stress [12,76,77], which has been
shown to be affected by both the increased drag of foliage [78,79] and the uncertain effects
of branches.

Artificial leaf separation from the leaf-on point clouds of trees is a promising method-
ology to deal with the fact that trees can’t always be scanned in a leaf-off condition (e.g.,
evergreen trees). There are three main types of algorithms to separate the leaf from the
woody material of laser point clouds of trees: (1) algorithms that use the geometry of laser
points, (2) algorithms that consider the radiometric properties of the returned laser pulses,
and (3) algorithms that combine the previous approaches [80–83]. The radiometric-based
algorithms assume that the leaves and the woody material of trees have different intensity
characteristics at the wavelength of the laser scanner, which depend on the laser scanning
distance, the incidence angle, and the technical characteristics of each instrument [83].
However, the geometry-based algorithms consider only the 3D coordinates of the points
of a laser-scanned tree based on supervised machine learning [80,84] or unsupervised
classification methods [81,83]. In general, we still need a better understanding of the effect
of these classification algorithms for leaf separation when studying tree architecture [81].

In this study, we used the box-dimension metric to quantify the structural complexity
of three deciduous tree species in their leaf-on and leaf-off conditions. Furthermore, we
artificially removed the leaves from the tree point clouds generated from leaf-on data, using
the TLSeparation algorithm [85], and we computed the box-dimension metric for the leaf-
removed tree point clouds. The questions that we wanted to answer were the following:

• How do changes in leaf condition of deciduous tree species with different leaf types
affect their structural complexity?

• How do differences in the contribution of leaves to the structural complexity of the
study trees relate to their above-ground architecture?

• What is the effect of artificial leaf removal from leaf-on tree point clouds on estimated
structural complexity? Is there an error in estimating the structural complexity of the
tree point clouds after artificial leaf-removal, compared to leaf-off point clouds of the
same trees?

• How does potential error in estimating the structural complexity of the tree point
clouds due to the artificial leaf removal relate to the branch architecture of trees?

We hypothesized that the leaves of trees would significantly increase their structural
complexity because the irregular outline shape of leaves is fractal-like [86–88], and the pres-
ence of foliage implies that more space is occupied by a tree and, consequently, more laser
points are captured in its crown. So, a larger number of boxes is required to encapsulate
all points of the laser-scanned tree, which results in a greater value of the box-dimension
metric [13,89,90]. Furthermore, we hypothesized that differences in the contribution of
leaves to tree structural complexity have ecological importance because differences should
relate to self-shading of tree crowns [91], the shade tolerance of the tree species, and the
type and shape of the leaves [36,92].

We also hypothesized that errors in estimation of the box-dimension resulting from
artificial leaf removal, would relate to the type of leaf (broad vs. needle and compound vs.
simple) and the order and the size of the branches of a tree, the latter of which because the
point cloud density can change across the branching network of a tree and leaf separation
algorithms are sensitive to this [80,81].
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2. Materials and Methods
2.1. Urban Tree Data

Forty-five trees of three species, representing different tree functional types, were sam-
pled on the Michigan State University campus: sixteen Gleditsia triacanthos (honey locust)
trees, which are compound-leaved, deciduous angiosperms, fifteen Quercus macrocarpa
(bur oak) trees, which are entire-leaved, deciduous angiosperms, and fourteen Metasequoia
glyptostroboides (dawn redwood) trees, which are needle-leaved, deciduous gymnosperms
(Figure 1). The trees were selected to cover a large range of sizes within each species (see
Table 1).
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Figure 1. Sample of leaves of the species (A) G. triacanthos (B) Q. macrocarpa (C) M. glyptostroboides.

Table 1. Summary statistics resulting from different measurements of tree size and structural complexity.

Summary Statistics All Trees Gleditsia triacanthos Quercus macrocarpa Metasequoia
glyptostroboides

no. trees 45 16 15 14
DBH (cm) *

(mean [min, max]) 54.1 [15, 122.2] 52.9 [18.4, 72.8] 58.8 [29, 83.8] 50.5 [15, 122.2]

Height (m)
(mean [min, max]) 13.8 [4.4, 24.1] 12.5 [10.4, 18.4] 15.8 [9.1, 21.3] 13.1 [4.4, 24.1]

WSA (m2) **
(mean [min, max])

204.2 [29.9, 467.0] 265.4 [65.2, 408.6] 225.4 [60.4, 467.0] 111.5 [29.9, 250.2]

Stem WSA (m2)
(mean [min, max])

13 [2.1, 44.6] 11.4 [4.1, 20.1] 16.2 [4.7, 30.3] 11.4 [2.1, 44.6]

Branch WSA (m2)
(mean [min, max])

191.2 [27.7, 436.7] 253.9 [61.2, 395.5] 209.2 [55.7, 436.7] 100.1 [27.7, 231.8]

Db-leaf.on
(mean [min, max]) 2.06 [1.89, 2.23] 2.09 [1.89, 2.20] 2.03 [1.91, 2.11] 2.07 [1.94, 2.23]

Db-leaf.off
(mean [min, max]) 1.97 [1.82, 2.11] 2.02 [1.84, 2.11] 1.92 [1.82, 2.04] 1.97 [1.84, 2.1]

Db-leaf.rm
(mean [min, max]) 1.9 [1.76, 2.14] 1.84 [1.76, 2.0] 1.93 [1.83, 2.03] 1.93 [1.8, 2.14]

LCC index
(mean [min, max]) 0.04633 [0.00064, 0.16394] 0.03273 [0.01371, 0.0762] 0.05867 [0.00667, 0.10883] 0.04864 [0.00064, 0.16394]

%RE
(mean [min, max]) 5.55 [0.17, 14.64] 8.91 [1.07, 14.64] 2.43 [0.17, 5.46] 5.06 [0.92, 11.53]

Mean Path length (m)
(mean [min, max]) 12.9 [3.7, 23.9] 14.8 [9.5, 22.0] 14 [6.9, 23.9] 9.5 [3.7, 18.6]

Max. Path length (m)
(mean [min, max]) 22.8 [6.5, 42.7] 24.8 [17.3, 37.5] 24.9 [12.3, 42.7] 18.3 [6.5, 35.8]

25th % Path length
(mean [min, max]) 10.9 [3, 20.6] 13.2 [7.7, 18.1] 11.7 [5.4, 20.6] 7.4 [3, 14.9]

# of branch orders
(median [min, max]) 5 [1, 11] 5 [1, 11] 5 [1, 10] 4 [1, 9]

* DBH = Diameter at Breast Height, ** WSA = Woody Surface Area.



Remote Sens. 2021, 13, 2773 5 of 20

The G. triacanthos and Q. macrocarpa trees were laser-scanned with leaves-on in July
and August 2019, and the M. glyptostroboides trees were laser-scanned with leaves-on in
August 2020 (see specific methods below). The same trees were also laser-scanned in
leaves-off condition between January and March 2020. Before re-scanning the study trees,
we confirmed that none of them were pruned between the leaves-on and leaves-off scans
by the Michigan State University arborists. Therefore, pruning did not cause any bias in the
quantification of the structural complexity of the trees during the study period. Following
this experimental design, any change in the structural complexity of the study urban trees
between the leaves-on and leaves-off scans should be attributed only to changes in their
foliage, not their branching architecture. Of course, tree pruning prior to the study should
have an effect on the crown architecture of the study trees, but it did not influence the
changes in their structural complexity during the study period.

2.2. Terrestrial Laser Scanning and Point Cloud Processing

The FARO Focus3D × 330 terrestrial laser scanner was used to scan the trees. This
laser scanner operates with laser light of 1550 nm wavelength, typical beam divergence
0.19 mrad, and a range of 0.6–330 m. In order to minimize occlusion effects in the point
clouds, each individual tree was scanned at high resolution from a minimum of four
different directions at different distances, and five reference target-spheres were placed
around a laser-scanned tree to spatially reference all scans and create a single point cloud
for each tree, following the field scanning protocols suggested by Wilkes et al. [69]. The
first two scans were conducted in opposite directions, from distances that allowed the top
of the focal tree to be clearly visible. The other two scans were also conducted in opposite
directions (perpendicularly to the first two scans) but from a closer distance to the tree,
to better capture its branching architecture and get closer views of the main stem. Two
or three additional scans were conducted underneath the crown of large trees with wide
crowns in order to capture more dense point clouds of the branches. All laser scans were
conducted when there was little or no wind.

The software SCENE 2019.2 (FARO Technologies Inc., Lake Mary, FL, USA, 2019.2)
was used to spatially co-register and noise-filter all scans in an automatic way. With the
same software, each tree was then manually separated from the point cloud of the urban
site background. This process has been shown to be an accurate alternative to a fully
automatic segmentation process [93].

2.3. Leaf and Wood Classification of the Point Clouds

The TLSeparation algorithm [85] was applied to the point clouds of the trees with
their leaves-on. This algorithm separates points that belong to the woody components of
the trees from points that belong to their foliage, based on unsupervised classification of
geometric features (leaf and wood materials within the point cloud have different spatial
arrangement) and “shortest-path” analysis, which facilitates detection of paths through the
branching network (from tree base to branch tip) with high occurrence frequency [81]. This
approach was used to generate a single point cloud for each tree containing only points
classified as woody parts of the tree.

2.4. Quantification of the Structural Complexity of Trees

The box-dimension metric (Db), which is derived from fractal geometry principles [4],
was used to quantify the above-ground structural complexity (fractal dimension) of the
trees [90] in three conditions: (1) leaf-on, (2) leaf-off, and (3) after the leaves were artificially
removed from the leaf-on point clouds. The box-dimension equals the slope of the least-
squares line when the logarithm of the number of boxes required to capture all points of
a laser-scanned tree is regressed against the logarithm of the inverse of the size of a box
relative to the size of the initial box, which is the smallest box encapsulating the whole tree,
i.e., “upper cut-off” (Figure 2, [13,90]). The intercept of the regression line describes the size
of the crown of a tree (i.e., crown radius, [19]). The size of the smallest box (“lower cut-off”)
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was 10 cm in this study. This was selected based on a very liberal estimate of the maximum
distance between two neighboring laser points at any given location in the tree because
the “lower cut-off” must ensure that no box is empty due to missing data, i.e., it fits in the
“unsampled” space of a scanned tree. The algorithm written in Mathematica 12.2 [94] for
the computation of the Db metric is available online as Supplementary Materials.
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Figure 2. (A) Illustration of the virtual boxes of different sizes that capture the leaf-on point cloud of a M. glyptostroboides
tree. (B) Exemplary log–log plot for the computation of the box-dimension metric for the same tree. The slope of the
regression line equals the box-dimension of the tree, i.e., Db = 2.05. The 95% confidence interval has been plotted around the
regression line. The number of boxes required to capture all points of the tree point cloud is denoted as N, the size of the
length of each box is denoted as s, and the size of the length of the initial box that encapsulates the whole tree is denoted
as s_initial.

2.5. The LCC Difference Index and Error Metric Computation

The role of leaves in the above-ground structural complexity of the trees was quantified
with the Leaf Complexity Contribution index

LCC =

[(
Db(leaf.on)
Db(leaf.off)

)
− 1

]
(1)

where Db(leaf.on) is the box-dimension of the leaf-on point cloud of each study tree, and
Db(leaf.off) is the box-dimension of the leaf-off point cloud of each study tree. If LCC = 0,
the Db of the leaf-on and leaf-off point clouds of a tree are equal and there is no contribution
of the leaves to the structural complexity of the tree. If LCC > 0, it means that the leaf-on
Db of a tree is greater than the leaf-off Db of the tree, indicating that leaves increase tree
structural complexity. Similarly, if LCC < 0, it means that the leaf-off Db of a tree is greater
than the leaf-on Db of the tree, indicating that leaves reduce structural complexity, most
likely because they occlude the woody components that are not adequately laser-scanned.

The effect of the artificial leaf removal using the TLSeparation algorithm on the
structural complexity of each study tree was quantified with the percent relative error
metric [95,96]

%RE =
|Db(lf.off)−Db(lf.rm)|

Db(lf.off)
× 100 (2)

where Db(leaf.rm) is the Db of the point cloud of each study tree after the artificial
leaf removal.

2.6. Computation of Other Structural Metrics of Trees

We computed additional metrics that characterize the structure of trees to test our
hypotheses regarding how the LCC index and the %RE relate to the above-ground tree
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architecture. According to major theories of tree structural complexity (i.e., pipe model
theory [7]; metabolic scaling theory [11]), the “pipes” of the vascular system of a tree
connect the roots to the leaves, with a surface area that scales with their volume [97].
Consequently, the structural complexity of the vascular structure of a tree depends on the
length and diameter of its pipes [97,98]. Therefore, we expected that the LCC should relate
to different metrics of the length of the paths from the base of a tree to each branch tip (e.g.,
the “path fraction” metric of Smith et al. [99]).

The algorithm TreeQSM v.2.3.0 [100] was used to produce quantitative structure models
(QSMs) from the leaf-off point clouds of the trees. TreeQSM includes two main steps:
(1) the point cloud segmentation into stem and branches based on cover sets and (2) the
reconstruction of the volume and the surface area of the segments with cylinders [56,101].
The algorithm produced several QSMs for each tree point cloud based on a range of
values for the minimum and maximum size of the cover sets and it finally determined the
optimal QSM [67]. Based on the parameters of the optimal QSM, the algorithm produced
30 additional QSMs in order to estimate the variation of the modeled tree variables (e.g.,
woody surface area) because of the inherent stochasticity of the TreeQSM algorithm [67].
The algorithm separated the main stem from the branches of a tree based on the following
criteria: (1) the main stem extends near the top of a tree, (2) it goes almost straight up, and
(3) it is not too curved, which means that the ratio of the stem length to the stem base-tip
distance must be the minimum among all candidate main stems; the branches were further
categorized by branching order based on certain criteria for branch topology, branch length,
and branch base-tip distance (P. Raumonen, personal communication, 2 June 2020).

From the optimal QSMs of the leaf-off point clouds of the study trees, their total
woody surface area (the surface area outside of the bark tissues) was computed as the sum
total surface area of the cylinders that were fitted to the point cloud of each tree. The total
woody surface area of each tree was also separated into the main stem and the branch
woody components.

“Path lengths” [99] were also used to create alternative structural metrics of the trees.
The lengths of all paths from the stem base of a tree to all branch tips were computed from
the lengths of the QSM cylinders, whose topological structure is preserved in a QSM. The
distribution of the path lengths for each tree was computed, i.e., the percentiles of the path
lengths (25th, 50th, and 75th percentiles), as well as minimum, maximum, and mean path
lengths. Smith et al. [99] showed that relative path length variation is an intrinsic element
of tree branching architecture relating to tree hydraulic conductance, volume, mechanical
stability, and light interception.

2.7. Statistical Analyses

All statistical analyses for this study were carried out with custom coding and available
packages written in the R software language [102].

Differences in the mean value of the Db of the trees for leaves-on versus -off, and leaves-
artificially removed versus -off, were evaluated with t-tests, for each species separately (G.
triacanthos, Q. macrocarpa, and M. glyptostroboides), and for all species combined. T-tests
were also used to evaluate differences in the mean value of the LCC index, %RE, and Db
of leaf-on, leaf-off, and leaf-removed tree point clouds between the study species. The
“sma” function of the standardized major axis regression and testing routines (“smatr”) R
package [103] was used to conduct hypothesis tests regarding the intercepts and the slopes
of the species sub-population regression lines. In all statistical tests, significant differences
were assessed at α = 5%.

The relationships between the leaf-on, leaf-off, and leaf-artificially removed Db values,
and the relationships of the LCC index and the %RE with the tree structural metrics (see
Section 2.6) were analyzed using linear regression analysis and relationship strength was
quantified with the Pearson correlation coefficient (r); statistical significance was assessed
at α = 5%.
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3. Results
3.1. Structural Complexity of Leaf-On versus Leaf-Off Tree Point Clouds

The data show that the study trees varied widely in size (DBH and height) and
structural complexity (Table 1). There was significant difference between the mean Db of
the leaf-on tree point clouds of the G. triacanthos (GLTR) and Q. macrocarpa (QUMA) species
(p = 0.0194). However, no significant difference was found between the mean Db of the
leaf-on tree point clouds of the G. triacanthos (GLTR) and M. glyptostroboides (MEGL) trees
(p > 5%), or for the MEGL and QUMA trees (p > 5%). Significant differences were found
between the mean Db values of the leaf-off tree point clouds of QUMA and MEGL trees
(p = 0.0335), GLTR and QUMA trees (p < 0.001), and MEGL and GLTR trees (p = 0.041).

T-tests showed that the mean Db of the leaf-on tree point clouds was significantly
greater than the mean Db of the leaf-off tree point clouds (Figure 3) across all study tree
species combined (p < 0.001), and for each species separately (GLTR: p = 0.0145; QUMA:
p < 0.001; MEGL: p = 0.003). Positive relationships were found between the leaf-on and the
leaf-off Db values of the trees across all species combined (Pearson’s r = 0.72, p < 0.001) and
for the GLTR (Pearson’s r = 0.91, p < 0.001) and QUMA species (Pearson’s r = 0.6, p = 0.019)
(Figure 4). The relationship between the leaf-on and the leaf-off Db values for the MEGL
trees was not significant (Pearson’s r = 0.52, p = 0.055); however, all data points were above
the 1:1 line indicating that the Db of the MEGL leaf-on point clouds was clearly greater
than the Db of the MEGL leaf-off point clouds, except one tree with an LCC index close to
zero (LCC = 0.00064) (Figure 4D).
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The LCC index ranged between 0.00064 and 0.16394 across all trees combined (see
Table 1), indicating a significant reduction in the structural complexity of deciduous tree
crowns when leaves are shed. The mean LCC index value was significantly different
between GLTR (mean LCCGLTR = 0.03273) and QUMA (mean LCCQUMA = 0.05867) trees
(p = 0.0261). However, the mean LCC index value was not significantly different between
QUMA and MEGL (mean LCCMEGL = 0.04864) trees (p = 0.4559), or between GLTR and
MEGL trees (p = 0.181).

The LCC index was negatively correlated with the branch woody surface area of the
study trees (Pearson’s r = −0.4, p = 0.0061), but it was not correlated with their stem woody
surface area (p = 0.16) (Figure 5). The “outlier” MEGL data point in Figure 5 (point with
LCC > 0.15) did not drive the observed relationship because the pattern did not change
after the removal of this data point.

Remote Sens. 2021, 13, x FOR PEER REVIEW 10 of 21 
 

 

The LCC index was negatively correlated with the branch woody surface area of the 
study trees (Pearson’s r = −0.4, p = 0.0061), but it was not correlated with their stem woody 
surface area (p = 0.16) (Figure 5). The “outlier” MEGL data point in Figure 5 (point with 
LCC > 0.15) did not drive the observed relationship because the pattern did not change 
after the removal of this data point. 

. 

Figure 5. Relationship between the LCC index and the branch woody surface area of the trees with 
95% confidence interval around the regression line. The three species M. glyptostroboides (MEGL), 
G. triacanthos (GLTR), and Q. macrocarpa (QUMA) have been plotted with different colors and 
symbols. 

Finally, the LCC index was negatively correlated with different path length varia-
bles, i.e., mean path length (Pearson’s r = −0.4, p = 0.0068), maximum path length (Pear-
son’s r = −0.44, p = 0.0025), and the 25th percentile of path lengths (Pearson’s r = −0.41, p = 
0.0051) (Figure 6). The “outlier” MEGL data point in Figure 6 (point with LCC > 0.15 in 
each graph) did not drive the observed relationships because the patterns did not change 
after the removal of this data point. 

Figure 5. Relationship between the LCC index and the branch woody surface area of the trees with
95% confidence interval around the regression line. The three species M. glyptostroboides (MEGL), G.
triacanthos (GLTR), and Q. macrocarpa (QUMA) have been plotted with different colors and symbols.



Remote Sens. 2021, 13, 2773 10 of 20

Finally, the LCC index was negatively correlated with different path length vari-
ables, i.e., mean path length (Pearson’s r = −0.4, p = 0.0068), maximum path length (Pear-
son’s r = −0.44, p = 0.0025), and the 25th percentile of path lengths (Pearson’s r = −0.41,
p = 0.0051) (Figure 6). The “outlier” MEGL data point in Figure 6 (point with LCC > 0.15 in
each graph) did not drive the observed relationships because the patterns did not change
after the removal of this data point.
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3.2. Box-Dimension of Leaf-Off versus Leaf-Removed Tree Point Clouds

Significant differences were found between the mean Db values of the tree point
clouds after the artificial leaf removal for QUMA and GLTR trees (p = 0.001), and GLTR
and MEGL trees (p = 0.0105), but no significant difference was found between the mean Db
of the MEGL and QUMA trees after the artificial leaf removal (p = 0.9662).

T-tests showed that the mean Db of the leaf-off tree point clouds was significantly
greater than the mean Db of the leaf-removed tree point clouds across all study tree species
combined (p < 0.001), and for the GLTR trees (p < 0.001). No significant difference was
found between the mean Db of the leaf-off and leaf-removed point clouds for the QUMA
trees (p = 0.6382), or the MEGL trees (p = 0.1622). Furthermore, the leaf-removed and
the leaf-off Db values of the QUMA trees were positively correlated (Pearson’s r = 0.65,
p = 0.0082), but no significant relationship was found between the leaf-removed and the
leaf-off Db values across all study tree species combined (p > 5%), or for the GLTR and
MEGL trees (p > 5%) (Figure 7). The standardized major axis tests showed that the intercept
and the slope of the regression line of the QUMA trees was not statistically different from
the 0 and 1 values, respectively.
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The mean Db of the leaf-on tree point clouds was significantly greater than the mean
Db of the leaf-removed tree point clouds (Figure 3) across all study tree species combined
(p < 0.001), and for each species separately (GLTR, QUMA, MEGL: p < 0.001).

The mean %RE value was significantly different between GLTR (mean %REGLTR = 8.91%)
and MEGL (mean %REMEGL = 5.06%) trees (p = 0.0057), and between GLTR and QUMA
(mean %REQUMA = 2.43%) trees (p < 0.001), and also between MEGL and QUMA trees
(p = 0.0064).

The %RE was positively correlated with the maximum branch order of the GLTR trees
(Pearson’s r = 0.53, p = 0.033), but it was not correlated with the maximum branch order of
the QUMA and MEGL trees (p > 5%) (Figure 8).
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Figure 8. Relationship between the % Relative Error (RE) and the maximum branch order of the trees
with 95% confidence interval around the regression lines. The species M. glyptostroboides (MEGL), G.
triacanthos (GLTR), and Q. macrocarpa (QUMA) have been plotted with different colors and symbols.
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4. Discussion
4.1. Structural Complexity of Urban Trees

This study measured the Db of the above-ground components of tree architecture
(i.e., main stem, branching network, and leaves) from TLS point clouds, to determine
the above-ground structural complexity of trees growing in urban areas. Db can help
to understand how trees maximize resources uptake for their growth while maintaining
their mechanical stability [13,90,93]. From an evolutionary perspective, trees have had
to develop an “adaptive” geometry [104] to optimize light capture and minimize self-
shading [18,91,92], while balancing with other competing functions, such as maintaining
mechanical stability [77] and resisting drought [36]. Open-grown trees are relatively free
from light competition due to having fewer tree neighbors [77], so they are more likely
to be able to maximize their structural complexity and express their inherent fractal-like
architecture than trees growing in forests or plantations [17]. The urban open-grown trees
in this study were not directly influenced by shading from neighboring trees or from the
relatively short buildings that were near to some of the trees. Db is sensitive to the external
shape and the internal structure of trees [90,93], so differences in Db can capture meaningful
differences in tree architecture and physiological function. Therefore, it is important to
consider what the maximum structural complexity could be.

Seidel et al. [90] hypothesized that trees should have Db values significantly lower
than 2.72, which is the Db of the Menger sponge (a mathematical object with the greatest
surface to volume ratio, [105]), assuming a tree would maximize its surface area for light
capture and gas exchange, while minimizing building costs, in the absence of competition
with other plants. In previous studies that quantified the above-ground complexity of
trees growing in dense rural forest stands, leaf-on Db values were consistently lower than
2 [13,19,89,90,93,106]. In this study, the mean Db of the leaf-on tree point clouds was greater
than 2 across all study tree species (see Table 1), indicating a possible structural difference
between trees in rural versus urban areas. However, rural forest trees growing in more
open conditions and facing less competition for light (e.g., in forest gaps and in thinned
forest stands), also had larger Db values [13,19,106], in some cases exceeding 2 [107]. This
suggests a benefit to having an increased Db with more light and fewer neighbors, but at
some level the energy benefits from increased photosynthesis would be minimized due
to a high level of self-shading [90]. This supports MacFarlane et al.’s [17] assumption that
trees growing in the open, without competition, can more closely approach the theoretical
maximum Db (as characterized in Seidel et al. [90]). In this study, the maximum Db value
observed was 2.23, for a large specimen of M. glyptostroboides in the leaf-on condition
(Table 1). So, even the largest, open-grown, urban trees in this study were well below the
theoretical maximum of 2.72.

4.2. The Role of Leaves in the Structural Complexity of Deciduous Trees

The urban trees studied here were deciduous species, characterized by distinct leaf
phenological changes (i.e., leaf-on and leaf-off periods), which are typically affected by
sharp photoperiodic and temperature changes [108,109]. In general, the outline shape and
the texture of leaves can have fractal-like patterns [86–88,110–116], and thus, we expected
that the presence of leaves would increase the total structural complexity of trees. Indeed,
the study trees were shown to have statistically different structural complexity in the leaf-
on and leaf-off periods (Figure 4) because the presence of leaves implies greater dispersion
of laser points in the leaf-on point clouds compared to the leaf-off point clouds and more
boxes are required to capture them, which results in greater value for the Db metric and
greater structural complexity [13,89,90]. In a previous study, the difference between the
Db of the leaf-on and leaf-off point clouds of forest-grown trees was not significant [89].
However, that study followed a mixed approach to generate leaf-off point clouds. More
specifically, from the 76 leaf-off point clouds, only 15 point clouds were captured during
the leaf-off period and the remaining leaf-off point clouds were created after manual
segmentation of leaves from the leaf-on point clouds [89].
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The magnitude of change in Db observed in this study was relatively small; the
LCC index ranged from 0.00064 to 0.16394 across all species combined, indicating that
the largest portion of the total above-ground structural complexity of a tree comes from
woody components, e.g., branches. However, Db is constrained to have values between
one and three, so a small change in its value can have significant physiological implications.
Seidel et al. [90] found that the crown surface area divided by the woody volume of trees
increased as a power function of leaf-on Db, so that, for example, an increase of 0.2 units
in leaf-on Db resulted in approximately 40 units of increase in crown surface area relative
to the woody volume of trees. Similarly, the results here in this study show that a small
change in the structural complexity has important implications for urban trees. An increase
of approximately 0.05 units in the LCC index was associated with approximately 400 m2

reduction in the branch woody surface area of the study trees (Figure 5). Such a change
could have important implications for the mechanical stability of trees, i.e., the branch
woody surface area affects the bending moments due to wind drag [30,79,117], for the
maintenance respiration of trees that relates to their woody surface area [118–122], and for
solar radiation and rainfall interception [123].

Differences in the LCC index were related to other structural metrics of the trees,
showing different changes in the Db value, with and without leaves, for different types of
trees. The negative relationships between the LCC index and the branch surface area and
the path length metrics indicate that larger trees, with larger and more “branchy” crowns,
have a relatively smaller contribution of leaves to structural complexity (Figures 5 and 6).
These results can be interpreted within the framework of the pipe model theory [7] and the
West–Brown–Enquist or WBE model [11,124], which explain the fractal-like architecture
of trees by assuming a vascular tree structure consisting of pipes [11]. According to these
theories, as the size (i.e., woody surface area or length) of the pipes of the vascular system
of a tree increases, the structural complexity of the woody skeleton of the tree also increases.

Differences in species branching architecture and leaf structure could also explain
some of the observed differences in leaf-on versus leaf-off Db values because the frac-
tal architecture of urban tree crowns is influenced by both crown and leaf shape [36].
G. triacanthos trees had the smallest contribution of the leaves to the structural complexity
(smallest LCC). According to Niinemets and Valladares [125], G. triacanthos is the least
shade tolerant of the three species studied (shade tolerance index for G. triacanthos = 1.61,
Q. macrocarpa = 2.71, and M. glyptostroboides = 3). Species which are very shade tolerant
distribute their leaves more evenly within their crown volume [36], whereas species that
are less shade tolerant, e.g., G. triacanthos, have their leaves widely spaced mainly in the
crown periphery, in order to increase crown porosity and reduce local self-shading [91].
Furthermore, it has been suggested that inter-canopy variation of leaf traits is predom-
inantly affected by the exposure of leaves to light, which makes the sun leaves that are
distributed in the crown periphery smaller, with greater leaf mass per unit area compared
to the crown-interior leaves, in order to reduce water loss through transpiration [91,92].
Therefore, the uneven distribution of leaves in the crown volume of the G. triacanthos trees,
most of which are small sun leaves in the crown top, could explain why the contribu-
tion of leaves in the overall structural complexity was the smallest when compared to
Q. macrocarpa and M. glyptostroboides trees.

4.3. The Effect of the Leaf Separation Algorithm on the Structural Complexity of the Trees

Very often, one is unable to laser-scan trees during the leaf-off conditions, either
because they are evergreen or due to logistical constraints. Therefore, one of the goals
of this study was to explore the effect of artificial leaf removal from leaf-on point clouds.
Separating the woody component from the foliage of tree point clouds using classification
algorithms is a challenging task. Zhu et al. [126], for example, found a significant overesti-
mation in the leaf area index of trees because of the woody material in tree point clouds.

There are different algorithms and approaches to separate leaves from the woody
structure of tree point clouds [80–83], but there is no single best solution that fits for all point
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classification cases in forests [80]. Some of the factors that influence the classification results
are the following: heterogeneity of point cloud density, varying scanner configurations,
and scanning protocols [80]. The TLSeparation algorithm, which was used here, does not
depend on a specific scanner [81], and we tried to minimize the occlusion effects in the point
clouds in this study by scanning each tree from multiple directions and distances at high
scanning resolution, following the field scanning protocols suggested by Wilkes et al. [69].
The performance of leaf separation algorithms is significantly decreased by occlusion [81],
but explicit accounting of this error source is challenging because we don’t have complete
control over it, and different types of error can be correlated [95].

Errors in characterization of crown architecture should relate to leaf morphology [80].
Wang et al. [83] suggest that leaves are typically detected as simple, flat structures and,
therefore, the oblong leaf shape or the modular structure of compound leaves might
confuse the classification algorithms. Indeed, our results indicate that the TLSeparation
algorithm can be more accurate in identifying simple flat leaves, but had more difficulty
separating twigs and fine branches from compound leaves. The Q. macrocarpa trees showed
no statistical difference in mean Db of the leaf-off and leaf-removed point clouds and this
species has simple leaves with a single flat and lobbed blade (or lamina) [127], which is
associated with important leaf physiological functions, e.g., convection heat dissipation,
efficient light interception, and reduced leaf hydraulic resistance [91,111]. The TLSeparation
algorithm [85] appears to have miss-classified many points of the woody structure as leaves
for the G. triacanthos trees, which have compound leaves with a modular architecture,
because the leaf blade consists of several leaflets stemming from the leaf rachis [128,129].
The TLSeparation algorithm added significant noise into characterizations of Db in M.
glyptostroboides trees, which are deciduous gymnosperms and have oblong-shaped needles
and branches that are either horizontal or curved upward [130]. We might expect the
accuracy of the TLSeparation algorithm for needle-leaved trees to be lower compared with
the classification accuracy of broad-leaved trees because needles are linear and it is difficult
to resolve an individual needle due to its small size and the dense foliage of conifers [81,83].
In a previous study, it was found that artificial leaf removal using a different leaf separation
algorithm (i.e., LeWoS algorithm) resulted in the underestimation of the total woody volume
of trees in the generated QSMs, while only the stems and some large branches were detected
in coniferous trees [83].

As was originally hypothesized, the percent relative error in the estimated structural
complexity of the G. triacanthos trees, after artificial leaf removal, was related to the branch-
ing architecture of the trees. More specifically, trees of this species with higher maximum
branch order had greater %RE values, indicating that the presence of more bifurcations
(branching nodes) and smaller branches of higher order can reduce the accuracy of the
TLSeparation algorithm to classify the leaves and the woody parts. Indeed, increased branch
bifurcation and angulation result in increased occlusion in the point clouds of trees that
reduces the accuracy of the leaf-classification algorithm [82]; in a previous study the point
density of woody structures decreased for higher branch orders and, therefore, many
points were miss-classified as leaves [83]. The %RE values of the M. glyptostroboides and
Q. macrocarpa trees were not related to their maximum branch order, presumably because
the leaf removal algorithm did not significantly affect the accuracy of the Db of the Q.
macrocarpa and M. glyptostroboides trees on average according to the t-tests, although the Db
of the M. glyptostroboides trees after the artificial leaf removal was imprecise.

5. Conclusions

This study used terrestrial laser scanning (TLS) to further refine our understanding of
the above-ground structural complexity of urban trees by separating the effect of leaves
from the effect of the woody skeleton. Differences in leaf-on versus leaf-off structural
complexity likely relate to different functional traits of trees for light capture optimization,
reduction of self-shading, and mechanical stability. As such, this study provides evidence
that differences in the contribution of leaves to tree structural complexity could be an
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important indicator of where the plant lies on a “structural economics spectrum (SES)”,
which explains species structural diversity in terms of tree architectural traits along a
spectrum balancing light interception, carbon allocation, and mechanical stability [131].
However, more species belonging to different functional groups must be included in future
studies in order to further examine differences in the LCC, or a similar index, as part of the
SES. This study provided evidence, along with previous studies [80,83], that the accuracy
of leaf separation algorithms is affected by the leaf shape and type, but also that bias in
the estimation of the above-ground structural complexity of trees after the artificial leaf
removal depends on the branching architecture.

Supplementary Materials: Available online at https://www.mdpi.com/article/10.3390/rs1314277
3/s1 can be found the aim and purpose, applicability, theory and background, and the full code of
the box-dimension algorithm for one or multiple data files.
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