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Abstract

:

Dimensionality reduction (DR) plays an important role in hyperspectral image (HSI) classification. Unsupervised DR (uDR) is more practical due to the difficulty of obtaining class labels and their scarcity for HSIs. However, many existing uDR algorithms lack the comprehensive exploration of spectral-locational-spatial (SLS) information, which is of great significance for uDR in view of the complex intrinsic structure in HSIs. To address this issue, two uDR methods called SLS structure preserving projection (SLSSPP) and SLS reconstruction preserving embedding (SLSRPE) are proposed. Firstly, to facilitate the extraction of SLS information, a weighted spectral-locational (wSL) datum is generated to break the locality of spatial information extraction. Then, a new SLS distance (SLSD) excavating the SLS relationships among samples is designed to select effective SLS neighbors. In SLSSPP, a new uDR model that includes a SLS adjacency graph based on SLSD and a cluster centroid adjacency graph based on wSL data is proposed, which compresses intraclass samples and approximately separates interclass samples in an unsupervised manner. Meanwhile, in SLSRPE, for preserving the SLS relationship among target pixels and their nearest neighbors, a new SLS reconstruction weight was defined to obtain the more discriminative projection. Experimental results on the Indian Pines, Pavia University and Salinas datasets demonstrate that, through KNN and SVM classifiers with different classification conditions, the classification accuracies of SLSSPP and SLSRPE are approximately   4.88 %  ,   4.15 %  ,   2.51 %  , and   2.30 %  ,   5.31 %  ,   2.41 %   higher than that of the state-of-the-art DR algorithms.
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1. Introduction


Hyperspectral images (HSIs) with high spectral resolution and fine spatial resolution are easily accessible on account of advanced sensor technology, which have been intensively studied and widely applied in many fields, such as environmental monitoring [1], precision agriculture [2], urban planning [3], and Earth observation [4]. HSIs contain a large number of consecutive narrow spectral bands, which provide rich information for classification [5]. However, these bands have a strong correlation that results in massive redundant information in HSIs [6]. In addition, the high dimensionality and limited training samples of HSIs lead to the Hughes phenomenon [7]. Accordingly, dimensionality reduction (DR) plays an important role in addressing the aforementioned issue [8,9].



Many DR methods have been designed to transform the original features into a new low-dimensional space for HSI, most of which can be divided into supervised and unsupervised ones [10,11]. The supervised methods need the support of class labels to obtain the discriminant projection [9]. For instance, linear discriminant analysis (LDA) [12] utilizes the a priori class labels to separate the interclass samples and compact the intraclass samples. Nonparametric weighted feature extraction (NWFE) [13] calculates the weighted means and constructs nonparametric between-class and within-class scatter matrices by setting different weights on each sample. Regularized local discriminant embedding (RLDE) [14] constructs a similar graph of intraclass samples and a penalty graph of interclass samples, while adding two regularized terms to preserve the data diversity and address the singularity with limited training samples. To sum up, supervised methods usually aim to compact the homogeneity of intraclass samples and separate the heterogeneity of interclass samples by means of class labels, which is beneficial to improve the separability and classification performance of low-dimensional embedding. However, in practice, the collection of class labels of HSIs requires field exploration and verification by experts, which is expensive and time-consuming. This leads to the inability to obtain class labels in many cases, especially for HSIs covering land [15]. Therefore, in view of the difficulty of obtaining class labels and their scarcity, a superior unsupervised DR (uDR) method with high separability possesses more practical value.



To explore the intrinsic structure, manifold learning (ML) has been widely applied for the uDR of HSIs, such as isometric mapping (ISOMP) [16], local linear embedding (LLE) [17] and Laplacian eigenmaps (LE) [18]. ISOMP preserves the geodesic distances between points in low-dimensional space. LLE applies local neighbor reconstruction to preserve the local linear relationship. LE constructs a similarity graph for presenting the inherent nonlinear manifold structure. To address the out-of-sample problem of LE and LLE, locality preserving projection (LPP) [19,20] and neighborhood preserving embedding (NPE) [21] are proposed. However, these classic unsupervised ML methods simply consider the spectral information but neglect the spatial information that has been shown to be of great importance for HSIs [22,23].



In recent years, many spectral-spatial DR methods have been proposed to fuse spatial correlation and spectral information for improving the classification performance [24,25]. Among them, two strategies for exploring spectral-spatial information can be summarized. One common strategy is preserving the spatial local pixel neighborhood structures, such as discriminative spectral-spatial margin (DSSM) [26], spatial-domain local pixel NPE (LPNPE) [14] and spatial-spectral local discriminant projection (SSLDP) [27]. DSSM finds spatial-spectral neighbors and preserves the local spatial-spectral relationship of HSIs. LPNPE remains the original spatial neighborhood relationship via minimizing the local pixel neighborhood preserving scatter. SSLDP designs two weighted matrices within neighborhood scatter to reveal the similarity of spatial neighbors. Another widely used strategy is to replace the common spectral distance with spatial or spatial-spectral combined distance, such as image patches distance (IPD) [28] and spatial coherence distance (SCD) [29]. IPD maps the distances between two image patches in HSIs as the spatial-spectral similarity measure. SCD utilizes the spatial coherence to measure the pairwise similarity between two local spatial patches in HSI. More recently, Hong et al. [24] proposed the spatial-spectral combined distance (SSCD) to fuse the spatial structure and spectral information for selecting effective spatial-spectral neighbors. Although these spectral-spatial methods use different ways to reveal the spatial intrinsic structure of HSIs, they still have two drawbacks: (1) the exploration of spatial information is merely based on the fixed spatial neighborhood window (or image patch), which may be constrained by the complex distribution of ground objects in HSIs; (2) they only consider the spectral information of local spatial neighborhood but ignore the importance of location coordinates.



In HSIs, rich information provided by high spectral resolution may increase the intraclass variation and decrease the interclass variation, while leading to lower interpretation accuracies. Moreover, different objects may share similar spectral properties (e.g., similar construction materials for both parking lots and roofs in the city area) which make it impossible to classify HSIs by only using spectral information [22]. In this case, location information, as one of the attributes of pixels, can play an important role in classification. The closer the pixels are in location, the more probable it is that they come from the same class and vice versa, especially for HSIs covering land. The contribution of location coordinates to DR and classification has been demonstrated in several existing studies. Kim et al. [30] directly combined the spatial proximity and the spectral similarity through a kernel PCA framework. Hou et al. [31] constructed the joint spatial-pixel characteristics distance instead of the traditional Euclidean distance. Li et al. [32] proposed a new distance metric by combining the spectral feature and spatial coordinate. However, these methods ignore the contribution of the spectral information in the local spatial neighborhood that can improve the robustness of the classifier against noise pixels, since pixels within a small spatial neighborhood usually present similar spectral characteristics.



In short, the methods mentioned above either neglect the location coordinates or the local spatial neighborhood characteristics and lack a comprehensive exploration of spectral-locational-spatial (SLS) information. To address this issue, two unsupervised SLS manifold learning (uSLSML) methods were proposed for uDR of HSIs, called SLS structure preserving projection (SLSSPP) and SLS reconstruction preserving embedding (SLSRPE). SLSSPP aims to preserve the SLS neighbor structure of data, while SLSRPE is designed to maintain the SLS manifold structure of HSIs.



The main contributions of this paper are listed below:




	
To facilitate the extraction of SLS information, a weighted spectral-locational (wSL) datum is generated with a parameter to balance the spectral and locational effects where the spectral information and location coordinates complement each other. Moreover, to discover SLS relationships among pixels. a new distance measurement, SLS distance (SLSD), which fuses the spectral-locational information and the local spatial neighborhood, is proposed for HSIs, which is excellent for finding the nearest neighbor of the same class.



	
In order to improve the separability of low-dimensional embeddings, SLSSPP constructs a new uDR model that compresses adjacent samples and separates cluster centroids to approximately compress intraclass samples and separate interclass samples without any class labels. The SLS adjacency graph is especially constructed based on SLSD instead of the original spectral distance and the cluster index in centroid adjacency graph is generated based on wSL data, which allows SLS information to be integrated into the projection and improves the identifiability of low-dimensional embeddings.



	
Conventional reconstruction weights are calculated only based on spectral information, which cannot truly reflect the relationship among samples because there is inevitable noise and high dimensionality in HSIs and even different objects may have similar spectral properties. To address this issue, SLSRPE redefines new reconstruction weights based on wSL data, which does not only consider the spectral-locational information but also the local spatial neighborhood, which allows SLS information to be integrated into the projection for achieving more efficient manifold reconstruction.








This paper is organized as follows. In Section 2, we briefly introduce the related works. The proposed SLSD, SLSSPP and SLSRPE are described in detail in Section 3. Section 4 presents the experimental results on three datasets that demonstrate the superiority of the proposed DR methods. The conclusion is presented in Section 5.




2. Related Works


In this section, we briefly review the related works, LPP and NPE. Suppose that an HSI dataset consists of D bands and m pixels, it can be defined as   X =  [  x 1  , … ,  x i  , … ,  x m  ]  ∈  ℜ  D × m    .   l   x i   ∈   1 , 2 , … , c     denotes the class label of   x i  , where c is the number of land cover types. The low-dimensional embedding dataset is defined as   Y =  [  y 1  , … ,  y i  , … ,  y m  ]  ∈  ℜ  d × m    , in which d denotes the number of embedding dimensionality and   d < D  . For the linear DR methods,  Y  is replaced by   Y =   V  T  X   with the projection matrix   V =  ℜ  D × d    .



2.1. Locality Preserving Projection


Locality preserving projection (LPP) is a linear approximation of the nonlinear Laplacian eigenmaps [33]. LPP [19] expects that the low-dimensional representation can preserve the local geometric construction of original high dimensional space. The first step in LPP is to construct an adjacency graph. It aims to make nodes related to each other (nodes connected to adjacency graphs) as close as possible in low-dimensional space. It puts an edge between nodes i and j in adjacency graphs if   x i   and   x j   are close. Then, LPP weights the edges and the weight is defined as


      w  i j   =           exp  ( −     x i  −  x j    t  )  or  1 ,   x i   ∈    N k   (  x j  )  or   x j   ∈    N k   (  x i  )         0 ,  otherwise          



(1)




where    N k    x j     is the k nearest neighbors of   x i   and t is the parameter. The optimization problem of LPP is defined as


      min V   ∑  i , j  m      ∥    1 2   (   y i  −  y j   )    ∥   2   w  i j    =  min V  tr     V  T  XL   X  T  V       



(2)




where   L = D − W   is the Laplacian matrix.  D  is a diagonal matrix whose entries are column (or row, since  W  is symmetric) sums of  W ,    D  i i   =  ∑ j   w  j i    . The optimization problem Equation (2) can be solved by solving the following generalized eigenvalue problem:


     XL   X  T  V = λ XD   X  T  V     



(3)








2.2. Neighborhood Preserving Embedding


Neighborhood preserving embedding is a linear approximation to locally linear embedding (LLE) [34] and aims to preserving the local manifold structure [21]. Similar to LPP, the first step in NPE is to construct an adjacency graph. Then, it computes the weight matrix  W . If there is no edge between the nodes i and j, the weight    w  i j   = 0  . Otherwise,   w  i j    can be calculated by minimizing the following reconstruction error function:


         min  w  i j       ∑  i = 1  m     ∥    x i  −   ∑  j = 1  m     x j   w  i j       ∥  2    ,         s . t .    ∑  j = 1  m    w  i j   = 1 .        



(4)







To preserve the local manifold structure on high-dimensional data, NPE assumes that the low-dimensional embedding   y i   can be approximated by the linear combination of its corresponding neighbors. The optimization problem of NPE is defined as


      min V    ∑  i = 1  m    ∥   y i  −  ∑  j = 1  m    y j   w  i j     ∥  2   =  min V   ∑  i = 1  m    ∥    ∑  j = 1  k    w  i j    (   y i  −  y j   )      ∥  2   =  min V  tr  (   V  T  XM   X  T  V )      



(5)




where   M =   I − W      I − W   T    and   I = diag   1 , … 1    . The optimization problem Equation (5) can be solved by solving the following generalized eigenvalue problem:


     XM   X  T  V = λ X   X  T  V     



(6)









3. Methodology


In this section, we introduce the proposed SLSD and two uSLSML methods, SLSSPP and SLSRPE, in detail. Their flowcharts are shown in Figure 1 and Figure 2. Figure 1 shows the calculation process of SLSSPP, where the first step is to generate wSL data with the location coordinates and spectral band of each pixels, which is the key to break the locality of spatial information extraction. Then, SLSD is computed based on wSL data which are also clustered to generate a clustering index. Then, based on the SLSD, SLSSPP finds k nearest neighbors and computes the weight matrix to construct the SLS adjacency graph. Meanwhile, according to the clustering index, the cluster centroid is computed based on the raw spectral data. On the basis of the cluster centroid, the weight matrix is calculated to construct the cluster centroid adjacency graph. Eventually, on account of the SLS adjacency graph and the cluster centroid adjacency graph, the SLSSPP model was built to obtain an optimal projection matrix based on the raw spectral data.



Figure 2 also shows the calculation process of SLSRPE, whose first step is also to generate wSL data with the location coordinates and spectral band of each pixel. Based on the wSL data, the second step of SLSRPE is constructing the redefined reconstruction error function to compute the redefined reconstruction weight matrix while computing SLSD to find k nearest neighbors. Then, according to the redefined reconstruction weight matrix and k nearest neighbors, the adjacency graph is constructed. Finally, the SLSRPE model is built to obtain an optimal projection matrix which is harvested to transform the original high-dimensional data into low-dimensional space. In the end, the low-dimensional features are classified by classifiers.



3.1. Spectral-Locational-Spatial Distance


In fact, SLSSPP and SLSRPE are two graph embedding methods. For an HSI dataset   X = [  x 1  , … ,  x i  , … ,  x m  ]   with m pixels, its adjacency graph  G  have m nodes. In general, we put an edge between nodes i and j in  G  if   x i   and   x j   are close (that is   x i   is the nearest neighbor of   x j  , or   x j   is the nearest neighbor of   x i  .). As a rule, we expect that the samples of the same class are connected and put edges when constructing  G  since the connected samples are usually required to gather or maintain a manifold structure. However, if there is a mass of connected samples belonging to different classes, the classification performance of low-dimensional features will inevitably be reduced. Accordingly, how to explore the relationship among samples and find the nearest neighbor of the same class is the key to unsupervised manifold learning. In this subsection, we propose a distance calculation method, SLSD, to measure the similarity among samples.



With the recognition of the importance of spatial information in HSI, many spectral-spatial DR methods design different spectral-spatial distance to replace the raw spectral distance but ignore the location information of pixels. Figure 3 shows the comparison of spectral bands of pixels with different locational relationships. A and B display the spectral curves of pixels that are in the same class and close to each other in location, while their spectral bands are quite different. At the same time, although the two pixels in C or D are of different kinds and located far away, their spectral curves are almost identical. In both cases, it is difficult to determine the correct pixel relationship between them based on spectral information alone. In fact, location information can alleviate this problem well since pixels that are closer to each other in location are more likely to belong to the same class, especially for HSIs covering land.



In this paper, we regard the location information as one of the attributes of pixels and utilize it to break the locality of spatial information extraction and capture more spatial information. For an HSI dataset   X =  [  x 1  , … ,  x i  , … ,  x m  ]  ∈  ℜ  D × m    , the location information can be denoted as   C =  [  c 1  , … ,  c i  , … ,  c m  ]  ∈  ℜ  2 × m     where    c i  =   [  p i  ,  q i  ]  T    is the coordinate of the pixel   x i  . To fuse the spectral and locational information of pixels in HSIs, a spectral-locational dataset is constructed as follows:


    X  C  =     C     X     =       c 1  , … ,  c i  , … ,  c m         x 1  , … ,  x i  , … ,  x m       ∈  ℜ  ( D + 2 ) × m   .  



(7)







However, due to the difference of image size and the complexity of homogeneous domain distribution in HSIs, this simple combination of spectrum and location is not reasonable. In order to balance the effect of location and spectrum on the relationships among samples, the weighted spectral-locational (wSL) data     X  C  =  [     x  C   1  , … ,     x  C   i  , … ,     x  C   m  ]    are redefined as


    X  C  =       β C         1 − β   X      =      β  c 1  , … , β  c m          1 − β    x 1  , … ,   1 − β    x m        



(8)




and       x  C   i  =      β  c i          1 − β    x i        .  β  is a spectral-locational trade-off parameter. It needs to be emphasized that    X  C   is only used to calculate the relationship among pixels, not the DR data. There is therefore no need to discuss the rationality of the physical meaning of    X  C  . In addition,    X  C   with location also breaks the locality of spatial information extraction.



We assume the local neighborhood space of      x  C   i   is   Ω (     x  C   i  )   with    s 2  = 1 , … , r   in a   s × s   spatial window, which is formulated as


     Ω  (     x  C   i  )  =       x  C   i    ( p , q )  |      p ∈ [  p i  −   s − 1  2  ,  p i  +   s − 1  2  ]       q ∈ [  q i  −   s − 1  2  ,  q i  +   s − 1  2  ]       .     



(9)







Actually, the primary responsibility of SLSD is to find the effective nearest neighbors. To search for highly credible neighbors, SLSD uses a local neighborhood space instead of a central sample. Accordingly, the SLSD of the sample   x i   and   x j   is defined as


      d SLSD     x i  ,  x j    = d   Ω  (     x  C   i  )  ,     x  C   j    ,     



(10)




where   x i   is one of the neighbors of the target sample   x j  .   d   Ω  (     x  C   i  )  ,     x  C   j      is the distance between   Ω (     x  C   i  )   and      x  C   j   and defined as follows:


     d   Ω  (     x  C   i  )  ,     x  C   j    =     ∑  r = 1   s 2      t  i r         x  C   j  −     x  C    i r          ∑  r = 1   s 2     t  i r     ,     x  C    i r   ∈ Ω  (     x  C   i  )  ,     



(11)




in which   t  i r    is calculated by


      t  i r   = exp   − γ      x C   i  −    x C    i r       ,    x C    i r   ∈ Ω  (    x C   i  )  .     



(12)




 γ  is a constant which is empirically set to 0.2 in the experiments. The window parameter s is the size of the local spatial neighborhood   Ω (     x  C   i  )  .     x C    i r    is a pixel in   Ω (     x  C   i  )   surrounding     x C   i  .   t g  i r    is the weight of      x  C    i r   . The more similar     x C    i r    is to     x C   i  , the larger the value of   t  i r   , and the more important the distance between     x C    i r    and     x C   j   is. The spectral-locational trade-off parameter  β  can adjust the influence of location information on distance. When   β = 0  , SLSD is the spectral-spatial distance only based on spectral domain. When   β = 1  , SLSD is the locational-spatial distance only based on coordinate. By choosing the appropriate  β  value, we can excavate the more realistic relationships among the samples as much as possible. Furthermore, this allows the neighbor samples to be more likely to fall into the same class as the target sample. To sum up, SLSD not only extracts local spatial neighborhood information, but also explores global spatial relations in HSIs based on location information.



To illustrate the effectiveness of SLSD, we compared it with the SD and SSCD proposed in [24]. SD is the simple spectral distance and SSCD is a spectral-spatial distance without location information. Table 1 shows the number of samples with different classes in the top 10 nearest neighbors of samples, which includes all samples in the three datasets. For a fair comparison, SSCD and SLSD has the same spatial window parameters for the three datasets. From Table 1, the number of samples are presented as: SLSD < SSCD < SD. This means that not only the local spatial neighborhood but also the location information are both quite valuable for the exploration of the relationship among the samples. In addition, Table 1 also shows that SLSD rarely has different classes of samples in the top 10 nearest neighbors. This means that the neighbors obtained by SLSD mostly belong to the same class as the target sample, which indicates that SLSD is excellent for correctly determining the pixel relationship in HSIs.




3.2. Spectral-Locational-Spatial Structure Preserving Projection


The core of many supervised DR algorithms to obtain discriminant projections is to shorten the intraclass distance and expand the interclass distance in low-dimensional space [14,27]. In the case of sufficient class labels, this way can indeed achieve excellent DR for classification. However, it is quite difficult to obtain class labels for HSIs covering land. In this paper, SLSSPP was proposed to approach this concept without any class labels. On account of SLSD, SLSSPP can achieve the goal of shortening the intra-class distance in an unsupervised manner, since most of the nearest neighbors belong to the same class as the target sample. Meanwhile, in SLSSPP, expanding the interclass distance is simulated by maximizing the distance among the cluster centroids based on wSL data.



With SLSD, the SLS adjacency graph     G  SLS  =   X ,   W  SLS      can be constructed, where  X  is the vertex of the graph and    W  SLS   is the weight matrix. In graph    G  SLS  , if   x j   belongs to the k nearest neighbors    N k SLS   (  x i  )    of   x i   based on SLSD, an edge should be connected between them. In this paper, if    x i  ∈  N k SLS   (  x j  )    or    x j  ∈  N k SLS   (  x i  )   , the weight of each edge is defined as


      w  i j  SLS  = exp  (  −    d SLSD       x i  ,  x j     2    2    t i   2     )  ,     



(13)




where:


      t i  =  1 k   ∑   x j  ∈  N k SLS   (  x i  )      d SLSD     x i  ,  x j     .     



(14)







Otherwise,    w  i j  SLS  = 0  .    d SLSD   (  x i  ,  x j  )    is the SLSD between   x i   and   x j  . Due to the superior performance of SLSD in representing the relationship among samples in HSIs,    W  SLS   based on SLSD can make the low-dimensional space keep the more real structure of the raw space. Actually,   k < < m  , therefore    W  SLS   is a sparse matrix.



In order to shorten the distance among each sample and its k nearest neighbors in embedding space, the optimization problem is defined as


          min V    ∑  i , j  m      ∥     1 2    (    V  T   x i  −   V  T   x j   )     ∥  2    w  i j  SLS   =   ∑ i m      V  T   x i   D  i i  SLS   x  i  T  V  −   ∑  i , j  m      V  T   x i   w  i j  SLS   x  j  T  V         =  t r      V  T  X     D  SLS  −   W  SLS      X  T  V          =  t r      V  T  X   L   S L S     X  T  V       ,     



(15)




in which    W  SLS   is a symmetric matrix and    D  SLS   is a diagonal matrix whose entries are column or row sums of    W  SLS  ,    D  i i  SLS  =  ∑ j   w  i j  SLS   .     L  SLS  =   D  SLS  −   W  SLS    is the Laplacian matrix. In addition, it can be further evolved to:


      min V    V  T  X   L  SLS    X  T  V .     



(16)







To indirectly expand the interclass distance, we maximize the distance among cluster centroids. Table 2 shows the number of heterogeneous samples in the same cluster when three datasets are divided into 35 clusters. Compared with the raw spectral datum  X , the wSL datum    X  C   has better clustering performance. This means that    X  C   should be used to compute the cluster index that guide the low-dimensional features. To facilitate the implementation and calculation, we adopt K-means algorithm to cluster    X  C  . Assuming    X  C   is divided into   k m   clusters, the index   F = [  f 1  , … ,  f i  , … ,  f  k m   ]   of   k m   clusters can be obtained as follows:


     F = Kmeans (   X  C  , k m ) ,     



(17)




where   Kmeans ( )   is the K-means algorithm and   f i   is the sample index belonging to the i-th cluster. According to the index F, the cluster centroid   U = [  u 1  , … ,  u i  , … ,  u  k m   ]   of  X  is calculated as


      u i  =  ∑  j ∈  f i     x j  .     



(18)







The optimization problem of cluster centroid distance maximization is defined as


         max V     ∑  i , j   k m      ∥    1 2       V  T   u i  −   V  T   u j     ∥  2    w  i j  C  =   ∑  i , j   k m       V  T   u i   D  i i  C   u j T   V −   ∑  i , j   k m       V  T   u i   w  i j  c   u j T   V        = t r     V  T  U     D  C  −   W  C      U  T  V          = t r     V  T  U   L  C    U  T  V          



(19)







Here,    W  C   is the weight matrix of the cluster centroid, which is defined as


      w  i j  c  =   ( 1 + exp  ( −    d E    (   u i  ,  u i   )  2    2    t i   2    )  )   − 1   ,  t i  =  1  k m    ∑ j  k m     d E     u i  ,  u j     ,  u i  =  ∑  j ∈  f i     x j  .     



(20)




   d E   ( )    is the Euclidean distance function. The definition of    W  C   means that the greater the distance between cluster centroid   u i r   and   u j r  , the greater the weight   w  i j  c  , and thus the greater the degree of separation between cluster i and j in low-dimensional space, and vice versa.    W  C   is a symmetric matrix and    D  i i  C  =  ∑ j   w  i j  c   . This optimization problem can be further evolved to:


      max V    V  T  U   L  C    U  T  V     



(21)







Aiming to simultaneously minimize the distance among each sample and its k nearest neighbors and maximize the distance among cluster centroids to obtain the discriminant low-dimensional representations, the DR model of SLSSPP is defined as


     J  ( V )  = max     V  T  U   L  C    U  T  V     V  T  X   L  SLS    X  T  V   .     



(22)







As a general rule, this equals to the following optimization program:


          max V     V  T  U   L  C    U  T  V        s .  t .    V  T  X   L  SLS    X  T  V = Z         



(23)




where  Z  is a non-zero constant matrix. Based on the Lagrangian multipliers, the optimization solution can be obtained through the following generalized eigenvalue problem:


      U   L  C    U  T  V  = λ X   L  SLS    X  T  V ⇒   ( X   L  SLS    X  T  )   − 1    U   L  C    U  T  V  = λ V     



(24)




where  λ  is the eigenvalue of Equation (24). With the eigenvectors    v 1  ,  v 2  , … ,  v d    corresponding to the d largest eigenvalues, the optimal projection matrix can be represented as


     V =  [  v 1  ,  v 2  , … ,  v d  ]  ∈  ℜ  D × d       



(25)







Finally, the low-dimensional embedding dataset can be given by   Y =   V  T  X ∈  ℜ  d × m    .



The detailed procedure of SLSSPP is given in Algorithm 1. In general, SLSSPP has two contributions: (1) it takes advantage of SLSD to search the nearest neighbor and construct an adjacency graph; and (2) a cluster centroid adjacency graph based on wSL data is constructed. In order to demonstrate their superiority in dimensionality reduction, the comparative experiments based on three datasets are carried out and the classification overall accuracies (OAs) are shown in Table 3 where   n i   is the number of training samples per class used for the classifiers. The LPP_Cluster represents the combination of LPP and the cluster centroid adjacency graph, while LPP_SLSD represents that traditional LPP uses SLSD to explore the nearest neighbor and construct adjacency graph. From Table 3, both LPP_Cluster and LPP_SLSD outperform traditional LPP under different training conditions of the two classifiers, which means that both designs in SLSSPP are valid. In fact, based on these two designs, the SLSSPP model in Equation (22) can indirectly reduce the intraclass distance and increase the interclass distance in an unsupervised manner, which not only preserves the neighborhood structure of HSIs, but also effectively enhances the separability of low-dimensional embeddings. Table 3 also shows that SLSSPP has better classification performance than LPP_Cluster and LPP_SLSD, which indicates that the proposed SLSSPP is quite meaningful.






	Algorithm 1 SLSSPP



	Input: A D-dimensional HSI dataset   X =  [  x 1  , … ,  x i  , … ,  x m  ]  ∈  ℜ  D × m    , nearest neighbors number   k > 0  , spatial window size   s > 0  , embedding dimension d  ( d < D )   and trade-off parameter   0 ≤ β ≤ 1  .

	1:

	
Obtain location information  C  and generate wSL data    X  C   as Equation (8).




	2:

	
Compute the SLSD    d SLSD   (  x i  ,  x j  )    among samples by Equations (10)–(12).




	3:

	
Find the k nearest neighbors    N k SLS   (  x i  )    of each samples   x i   based on SLSD.




	4:

	
Compute the weight matrix    W  SLS   in adjacency graph by Equations (13) and (14).




	5:

	
Compute the cluster centroid index F by Equation (17) and the cluster centroid  U  by Equation (18).




	6:

	
Compute the weight matrix of the cluster centroid    W  C   by Equation (20).




	7:

	
Construct the DR model   J ( V )   as Equation (22) and solve the generalized eigenvalue problem as Equation (24).




	8:

	
Obtain the projection matrix with the d largest eigenvalues corresponding eigenvectors:   V =  [  v 1  , … ,  v d  ]  ∈  ℜ  D × d    .






Output:  Y =   V  T  X ∈  ℜ  d × m    









3.3. Spectral-Locational-Spatial Reconstruction Preserving Embedding


From Section 2.2, NPE constructs the reconstruction error function simply based on the spectral information, which is unreliable not only due to the spectral redundancy and noise in HSIs, but also because different objects may share the same spectral properties. To address this problem, SLSRPE redefines an SLS reconstruction error function to compute the SLS reconstruction weights, which is based on the wSL data instead of the raw spectral data. In addition, the SLS reconstruction weights also consider the contribution of local spatial neighborhood.



Based on SLSD, the adjacency graph     G  RPE  =   X ,   W  RPE      is constructed.    W  RPE   is the reconstruction weight matrix. The superiority of SLSD in finding the nearest neighbor proves that SLS information is quite beneficial to characterize the relationship among samples. As a result, SLS information should be used to construct the reconstruction error function and calculate the reconstruction weight. In fact, the closer the SLS relationship is, the more probable it is that the selected neighbor has the same class as the target sample, and the greater its reconstruction weight will be. In this way, the reconstruction error function for the optimal weights is redefined as follows:


           min  w  i j  RPE     ∑  i = 1  m     ∥     ∑  j = 1  k     w  i j  RPE      ∑  r = 1   s 2      t  j r    (      x  C   i  −     x  C    j r    )       ∑  r = 1   s 2     t  j r         ∥  2         s . t .    ∑  j = 1  m     w  i j  RPE  = 1        s . t .   w  i j   R P E   = 0 ,   ∀    x j  ∉  N k SLS   (  x i  )       ,     



(26)




in which       x  C    j r    ∈  Ω  (     x  C   j  )    is the local spatial neighbor of      x  C   j   and    t  j r   = exp  (  − 2  d SLSD    (   x j  ,  x  j r    )  2   )   .    d SLSD   (   x j  ,  x  j r    )    is the SLSD between   x j   and   x  j r   . The more similar   x  j r    is to   x j  , the greater the contribution   x  j r    makes to the relationship between   x j   and   x i  , which improves the robustness of reconstructed weights to noisy samples. By solving the reconstruction error function, we obtain the reconstructed weight matrix    W  RPE  .



Supposing that   x  i j    is the jth nearest neighbor of   x i   based on SLSD, k is the number of the selected nearest neighbors,      x  C    i j r    is the rth local spatial neighbor of      x  C    i j   . For the sake of explanation:


      h  i j   =     ∑  r = 1   s 2      t  i j r    (      x  C   i  −     x  C    i j r    )       ∑  r = 1   s 2     t  i j r         



(27)




indicates the SLS combined measure between   x i   and   x  i j   . The reconstruction error function can be simplified to:


     min  ∑  i = 1  m      ∥   ∑  j = 1  k    w  i j  RPE   h  i j       ∥  2   =  min  ∑  i = 1  m     (  w i RPE  )  T   z i   w i RPE       



(28)




where    z i  =   [  h  i 1   , … ,  h  i j   , … ,  h  i k   ]  T   [  h  i 1   , … ,  h  i j   , … ,  h  i k   ]    and    w i RPE  =  [  w  i 1  RPE  , … ,  w  i j  RPE  , … ,  w  i k  RPE  ]   . Then, the reconstruction error function can be expressed as the following optimization problem:


          min  w  i j  RPE     ∑  i = 1  m      (  w i RPE  )  T   z i   w i RPE         s . t .      ∑  j = 1  k     w  i j  RPE  = 1          



(29)




with the Lagrange multiplier method,   w  i j  RPE   is given as follows:


      w  i j  RPE  =     ∑  l = 1  k     (  z i  j l   )   − 1       ∑  p , q = 1  k     (  z i  p q   )   − 1         



(30)




where    z i  j l   =   (  h  i j   )  T   h  i l     and    z i  p q   =   (  h  i p   )  T   h  i q    .   w  i j  RPE   is the reconstruction coefficient of   x j   to   x i  . In fact,   k < < m  , so the reconstruction matrix    W  RPE   is a sparse matrix. According to    W  RPE  , SLSRPE maintains the reconstructed relationship between the target sample and the nearest neighbors in a low-dimensional space. The DR model of SLSRPE is defined as


           min V    ∑ i m     |     V  T   x i  −   ∑ j m     w  i j  RPE    V  T   x j      ∥  2         s . t .      ∑ i m      V  T   x i  = 0 ,        1 m   V   V  T  = I       ,     



(31)




which can be reduced as


          min V    ∑ i m     ∥     V  T   x i  −   ∑ j m     w  i j  RPE    V  T   x j      ∥  2   =  min V     ∑ i m     ∥    ∑ j m     w  i j  RPE   (   V  T   x i  −   V  T   x j  )    ∥  2          =  min V   t r   (   V  T  X  ( I −   W  RPE  )    ( I −   W  RPE  )  T    X  T  V )         =  min V    V  T  X   M  RPE    X  T  V     ,     



(32)




where     M  RPE  =  ( I −   W  RPE  )    ( I −   W  RPE  )  T    and   I = diag [ 1 , … , 1 ]  . Equation (32) can be solved by the Lagrange multiplier, and it can be transformed into the following form:


     X   M  RPE    X  T  V = λ X   X  T  V ⇒   ( X   X  T  )   − 1   X   M  RPE    X  T  V = λ V ,     



(33)




where  λ  is the eigenvalue of Equation (33). With the eigenvectors    v 1  ,  v 2  , … ,  v d    corresponding to the d smallest eigenvalues, the optimal projection matrix can be represented by   V =  [  v 1  ,  v 2  , … ,  v d  ]  ∈  ℜ  D × d    . Finally, the low-dimensional embeddings can be given by   Y =   V  T  X ∈  ℜ  d × m    .



The detailed procedure of the presented SLSRPE approach is given in Algorithm 2. In contrast to traditional NPE, SLSRPE also has two contributions: (1) it takes advantage of SLSD to search the nearest neighbor, (2) it redefines the reconstruction error function to calculate the reconstruction weight matrix. Both of these include an integrated exploration of spectral-locational-spatial information. To demonstrate their effectiveness separately, we conducted experiments on three datasets, and the experimental results are shown in Table 4. NPE_SLS is used to test our proposed reconstruction weights that contain SLS information, while NPE_SLSD indicates that traditional NPE uses SLSD to search the nearest neighbors. From Table 4, both NPE_SLS and NPE_SLSD are superior to traditional NPE. Even more, NPE_SLS has advantages over NPE_SLSD. This means that the two points proposed in SLSRPE are meaningful, and that the reconstruction weights we redefine to include the SLS information are valuable. Accordingly, SLSRPE explores reconstruction relationships among samples not only in spectral domain, but also based on the location and local spatial neighborhood. SLSRPE makes full use of spectral-locational-spatial information of HSIs to obtain discriminating features to improve the classification performance. In fact, Table 4 also shows that SLSRPE is superior to NPE_SLS and NPE_SLSD.






	Algorithm 2 SLSRPE



	Input: A D-dimensional HSI dataset   X =  [  x 1  , … ,  x i  , … ,  x m  ]  ∈  ℜ  D × m    , nearest neighbors number   k > 0  , spatial window size   s > 0  , embedding dimension d  ( d < D )   and trade-off parameter   0 ≤ β ≤ 1  .

	1:

	
Obtain location information  C  and generate wSL data    X  C   as Equation (8).




	2:

	
Compute the SLSD    d SLSD   (  x i  ,  x j  )    by Equations (10)–(12).




	3:

	
Find the k nearest neighbors    N k  S L S    (  x i  )    of each samples   x i   based on SLSD.




	4:

	
Construct the reconstruction error function as Equation (26).




	5:

	
Compute the reconstruction weight   w  i j  RPE   by Equation (30).




	6:

	
Solve the generalized eigenvalue problem as Equation (33).




	7:

	
Obtain the projection matrix with the d smallest eigenvalues corresponding eigenvectors:   V =  [  v 1  , … ,  v d  ]  ∈  ℜ  D × d    .






Output:   Y =   V  T  X ∈  ℜ  d × m    










4. Experiments


4.1. Description of Datasets


The first dataset covers the University of Pavia, Northern Italy, which was acquired by ROSIS sensor and called the PaviaU Dataset. Its spectral range is 0.4–0.82  μ m. After removing 12 noise bands from the original dataset with 115 spectral bands, 103 bands were employed in this paper. The spatial resolution is 1.3 m and each band has   610 × 340   pixels. This dataset consists of nine ground-truth classes with 42,776 pixels and a background with 164,624 pixels. Figure 4a,b show the color image and the labeled image with nine classes.



The second dataset, Salinas Dataset, covering Salinas Vally, CA, was acquired by AVIRIS sensor in 1998, whose spatial resolution is 3.7 m. There are 224 original bands with spectral ranging from 0.4 to 2.45  μ m. Each band has   512 × 217   pixels including 16 ground-truth classes with 56,975 pixels and a background with 54,129 pixels. The color image and the labeled image with 16 classes are shown in Figure 4c,d.



The third dataset, Indian Pines Dataset, covering the Indian Pines region, northwest Indiana, USA, was acquired by AVIRIS sensor in 1992. The spatial resolution of this image is 20 m. It has 220 original spectral bands in the 0.4–2.5  μ m spectral region and each band contains   145 × 145   pixels. Owing to the noise and water absorption, 104–108, 150–163 and 220 spectral bands were abandoned and the remaining 200 bands are used in this dataset. This dataset contains background with 10,776 pixels and 16 ground-truth classes with 10,249 pixels. The number of pixels in each class ranges from 20 to 2455. The color image and the labeled image with 16 classes are shown in Figure 5.




4.2. Experimental Setup


In order to verify the superiority of two uSLSML methods, seven state-of-art DR algorithms were selected for comparison, including NPE [21], LPP [20], regularized local discriminant embedding (RLDE) [14], LPNPE [14], spatial and spectral RLDE (SSRLDE) [14], SSMRPE [24], and SSLDP [27]. The former three methods are spectral-based DR methods, while the latter four approaches make use of both spatial and spectral information for the DR of HSIs. In addition, the raw spectral feature of HSIs is also used for comparison. SSRLDE has single-scale and multi-scale versions, and we select its single-scale version because SLSSPP and SLSRPE are two single-scale models. SSMRPE [24] proposes a new SSCD to construct the spatial-spectral adjacency graph to reveal the intrinsic manifold structure of HSIs. Among them, RLDE, SSRLDE [14], and SSLDP [27] are three supervised methods and require class labels to implement DR, while others are unsupervised.



Two classifiers, support vector machines (SVMs) and k nearest neighbors (KNNs), are applied to the classification of low-dimensional features. In this paper, we utilized the one nearest neighbor and LibSVM toolbox with a radial basis function. In all experiments, we randomly divided each HSI dataset into training and test sets. It should be emphasized that the training set used for training the DR model and classifier in supervised algorithm was only used to train the classifier in unsupervised algorithm. For unsupervised methods in all experiments, all samples in an HSI dataset are utilized to train the DR model. The test set was projected into the low-dimensional space for classification. The classification overall accuracy (OA), the average accuracy (AA), and the Kappa coefficient  κ  are used to evaluate classification performance.



To achieve good classification results, we optimized the parameters of various algorithms. For LPP [20] and NPE [21], the number of nearest neighbors k was set to 7 on Indian Pines dataset, 25 on PaviaU and Salinas datasets. We chose the optimal parameters of their source literature for other comparison algorithms. For RLDE, LPNPE and SSRLDE [14], the number of intraclass and interclass neighbors are both 5, the heat kernel parameter is 0.5, the parameters  α ,  β  and neighborhood scale are set to 0.1, 0.1, 11 on the Indian Pines and Salinas datasets, and 0.2, 0.3, 7 on the PaviaU dataset. For SSMRPE [24], the spatial window size and neighbor number are set to 7, 10 on Indian Pines dataset, 13, 20 on PaviaU dataset, 15, 15 on Salinas dataset. For SSLDP [27], the intraclass and interclass neighbor number, spatial neighborhood scale and trade-off parameter are set to 7, 63, 15, 0.6 on the Indian Pines and Salinas datasets, and 6, 66, 19, 0.4 on the PaviaU dataset. To reduce the influence of noise in HSIs, the weighted mean filtering with the   5 × 5   window is used to preprocess the pixels. In addition, each experiment in this paper is repeated 10 times in each condition for reducing the experimental random error.




4.3. Parameters Analysis


The two proposed uSLSML methods both have three parameters: nearest neighbor number k, spatial window size s and spectral-locational trade-off parameter  β . In order to analyze the influence of three parameters on the DR results, we conduct parameter tuning experiments on three HSI datasets. Thirty samples in each class are randomly selected as the training set and the remaining samples are the testing set for two classifiers. For ease of analysis, Figure 6 and Figure 7 show the classification OAs with different parameters on Indian Pines and PaviaU datasets. In experiments, the parameter values are set to:   k = { 1 , 2 , … , 30 }  ,   s = { 1 , 3 , … , 15 }  ,   β = { 0 , 0.05 , 0.1 , … , 1 }  . The fixed parameters of SLSSPP and SLSRPE are set to   k = 15  ,   s = 5  ,   β = 0.4   on Indian Pines dataset,   k = 20  ,   s = 3  ,   β = 0.01   on PaviaU dataset to analyze the other two parameters.



We first analyzed the effect of SLSSPP parameters on classification. From Figure 6 and Figure 7, the classification OA increases slightly with the increase in k and s when  β  is fixed, while the OA significantly increases with the increase in  β  when k and s are fixed, respectively, on two datasets. In particular, the change in  β  developing from nothing brings a significant improvement to the classification. This proves that the location information is quite beneficial for DR for classification. However, the OAs have not changed much as  β  continues to grow, because the value of location information is much larger than that of spectral information due to the normalization of spectral bands.



For the proposed SLSRPE method, the OAs increase as s increases on two datasets when  β  or k is fixed, especially for KNN classifiers, since the large spatial neighborhood is beneficial to characterize the spatial relationship between samples. This means that the spatial neighborhood added in reconstruction weights of SLSRPE is helpful for DR for classification. At the same time, the OAs are improved with the increase in  β  on two datasets on account of the importance of location information to DR for classification. It is worth noting that compared with KNN, SVM has stronger robustness to parameters in view of the advantages of SVM model training.



In fact, when k is greater than 15, the influence of k on uSLSML tends to be stable. For a new HSI datum, k can be valued between 15 and 30. The setting of s depends on the smoothness of the image. If the homogeneous pixels of the HSI image are relatively clustered, s can take a larger value and vice versa. Actually, the further increase in s after increasing to 5 does not significantly improve uSLSML. Therefore, in order to ensure the low computational complexity and the effectiveness of dimension reduction, s can be set to   5 ∼ 15  . The value of  β  is obviously influenced by the size of the image. If the image size is large, the value of  β  should be small, and vice versa.  β  usually ranges from 0.01 to 1. In the following experiment, the parameters of SLSSPP are set as   k = 28  ,   s = 11  ,   β = 0.7   for the Indian Pines dataset,   k = 25  ,   s = 13  ,   β = 0.05   for the PaviaU dataset,   k = 26  ,   s = 15  ,   β = 0.03   for the Salinas dataset. The parameters of SLSRPE are set as   k = 9  ,   s = 9  ,   β = 1   for the Indian Pines dataset,   k = 26  ,   s = 15  ,   β = 0.02   for the PaviaU dataset, and   k = 14  ,   s = 15  ,   β = 0.03   for the Salinas dataset.




4.4. Dimension Analysis


In order to analyze the impact of the embedding dimension d of each DR algorithm on classification performance, thirty samples from each class are randomly selected as the training set, and the rest as the test set. If the number of samples in a class is less than 60, half of the samples in this class are used as the training set. Figure 8 gives the OAs with a different embedding dimension for various DR algorithms on three datasets. The embedding dimension d is tuned from 2 to 40 with an interval of 2.



As can be seen from Figure 8, the OAs in the low-dimensional space are mostly higher than those in the raw space. This proves that DR is necessary for classification. Meanwhile, the OAs of each algorithm gradually increases with the increase in embedding dimension, because the higher-dimensional embedding features contain more discriminative information that is helpful for classification. However, as the dimension continues to grow, the OAs tends to be stable or even slightly decreased. The reason is that the discriminative information of the embedding space is gradually approaching saturation and the Hughes phenomenon occurs due to fewer training samples for classifiers. In addition, it is obvious that the classification performance of the DR algorithm fusing spatial and spectral information, LPNPE, SSRLDE [14], SSMRPE [24], SSLDP [27], SLSSPP and SLSRPE, is generally higher than that of the spectral-based algorithm, LPP [20], NPE [21] and RLDE [14], which effectively testifies that spatial information is beneficial to DR for classification. It is worth noting that compared with other DR algorithms, in this experiment, SLSSPP and SLSRPE achieve the best classification performance in almost all embedding dimensions of the three datasets, because SLSSPP and SLSRPE take full advantage of spectral-locational-spatial information in HSIs for DR. In order to ensure each algorithm achieves optimal performance, we set the embedding dimension   d = 30   on three datasets in the following experiments.




4.5. Classification Result


In practical applications, the classification accuracy of the DR algorithm is sensitive to the size of training set. To explore the classification performance of DR algorithms under different training conditions, we randomly selected   n i   (   n i  = 5 , 10 , 20 , 30 , 40 , 60  ) samples from each class for training, and the others for testing. If the number of samples in a class is less than   2  n i   , half of samples in this class are randomly selected for training. Table 5 shows the classification OAs of the embedding features of different DR algorithms on three datasets using KNN and SVM classifiers under different training conditions.



As shown in Table 5, for three datasets, the larger the number of training samples is, the higher the OA value is, since a large number of training samples with class labels can enable a supervised DR algorithm and classifier to obtain more discriminative information. In the comparison algorithms, the spectral-spatial algorithms, LPNPE, SSRLDE [14], SSMRPE [24], and SSLDP [27] are superior to the spectral-based algorithms, including LPP [20], NPE [21], and RLDE [14]. The supervised spectral-spatial algorithms, SSRLDE [14] and SSLDP [27], are better than the unsupervised spectral-spatial algorithms, including LPNPE [14]. These demonstrate once again that label and spatial information are advantageous to DR for classification.



As mentioned in Section 1, obtaining class labels is time-consuming, expensive, and difficult. Thus, the sensitivity of the classification performance of the DR algorithm to the number of training samples with class labels can also be used to evaluate the DR algorithm. Without doubt, we expected that the classification of a DR algorithm can achieve good performance with fewer training samples with class labels. From Table 5, it is as expected that when    n i  = 5  , SLSRPE on Indian Pines and PaviaU datasets, and SLSSPP on the Salinas dataset achieve the best and satisfactory classification performance in this experiment. In addition, the proposed uSLSML achieved better classification results than other algorithms under almost all training conditions of this experiment. Because uSLSML presents a new SLSD to extract SLS information to choose the effective neighbor and constructs an SLS adjacency graph and a cluster centroid adjacency graph for SLSSPP to enhance the separability of embedded features, it also redefines the reconstruction weights for SLSRPE to mine the SLS reconstruction relationships among samples to discover the intrinsic manifold structure of HSIs.



In order to explore the classification accuracy of different DR algorithms on each class, we classified the embedding features of different DR algorithms with the KNN and SVM classifier on three datasets. Table 6, Table 7 and Table 8 listed the classification accuracy of each class, OA, AA, and Kappa coefficient. The visualized classification maps of different approaches on three datasets are displayed in Figure 9, Figure 10 and Figure 11.



From Table 6, Table 7 and Table 8, the spatial-spectral combined methods are completely superior to spectral-based methods and supervised spatial-spectral algorithms slightly outperform unsupervised spatial-spectral algorithms. This means that compared with the label information, the spatial information is more conducive to improving the representation of embedded features in this experiment. SLSRPE and SSMRPE [24] are two improved versions of NPE [21], both of which are dedicated to maintaining the local manifold structure of the data. Table 6, Table 7 and Table 8 show that their improvement is effective, and SLSRPE is more outstanding than SSMRPE [24]. The proposed SLSD can find more neighbor samples from the same class than the SSCD of the SSMRPE [24], and more importantly, SLSRPE adds the SLS information to the reconstruction weights to reveal the intrinsic manifold structure of HSIs. This experiment also testifies that SLSSPP is far superior to LPP, which is attributed to the proposed SLSD and the new DR model with an SLS adjacency graph and a cluster centroid adjacency graph.



It is worth mentioning that SLSRPE and SLSSPP are even more outstanding than the supervised spectral-spatial algorithms, SSRLDE [14] and SSLDP [27], which are two graph-based methods. For supervised graph-based methods, the supervised information is usually placed in the adjacency graph. The above implicitly proves the excellence of the extracted SLS information stored in the adjacency graph of uSLSML.



Specifically, SLSSPP achieves the best classification results in 9 and 10 classes on the Indian Pines dataset, 5 and 3 classes on the PaviaU dataset, 8 and 10 classes on the Salinas dataset for KNN and SVM classifiers, respectively. SLSRPE achieves the best classification results in 9 and 7 classes on the Indian Pines dataset, 4 and 3 classes on the PaviaU dataset, and 9 and 6 classes on the Salinas dataset for KNN and SVM classifiers, respectively. From the numerical value of OA, SLSSPP and SLSRPE are more suitable for the KNN classifier because these two algorithms are based on distance. In general, SLSSPP and SLSRPE are more outstanding than other comparison algorithms in this experiment, due to the full exploration of the spectral-locational-spatial information of HSIs.



According to the classification maps in Figure 9, Figure 10 and Figure 11, SLSSPP and SLSRPE produce smoother classification maps and less misclassification pixels compared with other DR methods, especially in the classes that Corn-notill, Soybean-mintill for the Indian Pines dataset, Asphalt, Meadows, Gravel for the Pavia University dataset, Grapes-untrained, Vinyard-untrained for the Salinas dataset. These maps illustrate that the comprehensive exploration of SLS information ignored by other comparison algorithms is very helpful for the low-dimensional representation of HSIs and it is absorbed by SLSSPP and SLSRPE.





5. Concluding Remarks


In this paper, we propose two unsupervised DR algorithms, SLSSPP and SLSRPE, to learn the low-dimensional embeddings for HSI classification based on the spectral-locational-spatial information and manifold learning theory. A wSL datum is generated to facilitate the extraction of SLS information. A new SLSD is designed to search the proper nearest neighbors most probably belonging to the class of target samples. Then, SLSSPP constructs a DR model with an SLS adjacency graph based on SLSD and a cluster centroid adjacency graph based on wSL data to preserve SLS structure in HSIs, which compresses the nearest neighbor distance and expands the distance among clustering centroids to enhance the separability of embedding features. SLSRPE constructs an adjacency graph based on the redefined reconstruction weights with SLS information, which maintains the intrinsic manifold structure to extract the discriminant projection. As a result, two uSLSML methods can extract two discriminative low-dimensional features which can effectively improve the classification performance.



Extensive experiments on the Indian Pines, PaviaU and Salinas datasets demonstrated that the points we proposed are effective and the proposed uSLSML algorithms perform much better than some state-of-the-art DR methods in classification. Compared with LPP, the average improvements of OA are about 3.50%, 2.44%, 2.05% by the cluster centroid adjacency graph, 8.24%, 6.55%, 3.09% by SLSD, and 9.04%, 8.67%, 3.26% by SLSSPP on three datasets, while compared with NPE, the improvements are about 5.31%, 12.25%, and 5.05% by redefined reconstruction weights with SLS information, 4.38%, 3.75%, 1.75% by SLSD, 9.66%, 13.27%, 5.72% by SLSRPE.



This work just considers the neighbor samples and ignores the target samples in exploring the local spatial neighborhood information. Thus, our future work will focus on solving this problem while reducing the computational complexity.
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Abbreviations


The following abbreviations are used in this manuscript:



	HSIs
	hyperspectral images



	uDR
	unsupervised dimensionality reduction



	DR
	dimensionality reduction



	ML
	manifold learning



	SLS
	spectral-locational-spatial



	uSLSML
	unsupervised SLS manifold learning



	SLSSPP
	SLS structure preserving projection



	SLSRPE
	SLS reconstruction preserving embedding



	wSL
	weighted spectral-locational



	SLSD
	spectral-locational-spatial distance



	SD
	spectral distance



	SSCD
	spatial-spectral combined distance



	IPD
	image patches distance



	SCD
	spatial coherence distance



	LPP_Cluster
	LPP with cluster centroid adjacency graph



	LPP_SLSD
	LPP with SLSD



	NPE_SLS
	NPE with the redefined reconstruction weights



	NPE_SLSD
	NPE with SLSD



	SVM
	support vector machines



	KNN
	k nearest neighbors



	OA
	overall accuracy



	AA
	average accuracy



	 κ 
	Kappa coefficient
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Figure 1. Flowchart of the proposed SLSSPP method. 
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Figure 2. Flowchart of the proposed SLSRPE method. 
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Figure 3. Comparison of spectral bands of pixels with different locational relationships (A–D). 
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Figure 4. (a,b) are Pavia University dataset; (c,d) are Salinas dataset. 
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Figure 5. Indian Pines dataset. 
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Figure 6. The classification OAs with respect to different parameters of SLSSPP and SLSRPE on Indian Pines dataset from two classifiers, KNN and SVM. 
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Figure 7. The classification OAs with respect to different parameters of SLSSPP and SLSRPE on Indian Pines dataset from two classifiers, KNN and SVM. 
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Figure 8. The classification OAs with different embedding dimensions d for various DR algorithms on three datasets. 
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Figure 9. Classification maps of different DR methods on Indian Pines dataset: (a–j) are for KNN classifier; and (k–t) are for SVM classifier. 
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Figure 10. Classification maps of different DR methods on the Pavia University dataset: (a–j) are for KNN classifier; and (k–t) are for SVM classifier. 
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Figure 11. Classification maps of different DR methods on the Salinas dataset: (a–j) are for the KNN classifier; and (k–t) are for SVM classifier. 
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Table 1. The number of samples with different classes in the top 10 nearest neighbors of all class samples in the three datasets.
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Indian Pines

	
Pavia University

	
Salinas




	
Class

	
SD

	
SSCD

	
SLSD

	
SD

	
SSCD

	
SLSD

	
SD

	
SSCD

	
SLSD






	
C1

	
10

	
10

	
0

	
1120

	
390

	
0

	
0

	
0

	
0




	
C2

	
310

	
170

	
10

	
210

	
20

	
0

	
0

	
10

	
0




	
C3

	
220

	
130

	
0

	
1160

	
270

	
0

	
0

	
0

	
0




	
C4

	
140

	
100

	
0

	
720

	
2260

	
0

	
120

	
130

	
0




	
C5

	
20

	
20

	
0

	
0

	
180

	
10

	
90

	
90

	
40




	
C6

	
0

	
20

	
0

	
810

	
220

	
0

	
0

	
150

	
250




	
C7

	
0

	
0

	
0

	
620

	
100

	
0

	
30

	
40

	
0




	
C8

	
0

	
0

	
0

	
1520

	
410

	
0

	
2400

	
740

	
0




	
C9

	
0

	
0

	
0

	
0

	
70

	
0

	
0

	
0

	
10




	
C10

	
50

	
260

	
0

	

	

	

	
80

	
150

	
0




	
C11

	
310

	
160

	
20

	

	

	

	
10

	
90

	
80




	
C12

	
250

	
110

	
0

	

	

	

	
0

	
10

	
10




	
C13

	
10

	
10

	
0

	

	

	

	
40

	
20

	
0




	
C14

	
70

	
10

	
0

	

	

	

	
30

	
330

	
130




	
C15

	
40

	
0

	
0

	

	

	

	
2220

	
830

	
80




	
C16

	
0

	
60

	
0

	

	

	

	
0

	
0

	
20




	
total

	
1430

	
1060

	
30

	
6160

	
3920

	
10

	
5020

	
2590

	
620
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Table 2. The number of heterogeneous samples in the same cluster when three datasets are divided into 35 clusters.
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	Indian Pines
	Pavia University
	Salinas





	Spectral-locational data
	2063
	4055
	3333



	Raw spectral data
	4054
	9936
	8164
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Table 3. Classification OAs of the embedding features (dim = 30) of different algorithms under different training conditions of the two classifiers.
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Dataset

	
    n i    

	
5

	
10

	
20

	
30

	
40

	
60




	

	
Classifiers

	
KNN

	
SVM

	
KNN

	
SVM

	
KNN

	
SVM

	
KNN

	
SVM

	
KNN

	
SVM

	
KNN

	
SVM






	
Indian

	
LPP

	
69.4

	
72.2

	
76.8

	
80.0

	
85.3

	
86.7

	
88.2

	
90.3

	
90.2

	
92.3

	
92.9

	
93.7




	
LPP_Cluster

	
73.6

	
76.4

	
83.1

	
84.2

	
89.4

	
91.5

	
91.3

	
92.8

	
93.2

	
94.1

	
95.0

	
95.5




	
LPP_SLSD

	
82.1

	
82.9

	
89.9

	
89.6

	
94.4

	
94.5

	
96.3

	
96.4

	
97.8

	
96.8

	
98.3

	
97.9




	
SLSSPP

	
84.1

	
82.7

	
93.1

	
92.0

	
96.0

	
95.2

	
96.7

	
96.1

	
98.0

	
96.5

	
98.3

	
97.8




	
Pavia U

	
LPP

	
67.2

	
68.6

	
74.3

	
81.0

	
83.6

	
88.6

	
86.9

	
91.5

	
88.8

	
93.7

	
90.9

	
94.3




	
LPP_Cluster

	
68.6

	
79.5

	
77.7

	
88.8

	
83.6

	
92.6

	
85.6

	
93.7

	
87.7

	
95.4

	
89.5

	
96.0




	
LPP_SLSD

	
82.6

	
72.9

	
91.1

	
82.8

	
93.5

	
91.3

	
95.4

	
94.0

	
96.6

	
94.7

	
97.0

	
96.2




	
SLSSPP

	
82.6

	
86.7

	
90.6

	
89.6

	
93.9

	
93.4

	
95.8

	
95.3

	
96.3

	
95.3

	
97.5

	
96.5




	
Salinas

	
LPP

	
89.2

	
88.3

	
91.1

	
90.8

	
92.8

	
93.1

	
94.0

	
94.1

	
94.8

	
94.7

	
95.2

	
95.6




	
LPP_Cluster

	
91.7

	
92.6

	
93.2

	
93.5

	
95.2

	
95.1

	
95.7

	
96.1

	
95.8

	
95.5

	
96.7

	
97.3




	
LPP_SLSD

	
93.6

	
92.8

	
94.7

	
93.9

	
96.6

	
95.8

	
97.3

	
96.1

	
97.8

	
96.3

	
98.3

	
97.6




	
SLSSPP

	
93.5

	
94.6

	
94.7

	
94.4

	
96.7

	
95.7

	
97.1

	
96.1

	
97.7

	
97.0

	
98.3

	
97.1
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Table 4. Classification OAs of the embedding features (dim = 30) of different algorithms under different training conditions of the two classifiers.
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Dataset

	
    n i    

	
5

	
10

	
20

	
30

	
40

	
60




	

	
Classifiers

	
KNN

	
SVM

	
KNN

	
SVM

	
KNN

	
SVM

	
KNN

	
SVM

	
KNN

	
SVM

	
KNN

	
SVM






	
Indian

	
NPE

	
69.4

	
72.6

	
77.3

	
79.9

	
85.2

	
86.3

	
88.3

	
89.9

	
90.0

	
91.9

	
93.0

	
93.7




	
NPE_SLS

	
78.9

	
78.9

	
85.7

	
86.6

	
90.5

	
91.8

	
93.1

	
93.2

	
95.0

	
95.1

	
96.2

	
96.3




	
NPE_SLSD

	
77.2

	
78.4

	
83.8

	
87.1

	
89.4

	
91.0

	
91.6

	
92.7

	
93.4

	
94.5

	
95.1

	
95.9




	
SLSRPE

	
88.1

	
86.4

	
92.0

	
91.5

	
97.3

	
94.1

	
97.1

	
95.5

	
98.4

	
96.8

	
98.9

	
97.4




	
Pavia U

	
NPE

	
58.2

	
66.5

	
63.7

	
79.6

	
73.4

	
86.8

	
76.7

	
90.2

	
80.8

	
93.3

	
83.8

	
93.9




	
NPE_SLS

	
85.6

	
74.4

	
91.4

	
83.3

	
94.6

	
89.0

	
96.0

	
93.5

	
96.5

	
95.9

	
97.2

	
96.5




	
NPE_SLSD

	
64.4

	
72.3

	
72.6

	
80.9

	
78.2

	
88.9

	
82.0

	
92.7

	
84.3

	
93.4

	
87.0

	
95.2




	
SLSRPE

	
87.7

	
77.4

	
92.4

	
85.9

	
96.2

	
90.7

	
96.3

	
93.6

	
96.9

	
95.1

	
97.7

	
96.3




	
Salinas

	
NPE

	
81.6

	
85.5

	
85.2

	
89.9

	
87.3

	
91.3

	
88.0

	
92.9

	
88.5

	
94.4

	
90.1

	
95.0




	
NPE_SLS

	
90.8

	
89.0

	
93.3

	
92.4

	
94.4

	
94.1

	
96.1

	
95.0

	
96.4

	
95.3

	
97.3

	
96.3




	
NPE_SLSD

	
83.8

	
89.9

	
86.5

	
91.3

	
89.9

	
92.9

	
89.4

	
95.1

	
89.9

	
95.5

	
90.4

	
96.1




	
SLSRPE

	
91.4

	
90.2

	
95.9

	
92.3

	
96.1

	
93.9

	
97.0

	
94.7

	
97.3

	
95.1

	
98.1

	
96.4
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Table 5. Classification OAs of the embedding features (dim = 30) of different DR algorithms on three datasets using KNN and SVM classifiers under different training conditions.
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Classifier

	
KNN

	

	
SVM




	
Dataset

	
   n i   

	
5

	
10

	
20

	
30

	
40

	
60

	
5

	
10

	
20

	
30

	
40

	
60






	
Indian

	
RAW

	
54.3

	
64.3

	
72.5

	
77.2

	
79.7

	
83.4

	
58.2

	
70.6

	
81.2

	
85.4

	
88.4

	
91.3




	
NPE

	
69.4

	
77.3

	
85.2

	
88.3

	
90.0

	
93.0

	
72.6

	
79.9

	
86.3

	
89.9

	
91.9

	
93.7




	
LPP

	
69.4

	
76.8

	
85.3

	
88.2

	
90.2

	
92.9

	
72.2

	
80.0

	
86.7

	
90.3

	
92.3

	
93.7




	
RLDE

	
68.4

	
78.4

	
86.5

	
89.4

	
91.4

	
93.4

	
67.8

	
78.3

	
85.9

	
90.0

	
91.6

	
93.9




	
LPNPE

	
77.7

	
85.0

	
92.4

	
95.1

	
95.4

	
96.9

	
80.5

	
87.1

	
92.6

	
94.7

	
96.1

	
96.9




	
SSRLDE

	
78.4

	
83.6

	
88.2

	
91.3

	
93.3

	
95.0

	
78.3

	
82.9

	
88.6

	
91.0

	
92.7

	
95.1




	
SSMRPE

	
72.7

	
81.8

	
88.0

	
90.4

	
92.9

	
95.0

	
73.9

	
81.8

	
88.7

	
91.7

	
93.0

	
94.9




	
SSLDP

	
72.0

	
81.8

	
88.4

	
93.0

	
94.2

	
96.2

	
73.8

	
81.2

	
86.9

	
91.7

	
92.5

	
94.5




	
SLSSPP

	
84.1

	
90.6

	
96.0

	
96.7

	
98.0

	
98.3

	
82.7

	
92.0

	
95.2

	
96.1

	
96.5

	
97.8




	
SLSRPE

	
88.1

	
92.0

	
97.3

	
97.1

	
98.4

	
98.9

	
86.4

	
91.5

	
94.1

	
95.5

	
96.8

	
97.4




	
Pavia U

	
RAW

	
59.7

	
64.7

	
71.6

	
75.0

	
77.0

	
80.9

	
70.0

	
77.0

	
84.6

	
89.2

	
92.0

	
93.1




	
NPE

	
58.2

	
63.7

	
73.4

	
76.7

	
80.8

	
83.8

	
66.5

	
79.6

	
86.8

	
90.2

	
93.3

	
93.9




	
LPP

	
67.2

	
74.3

	
83.6

	
86.9

	
88.8

	
90.9

	
68.6

	
81.0

	
88.6

	
91.5

	
93.7

	
94.3




	
RLDE

	
71.6

	
79.5

	
84.9

	
86.9

	
88.5

	
90.4

	
69.4

	
77.8

	
86.3

	
88.6

	
91.4

	
93.8




	
LPNPE

	
61.3

	
71.6

	
77.5

	
81.7

	
84.2

	
86.8

	
66.7

	
80.4

	
88.0

	
90.2

	
92.6

	
93.3




	
SSRLDE

	
78.1

	
84.7

	
89.3

	
91.3

	
93.1

	
94.6

	
69.4

	
78.6

	
86.1

	
89.2

	
90.9

	
93.0




	
SSMRPE

	
82.0

	
86.0

	
90.5

	
93.6

	
94.3

	
95.9

	
74.8

	
82.6

	
88.4

	
91.1

	
92.8

	
95.2




	
SSLDP

	
70.5

	
83.1

	
87.7

	
91.3

	
86.6

	
92.9

	
69.9

	
80.0

	
86.8

	
90.1

	
91.5

	
94.1




	
SLSSPP

	
82.6

	
90.6

	
93.9

	
95.8

	
96.3

	
97.6

	
86.7

	
89.6

	
93.4

	
95.3

	
95.3

	
96.5




	
SLSRPE

	
87.7

	
92.4

	
96.2

	
96.3

	
96.9

	
97.7

	
77.4

	
85.9

	
90.7

	
93.6

	
95.1

	
96.3




	
Salinas

	
RAW

	
83.3

	
86.2

	
88.8

	
89.1

	
90.4

	
91.0

	
86.0

	
88.6

	
90.9

	
92.4

	
93.1

	
94.2




	
NPE

	
81.6

	
85.2

	
87.3

	
88.0

	
88.5

	
90.1

	
85.5

	
89.9

	
91.3

	
92.9

	
94.4

	
95.0




	
LPP

	
89.2

	
91.1

	
92.8

	
94.0

	
94.8

	
95.2

	
88.4

	
90.8

	
93.1

	
94.1

	
94.7

	
95.6




	
RLDE

	
88.8

	
90.0

	
92.7

	
94.3

	
94.6

	
95.7

	
84.7

	
86.5

	
89.3

	
90.9

	
91.9

	
92.8




	
LPNPE

	
86.1

	
88.5

	
90.4

	
91.6

	
92.1

	
93.2

	
85.3

	
88.2

	
90.5

	
91.8

	
92.5

	
93.7




	
SSRLDE

	
86.9

	
92.3

	
89.7

	
95.8

	
96.3

	
97.0

	
80.5

	
88.8

	
90.8

	
92.4

	
93.1

	
94.3




	
SSMRPE

	
89.6

	
91.3

	
93.5

	
94.1

	
94.9

	
96.1

	
89.3

	
91.6

	
94.0

	
94.5

	
95.1

	
95.9




	
SSLDP

	
90.6

	
92.8

	
92.8

	
95.1

	
95.6

	
96.0

	
89.5

	
90.0

	
91.9

	
92.4

	
92.7

	
93.5




	
SLSSPP

	
93.5

	
94.7

	
96.7

	
97.1

	
97.7

	
98.3

	
94.6

	
94.4

	
95.7

	
96.1

	
97.0

	
97.1




	
SLSRPE

	
91.4

	
95.9

	
96.1

	
97.0

	
97.3

	
98.1

	
90.2

	
923

	
93.9

	
94.7

	
95.1

	
96.4
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Table 6. Classification accuracy of the embedding features on each class with SVM and KNN classifiers in Salinas dataset.
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Class

	
Classifier

	
RAW

	
NPE

	
LPP

	
RLDE

	
LPNPE

	
SSRLDE

	
SSMRPE

	
SSLDP

	
SLSSPP

	
SLSRPE






	
C1

	
KNN

	
99.1

	
99.8

	
99.1

	
99.9

	
100

	
100

	
100

	
100

	
100

	
100




	
SVM

	
99.5

	
99.7

	
99.8

	
100

	
100

	
100

	
100

	
100

	
99.6

	
100




	
C2

	
KNN

	
97.8

	
99.3

	
98.5

	
99.9

	
100

	
100

	
100

	
100

	
100

	
100




	
SVM

	
99.5

	
100

	
99.8

	
100

	
100

	
100

	
100

	
100

	
100

	
100




	
C3

	
KNN

	
96.8

	
93.9

	
99.7

	
100

	
100

	
100

	
100

	
100

	
100

	
100




	
SVM

	
96.8

	
100

	
100

	
100

	
100

	
100

	
100

	
100

	
100

	
100




	
C4

	
KNN

	
99.3

	
98.4

	
99.2

	
98.5

	
98.8

	
97.9

	
98.4

	
98.9

	
99.7

	
99.3




	
SVM

	
99.5

	
98.8

	
99.5

	
98.8

	
98.5

	
96.3

	
98.5

	
99.3

	
99.1

	
99.4




	
C5

	
KNN

	
96.0

	
96.0

	
96.6

	
99.5

	
92.4

	
99.9

	
99.8

	
99.2

	
98.9

	
99.2




	
SVM

	
96.6

	
99.3

	
99.6

	
97.7

	
96.2

	
99.8

	
98.9

	
99.2

	
99.0

	
99.7




	
C6

	
KNN

	
99.3

	
99.2

	
99.7

	
99.8

	
100

	
100

	
100

	
100

	
100

	
99.9




	
SVM

	
99.8

	
99.9

	
99.8

	
98.7

	
99.7

	
99.6

	
100

	
100

	
100

	
99.5




	
C7

	
KNN

	
99.6

	
99.1

	
98.6

	
99.6

	
100

	
99.9

	
99.9

	
100

	
100

	
99.9




	
SVM

	
100

	
99.4

	
99.9

	
99.6

	
99.9

	
99.9

	
99.8

	
99.9

	
100

	
100




	
C8

	
KNN

	
69.6

	
74.9

	
72.2

	
85.0

	
76.6

	
89.5

	
84.8

	
85.6

	
86.5

	
93.6




	
SVM

	
83.5

	
81.3

	
80.2

	
86.0

	
79.6

	
81.9

	
76.2

	
84.6

	
90.8

	
87.8




	
C9

	
KNN

	
98.2

	
97.6

	
98.3

	
100

	
99.9

	
100

	
100

	
100

	
100

	
100




	
SVM

	
97.1

	
100

	
100

	
100

	
100

	
98.0

	
100

	
100

	
100

	
99.9




	
C10

	
KNN

	
91.7

	
84.6

	
95.6

	
97.8

	
95.8

	
95.4

	
97.8

	
97.8

	
99.1

	
97.0




	
SVM

	
91.8

	
95.0

	
99.4

	
96.0

	
97.4

	
93.8

	
96.8

	
96.2

	
99.0

	
97.7




	
C11

	
KNN

	
97.4

	
97.1

	
97.9

	
100

	
99.7

	
99.8

	
100

	
100

	
99.6

	
100




	
SVM

	
94.0

	
99.8

	
100

	
99.3

	
100

	
99.6

	
98.9

	
100

	
99.8

	
99.1




	
C12

	
KNN

	
98.1

	
100

	
100

	
100

	
99.9

	
100

	
100

	
100

	
100

	
100




	
SVM

	
99.9

	
99.9

	
100

	
100

	
100

	
99.9

	
99.9

	
100

	
100

	
100




	
C13

	
KNN

	
99.7

	
98.4

	
98.6

	
99.9

	
99.5

	
100

	
99.9

	
100

	
99.9

	
100




	
SVM

	
99.8

	
99.1

	
99.9

	
99.5

	
98.4

	
99.7

	
99.7

	
99.3

	
99.1

	
98.1




	
C14

	
KNN

	
93.8

	
93.1

	
95.1

	
97.6

	
97.3

	
91.5

	
95.9

	
98.9

	
98.6

	
99.1




	
SVM

	
92.4

	
99.3

	
97.9

	
99.3

	
97.6

	
95.5

	
96.5

	
99.8

	
98.7

	
99.6




	
C15

	
KNN

	
74.0

	
74.1

	
80.1

	
89.5

	
77.7

	
94.8

	
92.7

	
89.5

	
92.2

	
91.0




	
SVM

	
83.0

	
83.8

	
91.3

	
66.0

	
76.4

	
80.3

	
76.2

	
91.9

	
90.5

	
85.4




	
C16

	
KNN

	
97.6

	
97.2

	
99.2

	
98.4

	
99.4

	
99.2

	
98.6

	
99.5

	
100

	
98.6




	
SVM

	
98.4

	
98.6

	
99.5

	
97.3

	
99.0

	
98.6

	
98.0

	
99.0

	
99.0

	
99.3




	
OA

	
KNN

	
88.5

	
89.1

	
90.4

	
95.1

	
91.3

	
96.6

	
95.5

	
95.3

	
95.9

	
97.1




	
SVM

	
92.7

	
93.4

	
94.5

	
91.8

	
92.0

	
92.7

	
91.3

	
95.3

	
96.6

	
95.2




	
AA

	
KNN

	
94.2

	
93.9

	
95.5

	
97.8

	
96.1

	
98.0

	
98.0

	
98.1

	
98.4

	
98.6




	
SVM

	
95.7

	
97.1

	
97.9

	
96.1

	
96.4

	
96.4

	
96.2

	
98.1

	
98.4

	
97.8




	
  κ  

	
KNN

	
87.2

	
87.9

	
89.3

	
94.6

	
90.4

	
96.2

	
95.0

	
94.8

	
95.5

	
96.8




	
SVM

	
91.9

	
92.7

	
93.9

	
90.9

	
91.1

	
91.8

	
90.4

	
94.8

	
96.2

	
94.6
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Table 7. Classification accuracy of the embedding features for each class with SVM and KNN classifiers in Indian Pines dataset.
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Class

	
Classifier

	
RAW

	
NPE

	
LPP

	
RLDE

	
LPNPE

	
SSRLDE

	
SSMRPE

	
SSLDP

	
SLSSPP

	
SLSRPE






	
C1

	
KNN

	
95.7

	
100

	
100

	
100

	
100

	
100

	
100

	
100

	
100

	
100




	
SVM

	
100

	
100

	
100

	
100

	
100

	
100

	
100

	
100

	
100

	
100




	
C2

	
KNN

	
66.5

	
67.0

	
78.9

	
85.8

	
83.9

	
91.6

	
78.8

	
93.4

	
94.8

	
96.3




	
SVM

	
85.8

	
89.2

	
93.6

	
91.1

	
94.3

	
93.3

	
88.6

	
94.8

	
95.4

	
94.5




	
C3

	
KNN

	
76.3

	
73.1

	
82.3

	
91.0

	
96.8

	
92.8

	
89.4

	
92.1

	
96.0

	
98.6




	
SVM

	
87.3

	
93.4

	
92.1

	
89.6

	
97.4

	
86.8

	
94.9

	
87.8

	
97.1

	
98.5




	
C4

	
KNN

	
88.9

	
96.1

	
98.1

	
99.0

	
99.0

	
97.6

	
97.1

	
100

	
99.5

	
99.5




	
SVM

	
90.8

	
97.1

	
97.1

	
99.5

	
99.0

	
100

	
94.2

	
100

	
98.1

	
99.5




	
C5

	
KNN

	
89.8

	
90.7

	
95.4

	
99.1

	
93.8

	
99.8

	
93.2

	
96.0

	
99.3

	
96.0




	
SVM

	
94.5

	
96.0

	
94.7

	
97.8

	
98.2

	
98.5

	
94.7

	
96.5

	
98.1

	
95.4




	
C6

	
KNN

	
96.7

	
97.7

	
97.9

	
99.1

	
99.9

	
98.7

	
99.4

	
99.7

	
100

	
100




	
SVM

	
99.3

	
100

	
100

	
98.0

	
100

	
99.6

	
100

	
99.1

	
99.1

	
99.6




	
C7

	
KNN

	
100

	
100

	
100

	
100

	
100

	
100

	
100

	
100

	
100

	
100




	
SVM

	
100

	
100

	
100

	
100

	
100

	
100

	
100

	
100

	
100

	
100




	
C8

	
KNN

	
93.8

	
94.0

	
96.9

	
99.6

	
100

	
98.9

	
97.8

	
100

	
100

	
100




	
SVM

	
93.8

	
100

	
100

	
99.3

	
100

	
98.0

	
100

	
100

	
99.6

	
100




	
C9

	
KNN

	
100

	
100

	
100

	
100

	
100

	
100

	
100

	
100

	
100

	
100




	
SVM

	
100

	
100

	
100

	
100

	
100

	
100

	
100

	
100

	
100

	
100




	
C10

	
KNN

	
83.0

	
82.6

	
91.3

	
90.6

	
95.3

	
91.8

	
90.8

	
92.6

	
97.1

	
94.4




	
SVM

	
80.3

	
93.1

	
88.6

	
89.0

	
96.6

	
92.0

	
91.9

	
87.9

	
96.6

	
89.2




	
C11

	
KNN

	
65.1

	
70.6

	
75.5

	
87.1

	
91.2

	
89.3

	
85.3

	
93.0

	
94.4

	
97.5




	
SVM

	
73.2

	
67.8

	
83.3

	
82.6

	
80.6

	
85.2

	
74.4

	
87.3

	
91.5

	
93.2




	
C12

	
KNN

	
67.7

	
75.7

	
72.6

	
92.5

	
95.9

	
93.6

	
92.4

	
93.3

	
98.9

	
92.7




	
SVM

	
82.4

	
96.4

	
94.5

	
95.7

	
98.6

	
96.3

	
96.4

	
93.3

	
94.1

	
97.2




	
C13

	
KNN

	
99.4

	
97.7

	
98.3

	
98.9

	
99.4

	
98.3

	
99.4

	
99.4

	
100

	
100




	
SVM

	
97.7

	
98.9

	
100

	
99.4

	
99.4

	
99.4

	
99.4

	
99.4

	
100

	
100




	
C14

	
KNN

	
91.7

	
95.0

	
90.4

	
95.1

	
99.8

	
93.8

	
98.7

	
96.1

	
99.7

	
98.7




	
SVM

	
93.3

	
93.9

	
93.8

	
96.4

	
97.5

	
97.5

	
95.6

	
96.6

	
98.5

	
98.4




	
C15

	
KNN

	
82.9

	
81.5

	
93.3

	
99.2

	
97.8

	
99.4

	
88.2

	
100

	
99.7

	
100




	
SVM

	
91.0

	
95.5

	
98.9

	
99.2

	
99.7

	
96.3

	
97.5

	
99.7

	
99.7

	
99.4




	
C16

	
KNN

	
100

	
100

	
100

	
100

	
100

	
100

	
100

	
100

	
100

	
100




	
SVM

	
100

	
100

	
100

	
100

	
100

	
100

	
100

	
100

	
100

	
100




	
OA

	
KNN

	
78.3

	
80.5

	
85.1

	
91.9

	
94.2

	
93.4

	
90.0

	
94.9

	
97.1

	
97.4




	
SVM

	
85.4

	
87.9

	
91.8

	
91.5

	
93.3

	
92.7

	
89.6

	
92.9

	
96.0

	
95.7




	
AA

	
KNN

	
87.3

	
88.9

	
91.9

	
96.1

	
97.1

	
96.6

	
94.4

	
97.2

	
98.7

	
98.4




	
SVM

	
91.8

	
95.1

	
96.0

	
96.1

	
97.6

	
96.4

	
95.5

	
96.4

	
98.1

	
97.8




	
  κ  

	
KNN

	
75.5

	
77.9

	
83.1

	
90.8

	
93.3

	
92.4

	
88.7

	
94.2

	
96.7

	
97.0




	
SVM

	
83.4

	
86.3

	
90.6

	
90.3

	
92.4

	
91.6

	
88.2

	
91.9

	
95.4

	
95.1
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Table 8. Classification accuracy of the embedding features on each class with SVM and KNN classifiers in the Pavia University dataset.
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Class

	
Classifier

	
RAW

	
NPE

	
LPP

	
RLDE

	
LPNPE

	
SSRLDE

	
SSMRPE

	
SSLDP

	
SLSSPP

	
SLSRPE






	
C1

	
KNN

	
73.4

	
74.2

	
83.3

	
90.8

	
70.3

	
92.7

	
84.9

	
88.0

	
92.8

	
96.0




	
SVM

	
87.0

	
94.5

	
94.4

	
91.5

	
90.7

	
91.9

	
90.8

	
91.4

	
88.7

	
91.4




	
C2

	
KNN

	
67.2

	
61.1

	
86.9

	
88.2

	
80.4

	
91.1

	
96.1

	
95.3

	
97.2

	
98.1




	
SVM

	
89.6

	
88.4

	
86.0

	
95.6

	
94.8

	
95.6

	
94.4

	
92.0

	
97.1

	
94.8




	
C3

	
KNN

	
72.1

	
75.1

	
88.9

	
74.2

	
81.5

	
79.4

	
80.4

	
89.1

	
88.9

	
95.7




	
SVM

	
85.5

	
81.6

	
90.0

	
80.3

	
86.9

	
76.9

	
75.2

	
89.5

	
91.0

	
88.5




	
C4

	
KNN

	
86.1

	
87.5

	
94.0

	
93.9

	
87.5

	
95.0

	
92.0

	
94.1

	
90.0

	
96.5




	
SVM

	
94.2

	
93.3

	
94.3

	
93.7

	
94.2

	
93.6

	
96.1

	
93.3

	
94.0

	
92.8




	
C5

	
KNN

	
99.8

	
99.7

	
100

	
100

	
100

	
100

	
100

	
99.8

	
100

	
100




	
SVM

	
99.6

	
100

	
100

	
99.9

	
100

	
99.9

	
99.9

	
100

	
100

	
100




	
C6

	
KNN

	
82.1

	
75.1

	
90.7

	
92.2

	
92.3

	
95.1

	
97.7

	
99.4

	
99.8

	
99.9




	
SVM

	
94.9

	
94.9

	
94.0

	
92.0

	
94.9

	
90.9

	
93.8

	
92.8

	
97.1

	
98.0




	
C7

	
KNN

	
85.8

	
69.5

	
93.6

	
95.1

	
97.2

	
97.8

	
99.2

	
98.8

	
99.7

	
96.2




	
SVM

	
96.7

	
98.5

	
95.9

	
97.4

	
98.5

	
98.2

	
96.8

	
99.2

	
99.4

	
97.4




	
C8

	
KNN

	
75.7

	
77.9

	
79.4

	
90.9

	
63.1

	
93.4

	
87.5

	
87.7

	
89.4

	
83.4




	
SVM

	
86.8

	
83.3

	
82.1

	
69.7

	
71.8

	
75.8

	
85.4

	
85.6

	
89.2

	
73.4




	
C9

	
KNN

	
99.8

	
99.8

	
98.8

	
99.8

	
100

	
99.9

	
100

	
99.9

	
99.9

	
99.9




	
SVM

	
99.8

	
99.9

	
99.9

	
100

	
99.7

	
99.9

	
99.8

	
100

	
99.8

	
100




	
OA

	
KNN

	
74.5

	
71.1

	
87.6

	
89.9

	
80.8

	
92.4

	
93.1

	
93.9

	
95.4

	
96.5




	
SVM

	
90.5

	
90.6

	
89.8

	
91.7

	
92.2

	
92.0

	
92.5

	
92.1

	
94.9

	
92.7




	
AA

	
KNN

	
82.4

	
80.0

	
90.6

	
91.7

	
85.8

	
93.8

	
93.1

	
94.7

	
95.3

	
96.2




	
SVM

	
92.7

	
92.7

	
93.0

	
91.1

	
92.4

	
91.4

	
92.5

	
93.8

	
95.2

	
92.9




	
  κ  

	
KNN

	
67.9

	
63.9

	
83.9

	
86.8

	
75.5

	
90.1

	
90.8

	
92.0

	
94.0

	
95.4




	
SVM

	
87.6

	
87.7

	
86.7

	
89.1

	
89.7

	
89.5

	
90.2

	
89.6

	
93.2

	
90.4

















	
	
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations.











© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).






media/file13.jpg
C

(a) SLSSPP_KNN





media/file4.png
Find the

. . Compute
Location coordinates )= P
— ) S | et
C(?nstruct SLSRPE
wSL data |— adjacency |— model
Spectral samples Compute graph

weight
matrix

Construct
| / / / I_ reconstruction
error function






media/file18.png
(k) RAW (1) NPE () LPP (n) RLDE (o) LPNPE (p)SRLDE (q) SSMRPE (r)SSLDP (s) 'SLSSPP (t) SLSRPE





media/file21.jpg
XV X
A





media/file3.jpg





media/file22.png
4444444444

@ RAW (b)NPE (c)LPP (d)RLDE (e)LPNPE (f)SSRLDE (g) SSMRPE (h) SSLDP (i) SLSSPP  (j) SLSRPE

4444444343

(k) RAW ()NPE  (m)LPP (n)RLDE (o) LPNPE (p)SSRLDE (q)SSMRPE (r) SSLDP (s) SLSSPP (t) SLSRPE






media/file19.jpg
(DSSKLDE (g SSMRPE (WSSLDP ()SLSSTP () SLSRPE

PP (0) LPNPE (@SSMRPE (5)SSLDP (s)SLSSPP (1) SLSRPE





media/file7.jpg
(a)Colorimage  (b)Ground Trthmap  (¢)Colorimage  (d) Ground Truth map





media/file10.png
Bl Alfalfa

BBl Corn-notill

BBl Corn-mintill
B Corn

5] Grass-pasture
87 Grass-trees

71 Grass-pasture-mowed
Hay-windrowed
@7 Oats
Soybean-notill
Soybean-mintill
Soybean-clean

Bldg-Grass-Tress-Drives
Il Stone-Streel-Towers

(a) Color image (b) Ground Truth map






media/file14.png
2
1
0
9

9
9
9
8
92
90
88
86

92
90
88
86

B
B

(d) SLSRPE_SVM

0.5

(=)
—
e}
(=1
—
(=}
o~

i

w
2 “
(= v (= v (== o vV O N O no S N O n O wnun
(=4 (=) (=) (=] oo o0 S N N 0 00 ~on S O N 00 0 I~
— — —
(94)AoeIN00Y [[BI2AQ (94)A0eIN00Y [[BIAQ (94)AoBINO0VY [[BISAQ
vy o vy o vy o <r N o =, o ~ [l Al o w (=]
(=)} (=3} oo -] e~ e~ [=)} (=)} (=3} 0o oo o0 N oo o0 ~ e~
S
Ug] Ug]
! ) Q. =) Q
w
(=4 (=]
= =) n
— —
2 e @
<
(o]
(=2 (= o (=] =] S VN O v O wn o (=] (=4 o [l o
(94)A0eIN00Y [[BISAQ (94)A08IN00Y [[BISAQ (2%)A0eINO0OVY [[BIDAQ
w vy L g
o (o] (o] — — (=1 o o (o] — [l N o™ [ o0 el
(=} (=2} (=} [=,} (=)} (=)} (=)} (=)} (=)} N (=3} o [=)} [=)} [+e} o0
S
Ug] Ug]
! ) Q. =) Q
w
(=4 (=]
= =) n
— —
2 w2 @
<
(o]
(=2 wy [l vy [ =] (=3 w (=] vy [ S Vv © v O v
(=) (=) (=)} o] oo on (=] ™ (=)} [o<] co o o N N 0 —
— — —
(94)A2eIN00Y [[BISAQ (94)A08IN00Y [[BISAQ (2%)A0eINO0OVY [[BIDAQ
w < (s N — (= wv (=3 [ vy (=]
N [=)] [=)) [=)) [=)] [=} o0 o (=} -] oo

5 |

B
(a) SLSSPP_KNN

s
0.

10 |
20 10 5

=
—
2 w2
‘ T T . {
S v o wn = = = = o o o = = o n
S o & o ) S X g = A S X ) = -
— — -

(9%)A0eIN29Y [[RI9AQ (94)A0RIN00Y [[RISAQ (24)KoeIN00VY [[RIDAQ

(c) SLSRPE_KNN

(b) SLSSPP_SVM





media/file11.jpg
t t

it . 2 i »
(a) SLSSPP_KNN (b) SLSSPP_SVM (c) SLSRPE_KNN. (d) SLSRPE_SVM





media/file6.png
Bldg-Grass-Tress-Drives
—Bldg-Grass-Tress-Drives|

100

150

200

Bldg-Grass-Tress-Drives

= Soybean-notill

C

100

150

200

Soybean-mintill
= Soybean-mintill |

B

150 200

Woods |
=== Grass-pasture






media/file15.jpg





nav.xhtml


  remotesensing-13-02752


  
    		
      remotesensing-13-02752
    


  




  





media/file16.png
Overall Accuracy(%)

Overall Accuracy(%)

—
[
(=]

\O
W

O
o

oo
w

o0
o

~J
W

-
(=]

N
wn

AN
o

W
W

—
(=3
(=}

\O
W

O
(=]

o0
W

[¢.2]
(=]

~]
w

~J
[=

N
W

N
(=]

W
W

o 2 i

== RAW —&— SSRLDE
/ —p—LPP SSMRPE | T
f’ —&—NPE —A— SSLDP
‘ RLDE ——SLSSPP | -
—#—LPNPE —— SLSRPE
5 10 15 20 25 30 35
d

(a) Indian Pines_ KNN

40

—B—RAW —O—SSRLDE
=P PP SSMRPE | T
——NPE =~ SSLDP
RLDE =—©—SLSSPP |
—#—LPNPE —— SLSRPE
5 10 15 20 25 30 35
d

(d) Indian Pines_SVM

40

Overall Accuracy(%)

Overall Accuracy(%)

—
o=
(=]

\O
w

O
o

o]
W

0]
o

~J
W

~J
(==

N
w

N
o

95

O
o

o0
wn

o
o

~J
W

~)
o

65

15

/\’(’\ .h/ W A _ '*
P WP S |
== RAW —{— SSRLDE |
—p—LPP SSMRPE
—<—NPE —A— SSLDP
RLDE —6— SLSSPP
—#— LPNPE —— SLSRPE
20 25 30 35 40
d

(b) Pavia University KNN

—&—RAW —&—SSRLDE
=P PP SSMRPE
—{—NPE —f— SSLDP
RLDE —©— SLSSPP
—#—LPNPE —i— SLSRPE
5 10 15 20 25 30 35
d

(e) Pavia University_SVM

40

Overall Accuracy(%)

Overall Accuracy(%)

95

\O
(=]

o]
W

[e.2]
(=]

75

95

o
[=4

oo
W

oo
(=

75

70

== RAW —&— SSRLDE
—p—LPP SSMRPE
—&—NPE —A—SSLDP | A
RLDE —6— SLSSPP
—#— LPNPE —— SLSRPE
10 15 20 25 30 35
d

(c) Salinas_KNN

40

—&—RAW == SSRLDE
=P—LPP SSMRPE
——NPE =&~ SSLDP | -
RLDE —©-— SLSSPP
—#=—LPNPE —3— SLSRPE
10 15 20 25 30 35
d

(f) Salinas_SVM

40





media/file2.png
Compute
weight
matrix

Tt Construct]

e —)(WSL data)—)[ SL.SD )—> adjacency
Spectral samples graph J
/ / / |_ Find the

nearest
—_————— - neighbors

SLSSPP
model

(" Construct )

Compute Compute cluster

( Cluster) cluster weight |[—3 centroid
centr01d matrix adjacency
\ graph )






media/file20.png
(k) RAW (1) NPE (m) LPP (n) RLDE (o) LPNPE (p) SSRLDE (q) SSMRPE (r) SSLDP (s) SLSSPP (t) SLSRPE





media/file5.jpg





media/file1.jpg





media/file12.png
0
89

5 |

B

5

10

(o]
N

R

T —
(= v o vy (=4
(=] [= N (> =] o o
—

(9)A08IN29Y [[BISAQ
& & 8 8 & R

10 |
20 10 5

< (= (=] (=} o O

[=] (=) oo e~ O o

—

(24)A0eIN00Y [[BIDAQ
v n n
vy v < < [ag]
(=)} =)} (=)} (=] =)}

5 |

B

0

1

5

10

R il

(=1 v < v O

< (=)} [=)} o« o0

—

(94)A0eIN00Y [[BI2AQ
o wy < o o
(=)} [=)] [=)} N (=)}

10 |
20 10 5

r T T T 1
(=2 vy (==l s} (=4
(=4 (=} (=)} co on
—

(94)A0RIN00Y [[BI2AQ

95
90
85
80
75
70
65

s
0

k

T

O o O (=

00

SN 0 >~ O o
—
(94)A0eIN20VY [[RISAQ
vy (=] Al (=] vy f=3
(=} =)} co o0 e~ e~

5 |

B

s
0

k

r T T T
(=3 (=4 (= (=}

o O
[=] (=)} [~ o~ O on
—
(94)AoeIN00Y [[BI2AQ
vy [=3 vy (=3
N (=)} > o

s
0.

k

< (=4 < oSO
o (=)} =] e~ on
=
(94)AoeIN00Y [[BIDAQ
v [l ol (=]
(=)} (=)} o0 =]

s
0

k

[ =3 < < [ R -
(=} [=)} oo ~ o
—

(94)AorIN00Y [[BIOAQ

10

10

10

3 | 75

B

10

93
92
91
90
89
88
87

0.5

k

[T TR =T " S = wv
S N N o0 o0
—

(24)KovINO0VY [[RI2A0
& & 8 &8 &

k

=] (=3 (=] (=] v

[=] N oo e~ —

—

(94)AorINOoY [[RISAQ
vy < vy (=] wy
(=) (=} co oo e~

k

[ (=4 < S v

[=} (=)} =] o~ —

—

(94)AorINOoY [[BIPAQ
2l [) ) [ vy
(=) N 00 o0 e~

0.5

k

(= < [ S N

(=] [=)} o0
—

(94)AoBINOoY [[RISAQ

~

B

(d) SLSRPE_SVM

5

B

(a) SLSSPP_KNN

5

(c) SLSRPE_KNN

(b) SLSSPP_SVM





media/file9.jpg
(a) Color image (b) Ground Truth map





media/file0.png





media/file8.png
(a) Color image

- Asphalt

- Meadows

- Gravel

- Trees

Painted metal sheets

Izl Bare Soil
Bitumen
Self-Blocking Bricks
- Shadows

(b) Ground Truth map

(c) Color image

- Brocoli-green-weeds-1

- Brocoli-green-weeds-2

- Fallow

- Fallow-rough-plow

- Fallow-smooth

- Stubble

- Celery

- Grapes-untrained

IZI Soil-vinyard-develop

Corn-senesced-green

Lettuce-romaine-4wk
Lettuce-romaine-5wk
Lettuce-romaine-6wk
Lettuce-romaine-7wk

Vinyard-untrained

- Vinyard-vertical

(d) Ground Truth map





media/file17.jpg
FH L T S

GRAW BNPE  @LPP @RIDE (LPNPE (DSSKLDE (gSSMRPE (WSSLDP ()SLSSPP ()

o 0 O T

MORAW (DNPE  (m)LPP (n)RLDE (0)LPNPE (p)SSRLDE (q) SSMRPE

by er=per oy e





