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Abstract: Dimensionality reduction (DR) plays an important role in hyperspectral image (HSI) classi-
fication. Unsupervised DR (uDR) is more practical due to the difficulty of obtaining class labels and
their scarcity for HSIs. However, many existing uDR algorithms lack the comprehensive exploration of
spectral-locational-spatial (SLS) information, which is of great significance for uDR in view of the com-
plex intrinsic structure in HSIs. To address this issue, two uDR methods called SLS structure preserving
projection (SLSSPP) and SLS reconstruction preserving embedding (SLSRPE) are proposed. Firstly, to
facilitate the extraction of SLS information, a weighted spectral-locational (wSL) datum is generated to
break the locality of spatial information extraction. Then, a new SLS distance (SLSD) excavating the
SLS relationships among samples is designed to select effective SLS neighbors. In SLSSPP, a new uDR
model that includes a SLS adjacency graph based on SLSD and a cluster centroid adjacency graph based
on wSL data is proposed, which compresses intraclass samples and approximately separates interclass
samples in an unsupervised manner. Meanwhile, in SLSRPE, for preserving the SLS relationship among
target pixels and their nearest neighbors, a new SLS reconstruction weight was defined to obtain the
more discriminative projection. Experimental results on the Indian Pines, Pavia University and Salinas
datasets demonstrate that, through KNN and SVM classifiers with different classification conditions,
the classification accuracies of SLSSPP and SLSRPE are approximately 4.88%, 4.15%, 2.51%, and 2.30%,
5.31%, 2.41% higher than that of the state-of-the-art DR algorithms.

Keywords: dimensionality reduction; hyperspectral images; manifold learning; classification; spectral-
locational-spatial

1. Introduction

Hyperspectral images (HSIs) with high spectral resolution and fine spatial resolution
are easily accessible on account of advanced sensor technology, which have been inten-
sively studied and widely applied in many fields, such as environmental monitoring [1],
precision agriculture [2], urban planning [3], and Earth observation [4]. HSIs contain a
large number of consecutive narrow spectral bands, which provide rich information for
classification [5]. However, these bands have a strong correlation that results in massive
redundant information in HSIs [6]. In addition, the high dimensionality and limited train-
ing samples of HSIs lead to the Hughes phenomenon [7]. Accordingly, dimensionality
reduction (DR) plays an important role in addressing the aforementioned issue [8,9].

Many DR methods have been designed to transform the original features into a new
low-dimensional space for HSI, most of which can be divided into supervised and unsuper-
vised ones [10,11]. The supervised methods need the support of class labels to obtain the
discriminant projection [9]. For instance, linear discriminant analysis (LDA) [12] utilizes the
a priori class labels to separate the interclass samples and compact the intraclass samples.
Nonparametric weighted feature extraction (NWFE) [13] calculates the weighted means
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and constructs nonparametric between-class and within-class scatter matrices by setting
different weights on each sample. Regularized local discriminant embedding (RLDE) [14]
constructs a similar graph of intraclass samples and a penalty graph of interclass samples,
while adding two regularized terms to preserve the data diversity and address the singular-
ity with limited training samples. To sum up, supervised methods usually aim to compact
the homogeneity of intraclass samples and separate the heterogeneity of interclass samples
by means of class labels, which is beneficial to improve the separability and classification
performance of low-dimensional embedding. However, in practice, the collection of class
labels of HSIs requires field exploration and verification by experts, which is expensive and
time-consuming. This leads to the inability to obtain class labels in many cases, especially
for HSIs covering land [15]. Therefore, in view of the difficulty of obtaining class labels and
their scarcity, a superior unsupervised DR (uDR) method with high separability possesses
more practical value.

To explore the intrinsic structure, manifold learning (ML) has been widely applied
for the uDR of HSIs, such as isometric mapping (ISOMP) [16], local linear embedding
(LLE) [17] and Laplacian eigenmaps (LE) [18]. ISOMP preserves the geodesic distances
between points in low-dimensional space. LLE applies local neighbor reconstruction to
preserve the local linear relationship. LE constructs a similarity graph for presenting the
inherent nonlinear manifold structure. To address the out-of-sample problem of LE and
LLE, locality preserving projection (LPP) [19,20] and neighborhood preserving embedding
(NPE) [21] are proposed. However, these classic unsupervised ML methods simply consider
the spectral information but neglect the spatial information that has been shown to be of
great importance for HSIs [22,23].

In recent years, many spectral-spatial DR methods have been proposed to fuse spatial
correlation and spectral information for improving the classification performance [24,25].
Among them, two strategies for exploring spectral-spatial information can be summarized.
One common strategy is preserving the spatial local pixel neighborhood structures, such
as discriminative spectral-spatial margin (DSSM) [26], spatial-domain local pixel NPE
(LPNPE) [14] and spatial-spectral local discriminant projection (SSLDP) [27]. DSSM finds
spatial-spectral neighbors and preserves the local spatial-spectral relationship of HSIs. LP-
NPE remains the original spatial neighborhood relationship via minimizing the local pixel
neighborhood preserving scatter. SSLDP designs two weighted matrices within neighbor-
hood scatter to reveal the similarity of spatial neighbors. Another widely used strategy is
to replace the common spectral distance with spatial or spatial-spectral combined distance,
such as image patches distance (IPD) [28] and spatial coherence distance (SCD) [29]. IPD
maps the distances between two image patches in HSIs as the spatial-spectral similarity
measure. SCD utilizes the spatial coherence to measure the pairwise similarity between two
local spatial patches in HSI. More recently, Hong et al. [24] proposed the spatial-spectral
combined distance (SSCD) to fuse the spatial structure and spectral information for se-
lecting effective spatial-spectral neighbors. Although these spectral-spatial methods use
different ways to reveal the spatial intrinsic structure of HSIs, they still have two drawbacks:
(1) the exploration of spatial information is merely based on the fixed spatial neighborhood
window (or image patch), which may be constrained by the complex distribution of ground
objects in HSIs; (2) they only consider the spectral information of local spatial neighborhood
but ignore the importance of location coordinates.

In HSIs, rich information provided by high spectral resolution may increase the intra-
class variation and decrease the interclass variation, while leading to lower interpretation
accuracies. Moreover, different objects may share similar spectral properties (e.g., similar
construction materials for both parking lots and roofs in the city area) which make it
impossible to classify HSIs by only using spectral information [22]. In this case, location
information, as one of the attributes of pixels, can play an important role in classifica-
tion. The closer the pixels are in location, the more probable it is that they come from the
same class and vice versa, especially for HSIs covering land. The contribution of location
coordinates to DR and classification has been demonstrated in several existing studies.
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Kim et al. [30] directly combined the spatial proximity and the spectral similarity through
a kernel PCA framework. Hou et al. [31] constructed the joint spatial-pixel characteristics
distance instead of the traditional Euclidean distance. Li et al. [32] proposed a new distance
metric by combining the spectral feature and spatial coordinate. However, these methods
ignore the contribution of the spectral information in the local spatial neighborhood that
can improve the robustness of the classifier against noise pixels, since pixels within a small
spatial neighborhood usually present similar spectral characteristics.

In short, the methods mentioned above either neglect the location coordinates or
the local spatial neighborhood characteristics and lack a comprehensive exploration of
spectral-locational-spatial (SLS) information. To address this issue, two unsupervised SLS
manifold learning (uSLSML) methods were proposed for uDR of HSIs, called SLS structure
preserving projection (SLSSPP) and SLS reconstruction preserving embedding (SLSRPE).
SLSSPP aims to preserve the SLS neighbor structure of data, while SLSRPE is designed to
maintain the SLS manifold structure of HSIs.

The main contributions of this paper are listed below:

• To facilitate the extraction of SLS information, a weighted spectral-locational (wSL)
datum is generated with a parameter to balance the spectral and locational effects
where the spectral information and location coordinates complement each other.
Moreover, to discover SLS relationships among pixels. a new distance measurement,
SLS distance (SLSD), which fuses the spectral-locational information and the local
spatial neighborhood, is proposed for HSIs, which is excellent for finding the nearest
neighbor of the same class.

• In order to improve the separability of low-dimensional embeddings, SLSSPP constructs
a new uDR model that compresses adjacent samples and separates cluster centroids to
approximately compress intraclass samples and separate interclass samples without any
class labels. The SLS adjacency graph is especially constructed based on SLSD instead
of the original spectral distance and the cluster index in centroid adjacency graph is
generated based on wSL data, which allows SLS information to be integrated into the
projection and improves the identifiability of low-dimensional embeddings.

• Conventional reconstruction weights are calculated only based on spectral information,
which cannot truly reflect the relationship among samples because there is inevitable
noise and high dimensionality in HSIs and even different objects may have similar
spectral properties. To address this issue, SLSRPE redefines new reconstruction
weights based on wSL data, which does not only consider the spectral-locational
information but also the local spatial neighborhood, which allows SLS information to
be integrated into the projection for achieving more efficient manifold reconstruction.

This paper is organized as follows. In Section 2, we briefly introduce the related works.
The proposed SLSD, SLSSPP and SLSRPE are described in detail in Section 3. Section 4
presents the experimental results on three datasets that demonstrate the superiority of the
proposed DR methods. The conclusion is presented in Section 5.

2. Related Works

In this section, we briefly review the related works, LPP and NPE. Suppose that an HSI
dataset consists of D bands and m pixels, it can be defined as X = [x1, ..., xi, ..., xm] ∈ <D×m.
l(xi) ∈ {1, 2, ..., c} denotes the class label of xi, where c is the number of land cover types.
The low-dimensional embedding dataset is defined as Y = [y1, ..., yi, ..., ym] ∈ <d×m,
in which d denotes the number of embedding dimensionality and d < D. For the linear
DR methods, Y is replaced by Y = VTX with the projection matrix V = <D×d.

2.1. Locality Preserving Projection

Locality preserving projection (LPP) is a linear approximation of the nonlinear Lapla-
cian eigenmaps [33]. LPP [19] expects that the low-dimensional representation can preserve
the local geometric construction of original high dimensional space. The first step in LPP
is to construct an adjacency graph. It aims to make nodes related to each other (nodes
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connected to adjacency graphs) as close as possible in low-dimensional space. It puts an
edge between nodes i and j in adjacency graphs if xi and xj are close. Then, LPP weights
the edges and the weight is defined as

wij =

{
exp(−‖xi−xj‖

t )or1, xi∈Nk(xj)orxj∈Nk(xi)
0, otherwise

(1)

where Nk
(
xj
)

is the k nearest neighbors of xi and t is the parameter. The optimization
problem of LPP is defined as

min
V

m

∑
i,j
‖1

2
(yi − yj)‖

2
wij = min

V
tr
(

VTXLXTV
)

(2)

where L = D −W is the Laplacian matrix. D is a diagonal matrix whose entries are
column (or row, since W is symmetric) sums of W, Dii = ∑j wji. The optimization problem
Equation (2) can be solved by solving the following generalized eigenvalue problem:

XLXTV = λXDXTV (3)

2.2. Neighborhood Preserving Embedding

Neighborhood preserving embedding is a linear approximation to locally linear em-
bedding (LLE) [34] and aims to preserving the local manifold structure [21]. Similar to
LPP, the first step in NPE is to construct an adjacency graph. Then, it computes the weight
matrix W. If there is no edge between the nodes i and j, the weight wij = 0. Otherwise, wij
can be calculated by minimizing the following reconstruction error function:

min
wij

m
∑

i=1
‖xi −

m
∑

j=1
xjwij‖2,

s.t.
m
∑

j=1
wij = 1.

(4)

To preserve the local manifold structure on high-dimensional data, NPE assumes that
the low-dimensional embedding yi can be approximated by the linear combination of its
corresponding neighbors. The optimization problem of NPE is defined as

min
V

m

∑
i=1
‖yi −

m

∑
j=1

yjwij‖2 = min
V

m

∑
i=1
‖

k

∑
j=1

wij(yi − yj)‖2 = min
V

tr(VTXMXTV) (5)

where M = (I−W)(I−W)T and I = diag[1, ...1]. The optimization problem Equation (5)
can be solved by solving the following generalized eigenvalue problem:

XMXTV = λXXTV (6)

3. Methodology

In this section, we introduce the proposed SLSD and two uSLSML methods, SLSSPP
and SLSRPE, in detail. Their flowcharts are shown in Figures 1 and 2. Figure 1 shows
the calculation process of SLSSPP, where the first step is to generate wSL data with the
location coordinates and spectral band of each pixels, which is the key to break the locality
of spatial information extraction. Then, SLSD is computed based on wSL data which are
also clustered to generate a clustering index. Then, based on the SLSD, SLSSPP finds k
nearest neighbors and computes the weight matrix to construct the SLS adjacency graph.
Meanwhile, according to the clustering index, the cluster centroid is computed based on
the raw spectral data. On the basis of the cluster centroid, the weight matrix is calculated to
construct the cluster centroid adjacency graph. Eventually, on account of the SLS adjacency
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graph and the cluster centroid adjacency graph, the SLSSPP model was built to obtain an
optimal projection matrix based on the raw spectral data.

Spectral  samples

Location coordinates

wSL data
Compute 

SLSD

Compute 

weight 

matrix 

Find the 

nearest 

neighbors

Construct

adjacency 

graph

SLSSPP 

model

Compute 

cluster 

centroid

 Cluster

Compute 

weight 

matrix 

Construct 

cluster 

centroid 

adjacency 

graph

Figure 1. Flowchart of the proposed SLSSPP method.

Figure 2 also shows the calculation process of SLSRPE, whose first step is also to
generate wSL data with the location coordinates and spectral band of each pixel. Based on
the wSL data, the second step of SLSRPE is constructing the redefined reconstruction error
function to compute the redefined reconstruction weight matrix while computing SLSD to
find k nearest neighbors. Then, according to the redefined reconstruction weight matrix and
k nearest neighbors, the adjacency graph is constructed. Finally, the SLSRPE model is built
to obtain an optimal projection matrix which is harvested to transform the original high-
dimensional data into low-dimensional space. In the end, the low-dimensional features are
classified by classifiers.

Spectral  samples

Location coordinates

wSL data

Compute 

SLSD

SLSRPE 

model

Compute 

weight 

matrix 

Find the 

nearest 

neighbors Construct

adjacency 

graph
Construct 

reconstruction 

error function

Figure 2. Flowchart of the proposed SLSRPE method.

3.1. Spectral-Locational-Spatial Distance

In fact, SLSSPP and SLSRPE are two graph embedding methods. For an HSI dataset
X = [x1, ..., xi, ..., xm] with m pixels, its adjacency graph G have m nodes. In general, we put
an edge between nodes i and j in G if xi and xj are close (that is xi is the nearest neighbor
of xj, or xj is the nearest neighbor of xi.). As a rule, we expect that the samples of the
same class are connected and put edges when constructing G since the connected samples
are usually required to gather or maintain a manifold structure. However, if there is a
mass of connected samples belonging to different classes, the classification performance
of low-dimensional features will inevitably be reduced. Accordingly, how to explore the
relationship among samples and find the nearest neighbor of the same class is the key to
unsupervised manifold learning. In this subsection, we propose a distance calculation
method, SLSD, to measure the similarity among samples.

With the recognition of the importance of spatial information in HSI, many spectral-
spatial DR methods design different spectral-spatial distance to replace the raw spectral
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distance but ignore the location information of pixels. Figure 3 shows the comparison
of spectral bands of pixels with different locational relationships. A and B display the
spectral curves of pixels that are in the same class and close to each other in location, while
their spectral bands are quite different. At the same time, although the two pixels in C or
D are of different kinds and located far away, their spectral curves are almost identical.
In both cases, it is difficult to determine the correct pixel relationship between them based
on spectral information alone. In fact, location information can alleviate this problem well
since pixels that are closer to each other in location are more likely to belong to the same
class, especially for HSIs covering land.

0 50 100 150 200

B

0 50 100 150 200

D

0 50 100 150 200

A

0 50 100 150 200

C

Bldg-Grass-Tress-Drives
Bldg-Grass-Tress-Drives

Bldg-Grass-Tress-Drives
Soybean-notill

Soybean-mintill
Soybean-mintill

Woods
Grass-pasture

Figure 3. Comparison of spectral bands of pixels with different locational relationships (A–D).

In this paper, we regard the location information as one of the attributes of pixels
and utilize it to break the locality of spatial information extraction and capture more spatial
information. For an HSI dataset X = [x1, ..., xi, ..., xm] ∈ <D×m, the location information can
be denoted as C = [c1, ..., ci, ..., cm] ∈ <2×m where ci = [pi, qi]

T is the coordinate of the pixel
xi. To fuse the spectral and locational information of pixels in HSIs, a spectral-locational
dataset is constructed as follows:

XC =

[
C
X

]
=

[
c1, ..., ci, ..., cm
x1, ..., xi, ..., xm

]
∈ <(D+2)×m. (7)

However, due to the difference of image size and the complexity of homogeneous
domain distribution in HSIs, this simple combination of spectrum and location is not
reasonable. In order to balance the effect of location and spectrum on the relationships
among samples, the weighted spectral-locational (wSL) data XC = [xC

1, ..., xC
i, ..., xC

m] are
redefined as

XC =

[
βC

(1− β)X

]
=

[
βc1, ..., βcm

(1− β)x1, ..., (1− β)xm

]
(8)

and xC
i =

[
βci

(1− β)xi

]
. β is a spectral-locational trade-off parameter. It needs to be

emphasized that XC is only used to calculate the relationship among pixels, not the DR
data. There is therefore no need to discuss the rationality of the physical meaning of XC.
In addition, XC with location also breaks the locality of spatial information extraction.
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We assume the local neighborhood space of xC
i is Ω(xC

i) with s2 = 1, ..., r in a s× s
spatial window, which is formulated as

Ω(xC
i) =

{
xC

i(p, q)| p ∈ [pi − s−1
2 , pi +

s−1
2 ]

q ∈ [qi − s−1
2 , qi +

s−1
2 ]

}
. (9)

Actually, the primary responsibility of SLSD is to find the effective nearest neighbors.
To search for highly credible neighbors, SLSD uses a local neighborhood space instead of a
central sample. Accordingly, the SLSD of the sample xi and xj is defined as

dSLSD
(
xi, xj

)
= d

(
Ω(xC

i), xC
j

)
, (10)

where xi is one of the neighbors of the target sample xj. d
(
Ω(xC

i), xC
j
)

is the distance
between Ω(xC

i) and xC
j and defined as follows:

d
(

Ω(xC
i), xC

j

)
=

s2

∑
r=1

tir
∥∥xC

j − xC
ir
∥∥

s2

∑
r=1

tir

, xC
ir ∈ Ω(xC

i), (11)

in which tir is calculated by

tir = exp
(
−γ
∥∥∥xC

i − xC
ir

∥∥∥), xC
ir ∈ Ω(xC

i). (12)

γ is a constant which is empirically set to 0.2 in the experiments. The window parameter s is
the size of the local spatial neighborhood Ω(xC

i). xC
ir is a pixel in Ω(xC

i) surrounding xC
i.

tgir is the weight of xC
ir. The more similar xC

ir is to xC
i, the larger the value of tir, and the

more important the distance between xC
ir and xC

j is. The spectral-locational trade-off
parameter β can adjust the influence of location information on distance. When β = 0,
SLSD is the spectral-spatial distance only based on spectral domain. When β = 1, SLSD
is the locational-spatial distance only based on coordinate. By choosing the appropriate
β value, we can excavate the more realistic relationships among the samples as much
as possible. Furthermore, this allows the neighbor samples to be more likely to fall into
the same class as the target sample. To sum up, SLSD not only extracts local spatial
neighborhood information, but also explores global spatial relations in HSIs based on
location information.

To illustrate the effectiveness of SLSD, we compared it with the SD and SSCD proposed
in [24]. SD is the simple spectral distance and SSCD is a spectral-spatial distance without
location information. Table 1 shows the number of samples with different classes in the top
10 nearest neighbors of samples, which includes all samples in the three datasets. For a
fair comparison, SSCD and SLSD has the same spatial window parameters for the three
datasets. From Table 1, the number of samples are presented as: SLSD < SSCD < SD. This
means that not only the local spatial neighborhood but also the location information are
both quite valuable for the exploration of the relationship among the samples. In addition,
Table 1 also shows that SLSD rarely has different classes of samples in the top 10 nearest
neighbors. This means that the neighbors obtained by SLSD mostly belong to the same
class as the target sample, which indicates that SLSD is excellent for correctly determining
the pixel relationship in HSIs.
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Table 1. The number of samples with different classes in the top 10 nearest neighbors of all class
samples in the three datasets.

Indian Pines Pavia University Salinas

Class SD SSCD SLSD SD SSCD SLSD SD SSCD SLSD

C1 10 10 0 1120 390 0 0 0 0
C2 310 170 10 210 20 0 0 10 0
C3 220 130 0 1160 270 0 0 0 0
C4 140 100 0 720 2260 0 120 130 0
C5 20 20 0 0 180 10 90 90 40
C6 0 20 0 810 220 0 0 150 250
C7 0 0 0 620 100 0 30 40 0
C8 0 0 0 1520 410 0 2400 740 0
C9 0 0 0 0 70 0 0 0 10

C10 50 260 0 80 150 0
C11 310 160 20 10 90 80
C12 250 110 0 0 10 10
C13 10 10 0 40 20 0
C14 70 10 0 30 330 130
C15 40 0 0 2220 830 80
C16 0 60 0 0 0 20

total 1430 1060 30 6160 3920 10 5020 2590 620

3.2. Spectral-Locational-Spatial Structure Preserving Projection

The core of many supervised DR algorithms to obtain discriminant projections is
to shorten the intraclass distance and expand the interclass distance in low-dimensional
space [14,27]. In the case of sufficient class labels, this way can indeed achieve excellent
DR for classification. However, it is quite difficult to obtain class labels for HSIs covering
land. In this paper, SLSSPP was proposed to approach this concept without any class labels.
On account of SLSD, SLSSPP can achieve the goal of shortening the intra-class distance in
an unsupervised manner, since most of the nearest neighbors belong to the same class as
the target sample. Meanwhile, in SLSSPP, expanding the interclass distance is simulated by
maximizing the distance among the cluster centroids based on wSL data.

With SLSD, the SLS adjacency graph GSLS =
{

X, WSLS} can be constructed, where X
is the vertex of the graph and WSLS is the weight matrix. In graph GSLS, if xj belongs to the
k nearest neighbors NSLS

k (xi) of xi based on SLSD, an edge should be connected between
them. In this paper, if xi ∈ NSLS

k (xj) or xj ∈ NSLS
k (xi), the weight of each edge is defined as

wSLS
ij = exp(−

dSLSD
(
xi, xj

)2

2ti
2 ), (13)

where:

ti =
1
k ∑

xj∈NSLS
k (xi)

dSLSD
(
xi, xj

)
. (14)

Otherwise, wSLS
ij = 0. dSLSD(xi, xj) is the SLSD between xi and xj. Due to the superior

performance of SLSD in representing the relationship among samples in HSIs, WSLS based
on SLSD can make the low-dimensional space keep the more real structure of the raw space.
Actually, k << m, therefore WSLS is a sparse matrix.

In order to shorten the distance among each sample and its k nearest neighbors in
embedding space, the optimization problem is defined as
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min
V

m
∑
i,j
‖1

2
(VTxi −VTxj)‖2wSLS

ij =
m
∑
i

VTxiDSLS
ii xT

i V−
m
∑
i,j

VTxiwSLS
ij xT

j V

= tr
(
VTX

(
DSLS −WSLS)XTV

)
= tr

(
VTXLSLSXTV

) , (15)

in which WSLS is a symmetric matrix and DSLS is a diagonal matrix whose entries are
column or row sums of WSLS, DSLS

ii = ∑j wSLS
ij . LSLS = DSLS −WSLS is the Laplacian

matrix. In addition, it can be further evolved to:

min
V

VTXLSLSXTV. (16)

To indirectly expand the interclass distance, we maximize the distance among cluster
centroids. Table 2 shows the number of heterogeneous samples in the same cluster when
three datasets are divided into 35 clusters. Compared with the raw spectral datum X,
the wSL datum XC has better clustering performance. This means that XC should be used
to compute the cluster index that guide the low-dimensional features. To facilitate the
implementation and calculation, we adopt K-means algorithm to cluster XC. Assuming XC

is divided into km clusters, the index F = [ f1, ..., fi, ..., fkm] of km clusters can be obtained
as follows:

F = Kmeans(XC, km), (17)

where Kmeans() is the K-means algorithm and fi is the sample index belonging to the
i-th cluster. According to the index F, the cluster centroid U = [u1, ..., ui, ..., ukm] of X is
calculated as

ui = ∑
j∈ fi

xj. (18)

Table 2. The number of heterogeneous samples in the same cluster when three datasets are divided
into 35 clusters.

Indian Pines Pavia University Salinas

Spectral-locational data 2063 4055 3333

Raw spectral data 4054 9936 8164

The optimization problem of cluster centroid distance maximization is defined as

max
V

km
∑
i,j
‖1

2
(
VTui −VTuj

)
‖2wC

ij =
km
∑
i,j

VTuiDC
ii uT

j V−
km
∑
i,j

VTuiwc
iju

T
j V

= tr
(
VTU

(
DC −WC)UTV

)
= tr

(
VTULCUTV

) (19)

Here, WC is the weight matrix of the cluster centroid, which is defined as

wc
ij = (1 + exp(−dE(ui, ui)

2

2ti
2 ))−1, ti =

1
km

km

∑
j

dE
(
ui, uj

)
, ui = ∑

j∈ fi

xj. (20)

dE() is the Euclidean distance function. The definition of WC means that the greater the
distance between cluster centroid ur

i and ur
j , the greater the weight wc

ij, and thus the greater
the degree of separation between cluster i and j in low-dimensional space, and vice versa.
WC is a symmetric matrix and DC

ii = ∑j wc
ij. This optimization problem can be further

evolved to:
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max
V

VTULCUTV (21)

Aiming to simultaneously minimize the distance among each sample and its k nearest
neighbors and maximize the distance among cluster centroids to obtain the discriminant
low-dimensional representations, the DR model of SLSSPP is defined as

J(V) = max
VTULCUTV

VTXLSLSXTV
. (22)

As a general rule, this equals to the following optimization program:{
max

V
VTULCUTV

s. t. VTXLSLSXTV = Z
(23)

where Z is a non-zero constant matrix. Based on the Lagrangian multipliers, the optimiza-
tion solution can be obtained through the following generalized eigenvalue problem:

ULCUTV = λXLSLSXTV⇒ (XLSLSXT)−1ULCUTV = λV (24)

where λ is the eigenvalue of Equation (24). With the eigenvectors v1, v2, ..., vd correspond-
ing to the d largest eigenvalues, the optimal projection matrix can be represented as

V = [v1, v2, ..., vd] ∈ <D×d (25)

Finally, the low-dimensional embedding dataset can be given by Y = VTX ∈ <d×m.
The detailed procedure of SLSSPP is given in Algorithm 1. In general, SLSSPP has

two contributions: (1) it takes advantage of SLSD to search the nearest neighbor and
construct an adjacency graph; and (2) a cluster centroid adjacency graph based on wSL
data is constructed. In order to demonstrate their superiority in dimensionality reduction,
the comparative experiments based on three datasets are carried out and the classification
overall accuracies (OAs) are shown in Table 3 where ni is the number of training samples
per class used for the classifiers. The LPP_Cluster represents the combination of LPP and
the cluster centroid adjacency graph, while LPP_SLSD represents that traditional LPP uses
SLSD to explore the nearest neighbor and construct adjacency graph. From Table 3, both
LPP_Cluster and LPP_SLSD outperform traditional LPP under different training conditions
of the two classifiers, which means that both designs in SLSSPP are valid. In fact, based on
these two designs, the SLSSPP model in Equation (22) can indirectly reduce the intraclass
distance and increase the interclass distance in an unsupervised manner, which not only
preserves the neighborhood structure of HSIs, but also effectively enhances the separability
of low-dimensional embeddings. Table 3 also shows that SLSSPP has better classification
performance than LPP_Cluster and LPP_SLSD, which indicates that the proposed SLSSPP
is quite meaningful.
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Algorithm 1 SLSSPP

Input: A D-dimensional HSI dataset X = [x1, ..., xi, ..., xm] ∈ <D×m, nearest neighbors
number k > 0, spatial window size s > 0, embedding dimension d (d < D) and trade-off
parameter 0 ≤ β ≤ 1.

1: Obtain location information C and generate wSL data XC as Equation (8).
2: Compute the SLSD dSLSD(xi, xj) among samples by Equations (10)–(12).
3: Find the k nearest neighbors NSLS

k (xi) of each samples xi based on SLSD.
4: Compute the weight matrix WSLS in adjacency graph by Equations (13) and (14).
5: Compute the cluster centroid index F by Equation (17) and the cluster centroid U by

Equation (18).
6: Compute the weight matrix of the cluster centroid WC by Equation (20).
7: Construct the DR model J(V) as Equation (22) and solve the generalized eigenvalue

problem as Equation (24).
8: Obtain the projection matrix with the d largest eigenvalues corresponding eigenvectors:

V = [v1, ..., vd] ∈ <D×d.
Output: Y = VTX ∈ <d×m

Table 3. Classification OAs of the embedding features (dim = 30) of different algorithms under different training conditions
of the two classifiers.

Dataset ni 5 10 20 30 40 60

Classifiers KNN SVM KNN SVM KNN SVM KNN SVM KNN SVM KNN SVM

Indian

LPP 69.4 72.2 76.8 80.0 85.3 86.7 88.2 90.3 90.2 92.3 92.9 93.7
LPP_Cluster 73.6 76.4 83.1 84.2 89.4 91.5 91.3 92.8 93.2 94.1 95.0 95.5
LPP_SLSD 82.1 82.9 89.9 89.6 94.4 94.5 96.3 96.4 97.8 96.8 98.3 97.9

SLSSPP 84.1 82.7 93.1 92.0 96.0 95.2 96.7 96.1 98.0 96.5 98.3 97.8

Pavia U

LPP 67.2 68.6 74.3 81.0 83.6 88.6 86.9 91.5 88.8 93.7 90.9 94.3
LPP_Cluster 68.6 79.5 77.7 88.8 83.6 92.6 85.6 93.7 87.7 95.4 89.5 96.0
LPP_SLSD 82.6 72.9 91.1 82.8 93.5 91.3 95.4 94.0 96.6 94.7 97.0 96.2

SLSSPP 82.6 86.7 90.6 89.6 93.9 93.4 95.8 95.3 96.3 95.3 97.5 96.5

Salinas

LPP 89.2 88.3 91.1 90.8 92.8 93.1 94.0 94.1 94.8 94.7 95.2 95.6
LPP_Cluster 91.7 92.6 93.2 93.5 95.2 95.1 95.7 96.1 95.8 95.5 96.7 97.3
LPP_SLSD 93.6 92.8 94.7 93.9 96.6 95.8 97.3 96.1 97.8 96.3 98.3 97.6

SLSSPP 93.5 94.6 94.7 94.4 96.7 95.7 97.1 96.1 97.7 97.0 98.3 97.1

3.3. Spectral-Locational-Spatial Reconstruction Preserving Embedding

From Section 2.2, NPE constructs the reconstruction error function simply based on
the spectral information, which is unreliable not only due to the spectral redundancy and
noise in HSIs, but also because different objects may share the same spectral properties.
To address this problem, SLSRPE redefines an SLS reconstruction error function to compute
the SLS reconstruction weights, which is based on the wSL data instead of the raw spectral
data. In addition, the SLS reconstruction weights also consider the contribution of local
spatial neighborhood.

Based on SLSD, the adjacency graph GRPE =
{

X, WRPE} is constructed. WRPE is the
reconstruction weight matrix. The superiority of SLSD in finding the nearest neighbor
proves that SLS information is quite beneficial to characterize the relationship among
samples. As a result, SLS information should be used to construct the reconstruction error
function and calculate the reconstruction weight. In fact, the closer the SLS relationship is,
the more probable it is that the selected neighbor has the same class as the target sample,
and the greater its reconstruction weight will be. In this way, the reconstruction error
function for the optimal weights is redefined as follows:
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min
wRPE

ij

m
∑

i=1
‖

k
∑

j=1
wRPE

ij

s2

∑
r=1

tjr(xC
i−xC

jr)

s2
∑

r=1
tjr

‖2

s.t.
m
∑

j=1
wRPE

ij = 1

s.t. wRPE
ij = 0, ∀ xj /∈ NSLS

k (xi)

, (26)

in which xC
jr∈Ω(xC

j) is the local spatial neighbor of xC
j and tjr = exp(−2dSLSD(xj, xjr)

2).
dSLSD(xj, xjr) is the SLSD between xj and xjr. The more similar xjr is to xj, the greater the
contribution xjr makes to the relationship between xj and xi, which improves the robustness
of reconstructed weights to noisy samples. By solving the reconstruction error function,
we obtain the reconstructed weight matrix WRPE.

Supposing that xij is the jth nearest neighbor of xi based on SLSD, k is the number
of the selected nearest neighbors, xC

ijr is the rth local spatial neighbor of xC
ij. For the

sake of explanation:

hij =

s2

∑
r=1

tijr(xC
i − xC

ijr)

s2

∑
r=1

tijr

(27)

indicates the SLS combined measure between xi and xij. The reconstruction error function
can be simplified to:

min
m

∑
i=1
‖

k

∑
j=1

wRPE
ij hij‖2 =min

m

∑
i=1

(wRPE
i )

T
ziwRPE

i (28)

where zi = [hi1, ..., hij, ..., hik]
T [hi1, ..., hij, ..., hik] and wRPE

i = [wRPE
i1 , ..., wRPE

ij , ..., wRPE
ik ]. Then,

the reconstruction error function can be expressed as the following optimization problem:
min
wRPE

ij

m
∑

i=1
(wRPE

i )
TziwRPE

i

s.t.
k
∑

j=1
wRPE

ij = 1
(29)

with the Lagrange multiplier method, wRPE
ij is given as follows:

wRPE
ij =

k
∑

l=1
(zjl

i )
−1

k
∑

p,q=1
(zpq

i )
−1

(30)

where zjl
i = (hij)

Thil and zpq
i = (hip)

Thiq. wRPE
ij is the reconstruction coefficient of xj to

xi. In fact, k << m, so the reconstruction matrix WRPE is a sparse matrix. According to
WRPE, SLSRPE maintains the reconstructed relationship between the target sample and the
nearest neighbors in a low-dimensional space. The DR model of SLSRPE is defined as

min
V

m
∑
i
|VTxi −

m
∑
j

wRPE
ij VTxj‖2

s.t.
m
∑
i

VTxi = 0,
1
m

VVT = I
, (31)
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which can be reduced as

min
V

m
∑
i
‖VTxi −

m
∑
j

wRPE
ij VTxj‖2 = min

V

m
∑
i
‖

m
∑
j

wRPE
ij (VTxi −VTxj)‖2

= min
V

tr(VTX(I−WRPE)(I−WRPE)TXTV)

= min
V

VTXMRPEXTV

, (32)

where MRPE=(I−WRPE)(I−WRPE)T and I = diag[1, ..., 1]. Equation (32) can be solved
by the Lagrange multiplier, and it can be transformed into the following form:

XMRPEXTV = λXXTV⇒ (XXT)−1XMRPEXTV = λV, (33)

where λ is the eigenvalue of Equation (33). With the eigenvectors v1, v2, ..., vd correspond-
ing to the d smallest eigenvalues, the optimal projection matrix can be represented by
V = [v1, v2, ..., vd] ∈ <D×d. Finally, the low-dimensional embeddings can be given by
Y = VTX ∈ <d×m.

The detailed procedure of the presented SLSRPE approach is given in Algorithm 2. In
contrast to traditional NPE, SLSRPE also has two contributions: (1) it takes advantage of
SLSD to search the nearest neighbor, (2) it redefines the reconstruction error function to
calculate the reconstruction weight matrix. Both of these include an integrated exploration
of spectral-locational-spatial information. To demonstrate their effectiveness separately, we
conducted experiments on three datasets, and the experimental results are shown in Table 4.
NPE_SLS is used to test our proposed reconstruction weights that contain SLS information,
while NPE_SLSD indicates that traditional NPE uses SLSD to search the nearest neighbors.
From Table 4, both NPE_SLS and NPE_SLSD are superior to traditional NPE. Even more,
NPE_SLS has advantages over NPE_SLSD. This means that the two points proposed in
SLSRPE are meaningful, and that the reconstruction weights we redefine to include the
SLS information are valuable. Accordingly, SLSRPE explores reconstruction relationships
among samples not only in spectral domain, but also based on the location and local spatial
neighborhood. SLSRPE makes full use of spectral-locational-spatial information of HSIs to
obtain discriminating features to improve the classification performance. In fact, Table 4
also shows that SLSRPE is superior to NPE_SLS and NPE_SLSD.

Table 4. Classification OAs of the embedding features (dim = 30) of different algorithms under different training conditions
of the two classifiers.

Dataset ni 5 10 20 30 40 60

Classifiers KNN SVM KNN SVM KNN SVM KNN SVM KNN SVM KNN SVM

Indian

NPE 69.4 72.6 77.3 79.9 85.2 86.3 88.3 89.9 90.0 91.9 93.0 93.7
NPE_SLS 78.9 78.9 85.7 86.6 90.5 91.8 93.1 93.2 95.0 95.1 96.2 96.3

NPE_SLSD 77.2 78.4 83.8 87.1 89.4 91.0 91.6 92.7 93.4 94.5 95.1 95.9
SLSRPE 88.1 86.4 92.0 91.5 97.3 94.1 97.1 95.5 98.4 96.8 98.9 97.4

Pavia U

NPE 58.2 66.5 63.7 79.6 73.4 86.8 76.7 90.2 80.8 93.3 83.8 93.9
NPE_SLS 85.6 74.4 91.4 83.3 94.6 89.0 96.0 93.5 96.5 95.9 97.2 96.5

NPE_SLSD 64.4 72.3 72.6 80.9 78.2 88.9 82.0 92.7 84.3 93.4 87.0 95.2
SLSRPE 87.7 77.4 92.4 85.9 96.2 90.7 96.3 93.6 96.9 95.1 97.7 96.3

Salinas

NPE 81.6 85.5 85.2 89.9 87.3 91.3 88.0 92.9 88.5 94.4 90.1 95.0
NPE_SLS 90.8 89.0 93.3 92.4 94.4 94.1 96.1 95.0 96.4 95.3 97.3 96.3

NPE_SLSD 83.8 89.9 86.5 91.3 89.9 92.9 89.4 95.1 89.9 95.5 90.4 96.1
SLSRPE 91.4 90.2 95.9 92.3 96.1 93.9 97.0 94.7 97.3 95.1 98.1 96.4
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Algorithm 2 SLSRPE

Input: A D-dimensional HSI dataset X = [x1, ..., xi, ..., xm] ∈ <D×m, nearest neighbors
number k > 0, spatial window size s > 0, embedding dimension d (d < D) and trade-off
parameter 0 ≤ β ≤ 1.

1: Obtain location information C and generate wSL data XC as Equation (8).
2: Compute the SLSD dSLSD(xi, xj) by Equations (10)–(12).
3: Find the k nearest neighbors NSLS

k (xi) of each samples xi based on SLSD.
4: Construct the reconstruction error function as Equation (26).
5: Compute the reconstruction weight wRPE

ij by Equation (30).
6: Solve the generalized eigenvalue problem as Equation (33).
7: Obtain the projection matrix with the d smallest eigenvalues corresponding eigenvec-

tors: V = [v1, ..., vd] ∈ <D×d.
Output: Y = VTX ∈ <d×m

4. Experiments
4.1. Description of Datasets

The first dataset covers the University of Pavia, Northern Italy, which was acquired
by ROSIS sensor and called the PaviaU Dataset. Its spectral range is 0.4–0.82 µm. After re-
moving 12 noise bands from the original dataset with 115 spectral bands, 103 bands were
employed in this paper. The spatial resolution is 1.3 m and each band has 610× 340 pixels.
This dataset consists of nine ground-truth classes with 42,776 pixels and a background with
164,624 pixels. Figure 4a,b show the color image and the labeled image with nine classes.
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(a) Color image (b) Ground Truth map (c) Color image (d) Ground Truth map

Figure 4. (a,b) are Pavia University dataset; (c,d) are Salinas dataset.

The second dataset, Salinas Dataset, covering Salinas Vally, CA, was acquired by
AVIRIS sensor in 1998, whose spatial resolution is 3.7 m. There are 224 original bands
with spectral ranging from 0.4 to 2.45 µm. Each band has 512× 217 pixels including 16
ground-truth classes with 56,975 pixels and a background with 54,129 pixels. The color
image and the labeled image with 16 classes are shown in Figure 4c,d.

The third dataset, Indian Pines Dataset, covering the Indian Pines region, northwest
Indiana, USA, was acquired by AVIRIS sensor in 1992. The spatial resolution of this image
is 20 m. It has 220 original spectral bands in the 0.4–2.5 µm spectral region and each band
contains 145× 145 pixels. Owing to the noise and water absorption, 104–108, 150–163
and 220 spectral bands were abandoned and the remaining 200 bands are used in this
dataset. This dataset contains background with 10,776 pixels and 16 ground-truth classes
with 10,249 pixels. The number of pixels in each class ranges from 20 to 2455. The color
image and the labeled image with 16 classes are shown in Figure 5.
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Figure 5. Indian Pines dataset.

4.2. Experimental Setup

In order to verify the superiority of two uSLSML methods, seven state-of-art DR algo-
rithms were selected for comparison, including NPE [21], LPP [20], regularized local dis-
criminant embedding (RLDE) [14], LPNPE [14], spatial and spectral RLDE (SSRLDE) [14],
SSMRPE [24], and SSLDP [27]. The former three methods are spectral-based DR methods,
while the latter four approaches make use of both spatial and spectral information for
the DR of HSIs. In addition, the raw spectral feature of HSIs is also used for comparison.
SSRLDE has single-scale and multi-scale versions, and we select its single-scale version
because SLSSPP and SLSRPE are two single-scale models. SSMRPE [24] proposes a new
SSCD to construct the spatial-spectral adjacency graph to reveal the intrinsic manifold
structure of HSIs. Among them, RLDE, SSRLDE [14], and SSLDP [27] are three supervised
methods and require class labels to implement DR, while others are unsupervised.

Two classifiers, support vector machines (SVMs) and k nearest neighbors (KNNs), are
applied to the classification of low-dimensional features. In this paper, we utilized the one
nearest neighbor and LibSVM toolbox with a radial basis function. In all experiments, we
randomly divided each HSI dataset into training and test sets. It should be emphasized that
the training set used for training the DR model and classifier in supervised algorithm was
only used to train the classifier in unsupervised algorithm. For unsupervised methods in all
experiments, all samples in an HSI dataset are utilized to train the DR model. The test set
was projected into the low-dimensional space for classification. The classification overall
accuracy (OA), the average accuracy (AA), and the Kappa coefficient κ are used to evaluate
classification performance.

To achieve good classification results, we optimized the parameters of various algo-
rithms. For LPP [20] and NPE [21], the number of nearest neighbors k was set to 7 on Indian
Pines dataset, 25 on PaviaU and Salinas datasets. We chose the optimal parameters of their
source literature for other comparison algorithms. For RLDE, LPNPE and SSRLDE [14],
the number of intraclass and interclass neighbors are both 5, the heat kernel parameter is
0.5, the parameters α, β and neighborhood scale are set to 0.1, 0.1, 11 on the Indian Pines
and Salinas datasets, and 0.2, 0.3, 7 on the PaviaU dataset. For SSMRPE [24], the spatial
window size and neighbor number are set to 7, 10 on Indian Pines dataset, 13, 20 on PaviaU
dataset, 15, 15 on Salinas dataset. For SSLDP [27], the intraclass and interclass neighbor
number, spatial neighborhood scale and trade-off parameter are set to 7, 63, 15, 0.6 on the
Indian Pines and Salinas datasets, and 6, 66, 19, 0.4 on the PaviaU dataset. To reduce the
influence of noise in HSIs, the weighted mean filtering with the 5× 5 window is used to
preprocess the pixels. In addition, each experiment in this paper is repeated 10 times in
each condition for reducing the experimental random error.

4.3. Parameters Analysis

The two proposed uSLSML methods both have three parameters: nearest neighbor
number k, spatial window size s and spectral-locational trade-off parameter β. In order to
analyze the influence of three parameters on the DR results, we conduct parameter tuning
experiments on three HSI datasets. Thirty samples in each class are randomly selected as
the training set and the remaining samples are the testing set for two classifiers. For ease of
analysis, Figures 6 and 7 show the classification OAs with different parameters on Indian
Pines and PaviaU datasets. In experiments, the parameter values are set to: k = {1, 2, ..., 30},
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s = {1, 3, ..., 15}, β = {0, 0.05, 0.1, ..., 1}. The fixed parameters of SLSSPP and SLSRPE are
set to k = 15, s = 5, β = 0.4 on Indian Pines dataset, k = 20, s = 3, β = 0.01 on PaviaU
dataset to analyze the other two parameters.

(a) SLSSPP_KNN (b) SLSSPP_SVM (c) SLSRPE_KNN (d) SLSRPE_SVM

Figure 6. The classification OAs with respect to different parameters of SLSSPP and SLSRPE on Indian Pines dataset from
two classifiers, KNN and SVM.

(a) SLSSPP_KNN (b) SLSSPP_SVM (c) SLSRPE_KNN (d) SLSRPE_SVM

Figure 7. The classification OAs with respect to different parameters of SLSSPP and SLSRPE on Indian Pines dataset from
two classifiers, KNN and SVM.

We first analyzed the effect of SLSSPP parameters on classification. From Figures 6 and 7,
the classification OA increases slightly with the increase in k and s when β is fixed, while
the OA significantly increases with the increase in β when k and s are fixed, respectively,
on two datasets. In particular, the change in β developing from nothing brings a significant
improvement to the classification. This proves that the location information is quite beneficial
for DR for classification. However, the OAs have not changed much as β continues to grow,
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because the value of location information is much larger than that of spectral information due
to the normalization of spectral bands.

For the proposed SLSRPE method, the OAs increase as s increases on two datasets
when β or k is fixed, especially for KNN classifiers, since the large spatial neighborhood
is beneficial to characterize the spatial relationship between samples. This means that
the spatial neighborhood added in reconstruction weights of SLSRPE is helpful for DR
for classification. At the same time, the OAs are improved with the increase in β on two
datasets on account of the importance of location information to DR for classification. It
is worth noting that compared with KNN, SVM has stronger robustness to parameters in
view of the advantages of SVM model training.

In fact, when k is greater than 15, the influence of k on uSLSML tends to be stable.
For a new HSI datum, k can be valued between 15 and 30. The setting of s depends on
the smoothness of the image. If the homogeneous pixels of the HSI image are relatively
clustered, s can take a larger value and vice versa. Actually, the further increase in s after
increasing to 5 does not significantly improve uSLSML. Therefore, in order to ensure the
low computational complexity and the effectiveness of dimension reduction, s can be set to
5 ∼ 15. The value of β is obviously influenced by the size of the image. If the image size
is large, the value of β should be small, and vice versa. β usually ranges from 0.01 to 1.
In the following experiment, the parameters of SLSSPP are set as k = 28, s = 11, β = 0.7
for the Indian Pines dataset, k = 25, s = 13, β = 0.05 for the PaviaU dataset, k = 26, s = 15,
β = 0.03 for the Salinas dataset. The parameters of SLSRPE are set as k = 9, s = 9, β = 1
for the Indian Pines dataset, k = 26, s = 15, β = 0.02 for the PaviaU dataset, and k = 14,
s = 15, β = 0.03 for the Salinas dataset.

4.4. Dimension Analysis

In order to analyze the impact of the embedding dimension d of each DR algorithm
on classification performance, thirty samples from each class are randomly selected as
the training set, and the rest as the test set. If the number of samples in a class is less
than 60, half of the samples in this class are used as the training set. Figure 8 gives the
OAs with a different embedding dimension for various DR algorithms on three datasets.
The embedding dimension d is tuned from 2 to 40 with an interval of 2.

As can be seen from Figure 8, the OAs in the low-dimensional space are mostly higher
than those in the raw space. This proves that DR is necessary for classification. Meanwhile,
the OAs of each algorithm gradually increases with the increase in embedding dimension,
because the higher-dimensional embedding features contain more discriminative infor-
mation that is helpful for classification. However, as the dimension continues to grow,
the OAs tends to be stable or even slightly decreased. The reason is that the discriminative
information of the embedding space is gradually approaching saturation and the Hughes
phenomenon occurs due to fewer training samples for classifiers. In addition, it is obvious
that the classification performance of the DR algorithm fusing spatial and spectral informa-
tion, LPNPE, SSRLDE [14], SSMRPE [24], SSLDP [27], SLSSPP and SLSRPE, is generally
higher than that of the spectral-based algorithm, LPP [20], NPE [21] and RLDE [14], which
effectively testifies that spatial information is beneficial to DR for classification. It is worth
noting that compared with other DR algorithms, in this experiment, SLSSPP and SLSRPE
achieve the best classification performance in almost all embedding dimensions of the three
datasets, because SLSSPP and SLSRPE take full advantage of spectral-locational-spatial in-
formation in HSIs for DR. In order to ensure each algorithm achieves optimal performance,
we set the embedding dimension d = 30 on three datasets in the following experiments.
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(a) Indian Pines_KNN (b) Pavia University_KNN (c) Salinas_KNN

(d) Indian Pines_SVM (e) Pavia University_SVM (f) Salinas_SVM

Figure 8. The classification OAs with different embedding dimensions d for various DR algorithms on three datasets.

4.5. Classification Result

In practical applications, the classification accuracy of the DR algorithm is sensitive to
the size of training set. To explore the classification performance of DR algorithms under
different training conditions, we randomly selected ni (ni = 5, 10, 20, 30, 40, 60) samples
from each class for training, and the others for testing. If the number of samples in a class
is less than 2ni, half of samples in this class are randomly selected for training. Table 5
shows the classification OAs of the embedding features of different DR algorithms on three
datasets using KNN and SVM classifiers under different training conditions.

As shown in Table 5, for three datasets, the larger the number of training samples
is, the higher the OA value is, since a large number of training samples with class la-
bels can enable a supervised DR algorithm and classifier to obtain more discriminative
information. In the comparison algorithms, the spectral-spatial algorithms, LPNPE, SS-
RLDE [14], SSMRPE [24], and SSLDP [27] are superior to the spectral-based algorithms,
including LPP [20], NPE [21], and RLDE [14]. The supervised spectral-spatial algorithms,
SSRLDE [14] and SSLDP [27], are better than the unsupervised spectral-spatial algorithms,
including LPNPE [14]. These demonstrate once again that label and spatial information
are advantageous to DR for classification.

As mentioned in Section 1, obtaining class labels is time-consuming, expensive, and
difficult. Thus, the sensitivity of the classification performance of the DR algorithm to
the number of training samples with class labels can also be used to evaluate the DR
algorithm. Without doubt, we expected that the classification of a DR algorithm can
achieve good performance with fewer training samples with class labels. From Table 5, it is
as expected that when ni = 5, SLSRPE on Indian Pines and PaviaU datasets, and SLSSPP
on the Salinas dataset achieve the best and satisfactory classification performance in this
experiment. In addition, the proposed uSLSML achieved better classification results than
other algorithms under almost all training conditions of this experiment. Because uSLSML
presents a new SLSD to extract SLS information to choose the effective neighbor and
constructs an SLS adjacency graph and a cluster centroid adjacency graph for SLSSPP to
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enhance the separability of embedded features, it also redefines the reconstruction weights
for SLSRPE to mine the SLS reconstruction relationships among samples to discover the
intrinsic manifold structure of HSIs.

Table 5. Classification OAs of the embedding features (dim = 30) of different DR algorithms on three datasets using KNN
and SVM classifiers under different training conditions.

Classifier KNN SVM

Dataset ni 5 10 20 30 40 60 5 10 20 30 40 60

Indian

RAW 54.3 64.3 72.5 77.2 79.7 83.4 58.2 70.6 81.2 85.4 88.4 91.3
NPE 69.4 77.3 85.2 88.3 90.0 93.0 72.6 79.9 86.3 89.9 91.9 93.7
LPP 69.4 76.8 85.3 88.2 90.2 92.9 72.2 80.0 86.7 90.3 92.3 93.7

RLDE 68.4 78.4 86.5 89.4 91.4 93.4 67.8 78.3 85.9 90.0 91.6 93.9
LPNPE 77.7 85.0 92.4 95.1 95.4 96.9 80.5 87.1 92.6 94.7 96.1 96.9

SSRLDE 78.4 83.6 88.2 91.3 93.3 95.0 78.3 82.9 88.6 91.0 92.7 95.1
SSMRPE 72.7 81.8 88.0 90.4 92.9 95.0 73.9 81.8 88.7 91.7 93.0 94.9
SSLDP 72.0 81.8 88.4 93.0 94.2 96.2 73.8 81.2 86.9 91.7 92.5 94.5
SLSSPP 84.1 90.6 96.0 96.7 98.0 98.3 82.7 92.0 95.2 96.1 96.5 97.8
SLSRPE 88.1 92.0 97.3 97.1 98.4 98.9 86.4 91.5 94.1 95.5 96.8 97.4

Pavia U

RAW 59.7 64.7 71.6 75.0 77.0 80.9 70.0 77.0 84.6 89.2 92.0 93.1
NPE 58.2 63.7 73.4 76.7 80.8 83.8 66.5 79.6 86.8 90.2 93.3 93.9
LPP 67.2 74.3 83.6 86.9 88.8 90.9 68.6 81.0 88.6 91.5 93.7 94.3

RLDE 71.6 79.5 84.9 86.9 88.5 90.4 69.4 77.8 86.3 88.6 91.4 93.8
LPNPE 61.3 71.6 77.5 81.7 84.2 86.8 66.7 80.4 88.0 90.2 92.6 93.3

SSRLDE 78.1 84.7 89.3 91.3 93.1 94.6 69.4 78.6 86.1 89.2 90.9 93.0
SSMRPE 82.0 86.0 90.5 93.6 94.3 95.9 74.8 82.6 88.4 91.1 92.8 95.2
SSLDP 70.5 83.1 87.7 91.3 86.6 92.9 69.9 80.0 86.8 90.1 91.5 94.1
SLSSPP 82.6 90.6 93.9 95.8 96.3 97.6 86.7 89.6 93.4 95.3 95.3 96.5
SLSRPE 87.7 92.4 96.2 96.3 96.9 97.7 77.4 85.9 90.7 93.6 95.1 96.3

Salinas

RAW 83.3 86.2 88.8 89.1 90.4 91.0 86.0 88.6 90.9 92.4 93.1 94.2
NPE 81.6 85.2 87.3 88.0 88.5 90.1 85.5 89.9 91.3 92.9 94.4 95.0
LPP 89.2 91.1 92.8 94.0 94.8 95.2 88.4 90.8 93.1 94.1 94.7 95.6

RLDE 88.8 90.0 92.7 94.3 94.6 95.7 84.7 86.5 89.3 90.9 91.9 92.8
LPNPE 86.1 88.5 90.4 91.6 92.1 93.2 85.3 88.2 90.5 91.8 92.5 93.7

SSRLDE 86.9 92.3 89.7 95.8 96.3 97.0 80.5 88.8 90.8 92.4 93.1 94.3
SSMRPE 89.6 91.3 93.5 94.1 94.9 96.1 89.3 91.6 94.0 94.5 95.1 95.9
SSLDP 90.6 92.8 92.8 95.1 95.6 96.0 89.5 90.0 91.9 92.4 92.7 93.5
SLSSPP 93.5 94.7 96.7 97.1 97.7 98.3 94.6 94.4 95.7 96.1 97.0 97.1
SLSRPE 91.4 95.9 96.1 97.0 97.3 98.1 90.2 923 93.9 94.7 95.1 96.4

In order to explore the classification accuracy of different DR algorithms on each class,
we classified the embedding features of different DR algorithms with the KNN and SVM
classifier on three datasets. Tables 6–8 listed the classification accuracy of each class, OA,
AA, and Kappa coefficient. The visualized classification maps of different approaches on
three datasets are displayed in Figures 9–11.
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Table 6. Classification accuracy of the embedding features on each class with SVM and KNN classifiers in Salinas dataset.

Class Classifier RAW NPE LPP RLDE LPNPE SSRLDE SSMRPE SSLDP SLSSPP SLSRPE

C1 KNN 99.1 99.8 99.1 99.9 100 100 100 100 100 100
SVM 99.5 99.7 99.8 100 100 100 100 100 99.6 100

C2 KNN 97.8 99.3 98.5 99.9 100 100 100 100 100 100
SVM 99.5 100 99.8 100 100 100 100 100 100 100

C3 KNN 96.8 93.9 99.7 100 100 100 100 100 100 100
SVM 96.8 100 100 100 100 100 100 100 100 100

C4 KNN 99.3 98.4 99.2 98.5 98.8 97.9 98.4 98.9 99.7 99.3
SVM 99.5 98.8 99.5 98.8 98.5 96.3 98.5 99.3 99.1 99.4

C5 KNN 96.0 96.0 96.6 99.5 92.4 99.9 99.8 99.2 98.9 99.2
SVM 96.6 99.3 99.6 97.7 96.2 99.8 98.9 99.2 99.0 99.7

C6 KNN 99.3 99.2 99.7 99.8 100 100 100 100 100 99.9
SVM 99.8 99.9 99.8 98.7 99.7 99.6 100 100 100 99.5

C7 KNN 99.6 99.1 98.6 99.6 100 99.9 99.9 100 100 99.9
SVM 100 99.4 99.9 99.6 99.9 99.9 99.8 99.9 100 100

C8 KNN 69.6 74.9 72.2 85.0 76.6 89.5 84.8 85.6 86.5 93.6
SVM 83.5 81.3 80.2 86.0 79.6 81.9 76.2 84.6 90.8 87.8

C9 KNN 98.2 97.6 98.3 100 99.9 100 100 100 100 100
SVM 97.1 100 100 100 100 98.0 100 100 100 99.9

C10 KNN 91.7 84.6 95.6 97.8 95.8 95.4 97.8 97.8 99.1 97.0
SVM 91.8 95.0 99.4 96.0 97.4 93.8 96.8 96.2 99.0 97.7

C11 KNN 97.4 97.1 97.9 100 99.7 99.8 100 100 99.6 100
SVM 94.0 99.8 100 99.3 100 99.6 98.9 100 99.8 99.1

C12 KNN 98.1 100 100 100 99.9 100 100 100 100 100
SVM 99.9 99.9 100 100 100 99.9 99.9 100 100 100

C13 KNN 99.7 98.4 98.6 99.9 99.5 100 99.9 100 99.9 100
SVM 99.8 99.1 99.9 99.5 98.4 99.7 99.7 99.3 99.1 98.1

C14 KNN 93.8 93.1 95.1 97.6 97.3 91.5 95.9 98.9 98.6 99.1
SVM 92.4 99.3 97.9 99.3 97.6 95.5 96.5 99.8 98.7 99.6

C15 KNN 74.0 74.1 80.1 89.5 77.7 94.8 92.7 89.5 92.2 91.0
SVM 83.0 83.8 91.3 66.0 76.4 80.3 76.2 91.9 90.5 85.4

C16 KNN 97.6 97.2 99.2 98.4 99.4 99.2 98.6 99.5 100 98.6
SVM 98.4 98.6 99.5 97.3 99.0 98.6 98.0 99.0 99.0 99.3

OA KNN 88.5 89.1 90.4 95.1 91.3 96.6 95.5 95.3 95.9 97.1
SVM 92.7 93.4 94.5 91.8 92.0 92.7 91.3 95.3 96.6 95.2

AA KNN 94.2 93.9 95.5 97.8 96.1 98.0 98.0 98.1 98.4 98.6
SVM 95.7 97.1 97.9 96.1 96.4 96.4 96.2 98.1 98.4 97.8

κ
KNN 87.2 87.9 89.3 94.6 90.4 96.2 95.0 94.8 95.5 96.8
SVM 91.9 92.7 93.9 90.9 91.1 91.8 90.4 94.8 96.2 94.6

(a) RAW (b) NPE (c) LPP (d) RLDE (e) LPNPE (f) SSRLDE (g) SSMRPE (h) SSLDP (i) SLSSPP (j) SLSRPE

(k) RAW (l) NPE (m) LPP (n) RLDE (o) LPNPE (p) SSRLDE (q) SSMRPE (r) SSLDP (s) SLSSPP (t) SLSRPE

Figure 9. Classification maps of different DR methods on Indian Pines dataset: (a–j) are for KNN classifier; and (k–t) are for
SVM classifier.
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Table 7. Classification accuracy of the embedding features for each class with SVM and KNN classifiers in Indian Pines dataset.

Class Classifier RAW NPE LPP RLDE LPNPE SSRLDE SSMRPE SSLDP SLSSPP SLSRPE

C1 KNN 95.7 100 100 100 100 100 100 100 100 100
SVM 100 100 100 100 100 100 100 100 100 100

C2 KNN 66.5 67.0 78.9 85.8 83.9 91.6 78.8 93.4 94.8 96.3
SVM 85.8 89.2 93.6 91.1 94.3 93.3 88.6 94.8 95.4 94.5

C3 KNN 76.3 73.1 82.3 91.0 96.8 92.8 89.4 92.1 96.0 98.6
SVM 87.3 93.4 92.1 89.6 97.4 86.8 94.9 87.8 97.1 98.5

C4 KNN 88.9 96.1 98.1 99.0 99.0 97.6 97.1 100 99.5 99.5
SVM 90.8 97.1 97.1 99.5 99.0 100 94.2 100 98.1 99.5

C5 KNN 89.8 90.7 95.4 99.1 93.8 99.8 93.2 96.0 99.3 96.0
SVM 94.5 96.0 94.7 97.8 98.2 98.5 94.7 96.5 98.1 95.4

C6 KNN 96.7 97.7 97.9 99.1 99.9 98.7 99.4 99.7 100 100
SVM 99.3 100 100 98.0 100 99.6 100 99.1 99.1 99.6

C7 KNN 100 100 100 100 100 100 100 100 100 100
SVM 100 100 100 100 100 100 100 100 100 100

C8 KNN 93.8 94.0 96.9 99.6 100 98.9 97.8 100 100 100
SVM 93.8 100 100 99.3 100 98.0 100 100 99.6 100

C9 KNN 100 100 100 100 100 100 100 100 100 100
SVM 100 100 100 100 100 100 100 100 100 100

C10 KNN 83.0 82.6 91.3 90.6 95.3 91.8 90.8 92.6 97.1 94.4
SVM 80.3 93.1 88.6 89.0 96.6 92.0 91.9 87.9 96.6 89.2

C11 KNN 65.1 70.6 75.5 87.1 91.2 89.3 85.3 93.0 94.4 97.5
SVM 73.2 67.8 83.3 82.6 80.6 85.2 74.4 87.3 91.5 93.2

C12 KNN 67.7 75.7 72.6 92.5 95.9 93.6 92.4 93.3 98.9 92.7
SVM 82.4 96.4 94.5 95.7 98.6 96.3 96.4 93.3 94.1 97.2

C13 KNN 99.4 97.7 98.3 98.9 99.4 98.3 99.4 99.4 100 100
SVM 97.7 98.9 100 99.4 99.4 99.4 99.4 99.4 100 100

C14 KNN 91.7 95.0 90.4 95.1 99.8 93.8 98.7 96.1 99.7 98.7
SVM 93.3 93.9 93.8 96.4 97.5 97.5 95.6 96.6 98.5 98.4

C15 KNN 82.9 81.5 93.3 99.2 97.8 99.4 88.2 100 99.7 100
SVM 91.0 95.5 98.9 99.2 99.7 96.3 97.5 99.7 99.7 99.4

C16 KNN 100 100 100 100 100 100 100 100 100 100
SVM 100 100 100 100 100 100 100 100 100 100

OA KNN 78.3 80.5 85.1 91.9 94.2 93.4 90.0 94.9 97.1 97.4
SVM 85.4 87.9 91.8 91.5 93.3 92.7 89.6 92.9 96.0 95.7

AA KNN 87.3 88.9 91.9 96.1 97.1 96.6 94.4 97.2 98.7 98.4
SVM 91.8 95.1 96.0 96.1 97.6 96.4 95.5 96.4 98.1 97.8

κ
KNN 75.5 77.9 83.1 90.8 93.3 92.4 88.7 94.2 96.7 97.0
SVM 83.4 86.3 90.6 90.3 92.4 91.6 88.2 91.9 95.4 95.1

From Tables 6–8, the spatial-spectral combined methods are completely superior to
spectral-based methods and supervised spatial-spectral algorithms slightly outperform
unsupervised spatial-spectral algorithms. This means that compared with the label in-
formation, the spatial information is more conducive to improving the representation of
embedded features in this experiment. SLSRPE and SSMRPE [24] are two improved ver-
sions of NPE [21], both of which are dedicated to maintaining the local manifold structure
of the data. Tables 6–8 show that their improvement is effective, and SLSRPE is more
outstanding than SSMRPE [24]. The proposed SLSD can find more neighbor samples from
the same class than the SSCD of the SSMRPE [24], and more importantly, SLSRPE adds the
SLS information to the reconstruction weights to reveal the intrinsic manifold structure of
HSIs. This experiment also testifies that SLSSPP is far superior to LPP, which is attributed
to the proposed SLSD and the new DR model with an SLS adjacency graph and a cluster
centroid adjacency graph.
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Table 8. Classification accuracy of the embedding features on each class with SVM and KNN classifiers in the Pavia
University dataset.

Class Classifier RAW NPE LPP RLDE LPNPE SSRLDE SSMRPE SSLDP SLSSPP SLSRPE

C1 KNN 73.4 74.2 83.3 90.8 70.3 92.7 84.9 88.0 92.8 96.0
SVM 87.0 94.5 94.4 91.5 90.7 91.9 90.8 91.4 88.7 91.4

C2 KNN 67.2 61.1 86.9 88.2 80.4 91.1 96.1 95.3 97.2 98.1
SVM 89.6 88.4 86.0 95.6 94.8 95.6 94.4 92.0 97.1 94.8

C3 KNN 72.1 75.1 88.9 74.2 81.5 79.4 80.4 89.1 88.9 95.7
SVM 85.5 81.6 90.0 80.3 86.9 76.9 75.2 89.5 91.0 88.5

C4 KNN 86.1 87.5 94.0 93.9 87.5 95.0 92.0 94.1 90.0 96.5
SVM 94.2 93.3 94.3 93.7 94.2 93.6 96.1 93.3 94.0 92.8

C5 KNN 99.8 99.7 100 100 100 100 100 99.8 100 100
SVM 99.6 100 100 99.9 100 99.9 99.9 100 100 100

C6 KNN 82.1 75.1 90.7 92.2 92.3 95.1 97.7 99.4 99.8 99.9
SVM 94.9 94.9 94.0 92.0 94.9 90.9 93.8 92.8 97.1 98.0

C7 KNN 85.8 69.5 93.6 95.1 97.2 97.8 99.2 98.8 99.7 96.2
SVM 96.7 98.5 95.9 97.4 98.5 98.2 96.8 99.2 99.4 97.4

C8 KNN 75.7 77.9 79.4 90.9 63.1 93.4 87.5 87.7 89.4 83.4
SVM 86.8 83.3 82.1 69.7 71.8 75.8 85.4 85.6 89.2 73.4

C9 KNN 99.8 99.8 98.8 99.8 100 99.9 100 99.9 99.9 99.9
SVM 99.8 99.9 99.9 100 99.7 99.9 99.8 100 99.8 100

OA KNN 74.5 71.1 87.6 89.9 80.8 92.4 93.1 93.9 95.4 96.5
SVM 90.5 90.6 89.8 91.7 92.2 92.0 92.5 92.1 94.9 92.7

AA KNN 82.4 80.0 90.6 91.7 85.8 93.8 93.1 94.7 95.3 96.2
SVM 92.7 92.7 93.0 91.1 92.4 91.4 92.5 93.8 95.2 92.9

κ
KNN 67.9 63.9 83.9 86.8 75.5 90.1 90.8 92.0 94.0 95.4
SVM 87.6 87.7 86.7 89.1 89.7 89.5 90.2 89.6 93.2 90.4

(a) RAW (b) NPE (c) LPP (d) RLDE (e) LPNPE (f) SSRLDE (g) SSMRPE (h) SSLDP (i) SLSSPP (j) SLSRPE

(k) RAW (l) NPE (m) LPP (n) RLDE (o) LPNPE (p) SSRLDE (q) SSMRPE (r) SSLDP (s) SLSSPP (t) SLSRPE

Figure 10. Classification maps of different DR methods on the Pavia University dataset: (a–j) are for KNN classifier; and
(k–t) are for SVM classifier.

It is worth mentioning that SLSRPE and SLSSPP are even more outstanding than
the supervised spectral-spatial algorithms, SSRLDE [14] and SSLDP [27], which are two
graph-based methods. For supervised graph-based methods, the supervised information
is usually placed in the adjacency graph. The above implicitly proves the excellence of the
extracted SLS information stored in the adjacency graph of uSLSML.

Specifically, SLSSPP achieves the best classification results in 9 and 10 classes on the
Indian Pines dataset, 5 and 3 classes on the PaviaU dataset, 8 and 10 classes on the Salinas
dataset for KNN and SVM classifiers, respectively. SLSRPE achieves the best classification
results in 9 and 7 classes on the Indian Pines dataset, 4 and 3 classes on the PaviaU dataset,
and 9 and 6 classes on the Salinas dataset for KNN and SVM classifiers, respectively.
From the numerical value of OA, SLSSPP and SLSRPE are more suitable for the KNN
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classifier because these two algorithms are based on distance. In general, SLSSPP and
SLSRPE are more outstanding than other comparison algorithms in this experiment, due to
the full exploration of the spectral-locational-spatial information of HSIs.

(a) RAW (b) NPE (c) LPP (d) RLDE (e) LPNPE (f) SSRLDE (g) SSMRPE (h) SSLDP (i) SLSSPP (j) SLSRPE

(k) RAW (l) NPE (m) LPP (n) RLDE (o) LPNPE (p) SSRLDE (q) SSMRPE (r) SSLDP (s) SLSSPP (t) SLSRPE

Figure 11. Classification maps of different DR methods on the Salinas dataset: (a–j) are for the KNN classifier; and (k–t) are
for SVM classifier.

According to the classification maps in Figures 9–11, SLSSPP and SLSRPE produce
smoother classification maps and less misclassification pixels compared with other DR
methods, especially in the classes that Corn-notill, Soybean-mintill for the Indian Pines
dataset, Asphalt, Meadows, Gravel for the Pavia University dataset, Grapes-untrained, Vinyard-
untrained for the Salinas dataset. These maps illustrate that the comprehensive exploration
of SLS information ignored by other comparison algorithms is very helpful for the low-
dimensional representation of HSIs and it is absorbed by SLSSPP and SLSRPE.

5. Concluding Remarks

In this paper, we propose two unsupervised DR algorithms, SLSSPP and SLSRPE,
to learn the low-dimensional embeddings for HSI classification based on the spectral-
locational-spatial information and manifold learning theory. A wSL datum is generated to
facilitate the extraction of SLS information. A new SLSD is designed to search the proper
nearest neighbors most probably belonging to the class of target samples. Then, SLSSPP
constructs a DR model with an SLS adjacency graph based on SLSD and a cluster centroid
adjacency graph based on wSL data to preserve SLS structure in HSIs, which compresses
the nearest neighbor distance and expands the distance among clustering centroids to
enhance the separability of embedding features. SLSRPE constructs an adjacency graph
based on the redefined reconstruction weights with SLS information, which maintains the
intrinsic manifold structure to extract the discriminant projection. As a result, two uSLSML
methods can extract two discriminative low-dimensional features which can effectively
improve the classification performance.

Extensive experiments on the Indian Pines, PaviaU and Salinas datasets demonstrated
that the points we proposed are effective and the proposed uSLSML algorithms perform
much better than some state-of-the-art DR methods in classification. Compared with LPP,
the average improvements of OA are about 3.50%, 2.44%, 2.05% by the cluster centroid
adjacency graph, 8.24%, 6.55%, 3.09% by SLSD, and 9.04%, 8.67%, 3.26% by SLSSPP on
three datasets, while compared with NPE, the improvements are about 5.31%, 12.25%, and
5.05% by redefined reconstruction weights with SLS information, 4.38%, 3.75%, 1.75% by
SLSD, 9.66%, 13.27%, 5.72% by SLSRPE.

This work just considers the neighbor samples and ignores the target samples in
exploring the local spatial neighborhood information. Thus, our future work will focus on
solving this problem while reducing the computational complexity.
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Abbreviations
The following abbreviations are used in this manuscript:

HSIs hyperspectral images
uDR unsupervised dimensionality reduction
DR dimensionality reduction
ML manifold learning
SLS spectral-locational-spatial
uSLSML unsupervised SLS manifold learning
SLSSPP SLS structure preserving projection
SLSRPE SLS reconstruction preserving embedding
wSL weighted spectral-locational
SLSD spectral-locational-spatial distance
SD spectral distance
SSCD spatial-spectral combined distance
IPD image patches distance
SCD spatial coherence distance
LPP_Cluster LPP with cluster centroid adjacency graph
LPP_SLSD LPP with SLSD
NPE_SLS NPE with the redefined reconstruction weights
NPE_SLSD NPE with SLSD
SVM support vector machines
KNN k nearest neighbors
OA overall accuracy
AA average accuracy
κ Kappa coefficient
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