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Abstract: Accurate and reliable crop classification information is a significant data source for agricul-
tural monitoring and food security evaluation research. It is well-known that polarimetric synthetic
aperture radar (PolSAR) data provides ample information for crop classification. Moreover, multi-
temporal PolSAR data can further increase classification accuracies since the crops show different
external forms as they grow up. In this paper, we distinguish the crop types with multi-temporal
PolSAR data. First, due to the “dimension disaster” of multi-temporal PolSAR data caused by exces-
sive scattering parameters, a neural network of sparse auto-encoder with non-negativity constraint
(NC-SAE) was employed to compress the data, yielding efficient features for accurate classification.
Second, a novel crop discrimination network with multi-scale features (MSCDN) was constructed to
improve the classification performance, which is proved to be superior to the popular classifiers of
convolutional neural networks (CNN) and support vector machine (SVM). The performances of the
proposed method were evaluated and compared with the traditional methods by using simulated
Sentinel-1 data provided by European Space Agency (ESA). For the final classification results of the
proposed method, its overall accuracy and kappa coefficient reaches 99.33% and 99.19%, respectively,
which were almost 5% and 6% higher than the CNN method. The classification results indicate that
the proposed methodology is promising for practical use in agricultural applications.

Keywords: polarimetric synthetic aperture radar (PolSAR); crop classification; sparse auto-encoder
(AE); crop discrimination network with multi-scale features (MSCDN)

1. Introduction

Crop classification plays an important role in remote sensing monitoring of agricul-
tural conditions, and it is a premise for further monitoring of crop growth and yields [1,2].
Once the categories, areas and space distribution information of crops have been acquired
in a timely and accurate manner, it can provide scientific evidence of reasonable adjustment
for agriculture structure. Therefore, crop classification has great significance for guidance
of agriculture production, rational distribution of farming resources and guarantee of
national food security [3–5].

With the continuous advancement and development of remote sensing technology and
its theory, it has been extensively applied in agricultural fields such as crop census, growing
monitoring, yield prediction and disaster assessment [6–9]. Over the past several years,
optical remote sensing has been widely applied in crop classification due to its objectivity,
accuracy, wide monitoring range and low cost [10]. For example, Tatsumi adopted random
forest classifier to classify the eight class crops in southern Peru of time-series Landsat
7 ETM + data, the final overall accuracy and the kappa coefficient were 81% and 0.70,
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respectively [11]. However, optical remote sensing data is susceptible to cloud and shadow
interference during the collection, so it is difficult to obtain effective continuous optical
remote sensing data in the critical period of crop morphological changes. In addition,
optical remote sensing data only reflect the spectral signature of target surface. For the
wide variety of ground objects, there exists the phenomenon of “same object with different
spectra and different objects with the same spectrum”. Therefore, the crop classification
accuracy based on optical remote sensing data is limited to a certain extent. Unlike the
optical remote sensing, PolSAR is an active microwave remote sensing technology, its
working conditions cannot be restricted by weather and climate. Meanwhile, besides the
signature of target surface, SAR remote sensing data provide other spectral signatures of
target due to its penetrability. Therefore, increasing amounts of attention has been paid
to the research with PolSAR data in crop classification [12,13]. However, the constraints
of developing level for radar technology, the majority of classification research for crops
used single-temporal PolSAR data. However, as for crop categories, identification, single-
temporal PolSAR image offers only limited information for crops. Therefore, it is very
difficult to identify different crop categories due to the same external phenomena in the
certain period, especially during the sowing period [14]. Therefore, it is necessary to collect
multi-temporal PolSAR data to further improve the crop classification accuracy.

In recent two decades, an increasing number of satellite-borne SAR systems have
been launched successfully and operate on-orbit, which made it available to acquire multi-
temporal remote sensing data for desired target [15–17]. At present, there are several
representative systems available for civilian applications, such as L-band Uninhabited
Aerial Vehicle Synthetic Aperture Radar (UAVSAR) [18], C-band Sentinel-1 [19,20], GF-3,
RADARSAT-2 and Radarsat Constellation Mission (RCM) [21], and X-band Constellation
of Small Satellites for Mediterranean basin observation (COSMO) and COSMO-SkyMed
2nd Generation (CSG) [22]. Through these on-orbit SAR systems, a number of multi-
temporal PolSAR images for the same area can be readily acquired for crop surveillance
and other related applications. Additionally, it can show different scattering characteristics
for crops in different growing periods, which greatly improves the classification accuracy
of crops [23–25].

Recently, a number of classification algorithms with PolSAR data have been presented
in the literature, which can be roughly divided into three categories:

(1) Algorithms based on statistical models [26]. For example, Lee et al. proposed a
classical classifier based on the complex Wishart distribution [27];

(2) Algorithms based on the scattering mechanisms of polarization [28]. The points with
the same physical meaning are classified using the polarization scattering parameters
obtained by the coherent and incoherent decomposition algorithms (such as Pauli
decomposition [29], Freeman decomposition [30], etc.) [31–35];

(3) The classification schemes based on machine learning [36], e.g., support vector ma-
chine (SVM) [37] and various neural networks [38]. For instance, Zeyada et al. use the
SVM to classify four crops (rice, maize, grape and cotton) in the Nile Delta, Egypt [39].

With the collection of multi-temporal PolSAR data, the various classification algo-
rithms based on time-series information have also been developed. For example, long
short-term memory (LSTM) network has been exploited to recognize and classify the
multi-temporal PolSAR images [40]. Zhong et al. classify the summer crops in Yolo County,
California using the LSTM algorithm with Landsat Enhanced Vegetation Index (EVI) time
series [25]. It can be seen that the research and application of multi-temporal PolSAR data
are constantly progressing. For LSTM algorithm, the performance of this network mainly
depends on input features, so a large amount of decomposition algorithms have been
developed to extract the polarization scattering characteristics [41–44]. However, the direct
use of polarization features will result in the so-called “dimension disaster” problem for
the various classifiers. Therefore, the dimension reduction for the extracted multi-temporal
features has become a significant work.
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Some methods, such as principle component analysis (PCA) [45] and locally linear
embedded (LLE) [46], etc., are popular for feature compression to solve the “dimension
disaster” problem. For instance, the PCA method actually provides the optimal linear
solution for data compression in the sense of minimum mean square error (MMSE) [47].
The advantage of PCA lies in the fast restoration of original data by subspace projection at
a cost of minimum error. However, it cannot be guaranteed that the principle components
extracted by PCA provide the most relevant information for crop type discrimination.
Independent Component Analysis (ICA) is the generalization of PCA, which can gain
independent gains. Bartlett M.S. et al. adopt the ICA to recognize the face images of the
FERET face database [48]. Tensor decomposition is often used to extract certain elementary
features from image data. Dehghanpoor G. et al. used tensor decomposition method to
achieve the feature learning on satellite imagery [49]. Non-negative matrix factorization
(NMF) is based on non-negative constraints, which allows learn parts from objects. Ren
J.M. et al. applied the reduce dimensionality method NMF as the preprocessing of remote
sensing imagery classification [50]. However, they are not suitable for dimensionality
reduction about PolSAR data of crops. Additionally, the LLE method can voluntarily
extract the low-dimensional feature of nonlinear from high-dimensional data, but it is very
sensitive to outliers [51]. In most recent years, with the development of deep learning, the
convolutional neural network (CNN) has been gradually applied in remote sensing data
analysis [52]. At present, some successful network structures (e.g., auto-encoder [53,54] and
sparse auto-encoder (SAE) [17,55].) have been presented, yielding excellent performances
in feature compression and image classification. However, the sparsity for the SAE network
has not been fully exploited to further extract efficient features for classification, and the
existing CNN based classifier do not utilize the multi-scale features of the compressed data.
Due to these disadvantages, the crop classification performance still cannot achieve a level
for practical use.

Therefore, the main purpose of this study is to propose a new method to improve the
performances of crop classification for better application in agricultural monitoring. Firstly,
we adopted various coherent and incoherent scattering decomposition algorithms to extract
particular parameters from multi-temporal PolSAR data. Secondly, a sparse auto-encoder
network with non-negativity constraint (NC-SAE) was bulit to perform feature dimension
reduction, which extracts the polarimetric features more efficiently. Finally, a classifier
based on crop discrimination network with multi-scale features (MSCDN) was proposed
to implement the crop classification, which greatly enhanced the classification accuracy.
The main contributions of this paper were to propose a NC-SAE for data compression and
a MSCDN for crop discrimination.

The remainder of this paper is organized as follows. Section 2 devotes to our method-
ology, including the structure of PolSAR data, the polarimetric features decomposition and
dimension reduction with proposed NC-SAE network, as well as the architecture of the
proposed MSCDN classifier. In Section 3, the experimental results of crop classification for
the proposed method are evaluated and compared with traditional method using simulated
Sentinel-1 data. Finally, Section 4 concludes the study.

2. Methodology

In order to use the multi-temporal PolSAR data to classify crops, a neural network
NC-SAE was employed to compress the data, and then a novel crop discrimination network
with multi-scale features (MSCDN) was constructed to achieve the crop classification. The
flowchart of the whole study method is shown in Figure 1, which mainly includes three
steps: polarization feature decomposition, feature compression and crop classification.
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2.1. PolSAR Data Structure

The quad-pol SAR receives target backscattering signals and measures the amplitudes
and phases in terms of four combinations: HH, HV, VH and VV, where H represents
horizontal mode and V represents vertical mode. A 2 × 2 complex matrix S that collects
the scattering information can be obtained for each pixel, these complex numbers relate the
incident and the scattered electric fields. The scattering matrix S usually reads:

S =

[
SHH SHV
SVH SVV

]
, (1)

where SVH denotes the scattering factor of vertical transmitting and horizontal receiving
polarization, and the others have similar definitions.

The target feature vector can be readily obtained by vectorizing the scattering matrix.
Reciprocal backscattering assumption is commonly exploited, then SHV is approximately
equal to SVH and the polarimetric scattering matrix can be rewritten as the Lexicographic
scattering vector:

h =
[

SHH
√

2SHV SVV
]T

, (2)

where the superscript T denotes the transpose of vector. The scale factor
√

2 on SHV is to
ensure consistency in the span computation. Then, a polarimetric covariance matrix C can
be constructed as the following format:

C = hh∗T =

 |SHH |2
√

2SHHS∗HV SHHS∗VV√
2SHVS∗HH 2|SHV |2

√
2SHVS∗VV

SVVS∗HH

√
2SVVS∗HV |SVV |2

, (3)
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where the superscript ∗ denotes the conjugate of a complex number. Alternatively the
Pauli-based scattering vector is defined as

k =
1√
2

[
SHH + SVV SHH − SVV 2SHV

]T . (4)

By using vector k, a coherency matrix T can be constructed as follows:

T =
1
M

M

∑
m=1

kmkH
m , (5)

where M indicates the number of looks. The coherency matrix T is usually spatially
averaged to reduce the inherent speckle noise in the SAR data. This preserves the phase
information between the polarization channels.

The covariance matrix C has been proved to follow a complex Wishart distribution,
while the coherency matrix T contains the equivalent information of the same PolSAR data.
They can be easily converted to each other by a bilinear transformation as follows

T = NCNT , (6)

where N is a constant matrix:

N =
1√
2

 1 0 0
1 0 −1
0
√

2 0

. (7)

2.2. Polarization Decomposition and Feature Extraction

Processing and analyzing the PolSAR data can effectively extract the polarization
scattering features, and further achieve classification, detection and identification of quad-
Pol SAR data. Therefore, polarization decomposition for PolSAR data is usually adopted
to obtain multi-dimensional features. Here, we propose to consider the 36-dimensional
polarimetric scattering features, which were derived from a single temporal PolSAR image
using various methods. Some of these features can be directly obtained from the measured
data, and others were computed with incoherent decomposition (i.e., Freeman decompo-
sition [32], Yamaguchi decomposition [33], Cloude decomposition [34] and Huynen de-
composition [35]) and Null angle parameters [52]. The 36-dimensional scattering features
obtained from a single temporal PolSAR image are summarized in Table 1. Then, higher
dimensional scattering features can be obtained from multiple temporal PolSAR images.
The resulting features involve all the potential information of the primitive PolSAR data.
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Table 1. The 36-dimensional decomposition features of single-temporal PolSAR data.

Feature Extraction Schemes Features Dimension

Features based on measured data

Polarization intensities
|SHH |, |SHV |, |SVV |

3

Amplitude of HH-VV correlation∣∣∣∣SVVS∗HV/
√
|SHH |2·|SVV |2

∣∣∣∣ 1

Phase difference of HH-VV
atan(Im(SHHS∗VV)/Re(SHHS∗VV))

1

Co-polarized ratio
10 log10(2|SHV |2/|SVV |2)

1

Cross-polarized ratio
10 log10(|SVV |2/|SHH |2)

1

Co-polarization ratio
10 log10(2|SHV |2/|SHH |2)

1

Degrees of polarization
|SVV |2/|SHH |2, 2|SHV |2/(|SHH |2 + |SVV |2)

2

Incoherent decomposition

Freeman decomposition 5
Yamaguchi decomposition 7

Cloude decomposition 3
Huynen decomposition 9

Other decomposition Null angle parameters 2

Sum 36

2.3. Feature Compression

Directly classifying the crops with higher dimensional features above is cumber-
some, which involves complicated computations and large amount of memory to store
the features, and these enormous features would suffer from the great difficulty of the
dimensionality disaster. Therefore, to make full use of the wealth of multiple temporal
PolSAR data, the dimension reduction in resulting features is indispensable and crucial. In
the past few years, the methods of auto-encoder and sparse auto-encoder have attracted
more and more attention, which were commonly used to perform the compression of
high-dimension data [17,55–57]. Therefore, the sparse auto-encoder with non-negativity
constraint was proposed to further improve the sparsity of auto-encoder.

2.3.1. Auto-Encoder

An auto-encoder (AE) is a neural network which is an unsupervised learning for data
representation and its aim is to set the output values approximately equal to the inputs.
The basic structure of a single-layer AE neural network consists of three parts: encoder,
activation and decoder, which are shown in Figure 2, where the input layer (x), hidden
layer (y) and output layer (z) have, respectively, n neurons, m neurons, and n neurons. The
hidden layer is commonly used to implement the encoding for the input data, while the
output layer is for the decoding operation.
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The weighted input a of each neuron in encoder is defined as

a(1)j =
n

∑
i=1

w(1)
ji xi + b(1)j , j = 1, . . . , m, (8)

where w(1)
ji represents the encoder weight coefficient, b(1)j is the bias of neuron j Then, the

encoder output y can be written as the nonlinear activation of weighted input a as follows

yj = f (a(1)j ), j = 1, . . . , m, (9)

where f (·) is a sigmoid function, which is usually chosen as the logsig function:

f (x) =
1

1 + e−x . (10)

If m < n, the output y can be viewed as the compressed representation of input x,
then the encoder usually plays the role of data compression. Whereas the decoder is a
reverse process of reconstructing the compressed data y, which achieves the restoration of
the original data, i.e., output z represents the estimate of input x. The weighted input of
the decoder is defined as

a(2)i =
m

∑
j=1

w(2)
ij yj + b(2)i , i = 1, . . . , n, (11)

where w(2)
ij is the decoding weight coefficient, and b(2)i is the bias of neuron i. The decoder

output reads
zi = g(a(2)i ). (12)

Here, g(·) is the sigmoid function for decoder neurons, which is commonly chosen
the same as f (·).

The training process of AE is based on the optimization of the cost function and
obtained the optimal parameters of weight coefficients and bias. The cost function measures
the error between the input x and its reconstruction at the output z, which can be written as

Jmse =
1

2Q

Q

∑
q=1

n

∑
i=1

[xi(q)− zi(q)]
2, (13)
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where Q is the number of samples. Furthermore, a restriction term of weight decay is
usually incorporated into the cost function to regulate the degree of the weight attenuation,
which helps to effectively avoid overfitting and remarkably improve the generalization
capacity for the network. Hence, the overall cost function of AE commonly reads

EAE = Jmse + λ ·Ωw, (14)

where Ωw is a regularization term on the weights, the most commonly used restric-
tion is the L2 regularization term and is defined as follows, λ is the coefficient for L2
regularization term.

Ωw =
1
2

L

∑
l=1

m

∑
j=1

n

∑
i=1

(w(l)
ji )

2
, (15)

where L = 2 is the number of layers. The weight coefficients and biases are opti-
mized and trained by using the steepest descent algorithm via the classical error back
propagation scheme.

2.3.2. Sparse Auto-Encoder with Non-Negativity Constraint

A sparse auto-encoder (SAE) results from an auto-encoder (AE). Based on AE, SAE
neural network is achieved by enforcing a sparsity constraint of the output from the hidden
layer, which realizes the inhibitory effects and yields fast convergence speed for training
process using the back propagation algorithm [17,55]. Hence, the cost function of SAE is
given by

ESAE = Jmse + λΩw + βΩs, (16)

where β is the coefficient of the sparsity regularization term, Ωs is the sparsity regularization
term which is usually represented by Kullback–Leibler (KL) divergence [17,55].

The part-based representation of input data usually exhibits excellent performance for
pattern classification. The sparse representation scheme usually breaks the input data into
parts, while the original input data can be readily reconstructed by combining the parts
additively when necessary. Therefore, the input in each layer of an auto-encoder can be
divided into parts by enforcing the weight coefficients of both encoder and decoder to be
positive [56]. To achieve a better performance in reconstruction, we propose to consider the
sparse auto-encoder with non-negativity constraint (NC-SAE), the auto encoder network
decompose the input into parts by encoder via (8 and 9), and combine them in an additive
manner by decoder via (11 and 12). This is achieved by replacing the regularization term
(15) in cost function (16) with a new non-negativity constraint

Φw =
1
2

L

∑
l=1

m

∑
j=1

n

∑
i=1

(φ(w(l)
ji )), (17)

where

φ(w(l)
ji ) =

{
(w(l)

ji )
2

wji < 0
0 wji ≥ 0

. (18)

Therefore, the proposed cost function for NC-SAE is defined as

E = Jmse + αΦw + βΩs, (19)

where α ≥ 0 is the parameter of the non-negativity constraint. By minimizing the cost
function (19), the number of nonnegative weights of each layer and the sparsity of the
hidden layer activation are all increased, and the overall average reconstruction error
is reduced.
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Further, steepest descent method is used to update the weight and bias of (19)
as follows

w(k + 1) = w(k)− η ∂E
∂w(k)

b(k + 1) = b(k)− η ∂E
∂b(k)

, (20)

where k is the number of iteration, and η denotes the learning rate. Then, we adopt the
error back-propagation algorithm to compute the partial derivatives in (20). The partial
derivatives of the cost function with respect to decoder reads

∂E

∂w(2)
ij

=
∂Jmse

∂w(2)
ij

+ α
∂Φw

∂w(2)
ij

+ β
∂Ωs

∂w(2)
ij

, (21)

The partial derivatives in (21) are straightforward, and shown below

∂Jmse

∂w(2)
ij

=
∂Jmse

∂a(2)i

∂a(2)i

∂w(2)
ij

=
∂Jmse

∂a(2)i

yj, (22a)

∂Φw

∂w(2)
ij

= r(w(2)
ij ), (22b)

∂Ωs

∂w(2)
ij

= 0, (22c)

where r(w) is shown as follows

r(w(l)
ij ) =

{
w(l)

ij , w(l)
ij < 0

0, otherwise
. (23)

In order to clarify the computation of derivatives, we define the neuronal error δ as
the derivative of cost function with respect to weight input of each neuron, i.e., δ , ∂E/∂a.
Then, δ

(2)
i can be calculated using the chain rule as follows:

δ
(2)
i =

∂Jmse

∂zi

∂zi

∂a(2)i

=
1
Q

Q

∑
q=1

[zi(q)− xi(q)] f ′[a(2)i (q)], i = 1, . . . , n. (24)

Similarly, the neuronal error δ
(1)
i of encoder is computed as

δ
(1)
i =

n
∑

j=1

∂Jmse

∂a(2)j

∂a(2)j
∂yi

∂yi

∂a(1)i

+ β ∂Ωs
∂yi

∂yi

∂a(1)i

= f ′(a(1)i )
n
∑

j=1
δ
(2)
j w(2)

ji + β
Q

Q
∑

q=1
f ′[a(1)i (q)]

(
1−ρ
1−ρi
− ρ

ρi

) , i = 1, . . . , m. (25)

Now substituting Equations (22) and (24) into (21) leads to

∂E

∂w(2)
ij

= δ
(2)
i yj + αr(w(2)

ij ), (26)

Then, the partial derivative of the cost function with respect to the encoding weight reads

∂E

∂w(1)
ij

= δ
(1)
i xj + αr(w(1)

ij ), (27)
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The partial derivatives with respect to the biases of encoder and decoder are computed
in a compact form as

∂E
∂b(l)

= δ(l), l = 1, 2. (28)

2.4. The Crop Discrimination Network with Multi-Scale Features (MSCDN)

In the deep learning field, convolutional neural network (CNN) has become increas-
ingly powerful to deal with the complicated classification and recognition problems. Re-
cently, CNN has been widely adopted in remote sensing, for example, in image classifica-
tion, target detection, and semantic segmentation. However, most classical CNNs only use
one single convolution kernel to extract the feature images, the resulting single feature map
in each convolutional layer make it difficult to distinguish the similar crops, consequently
the overall crop classification performance degraded. Just as our previous work [17], the
poor overall performance is devoted to the minor category of crops that possess the similar
polarimetric scattering characteristics. Therefore, in this paper, a new multi-scale deep
neural network called MSCDN is proposed, attempting to further improve the classification
accuracy. The MSCDN not only extracts the features with different scales by using multiple
kernels in some convolution layers, but also captures the tiny distinctions between feature
maps of multi-scales.

The architecture of the proposed MSCDN classifier is shown in Figure 3. The network
of MSCDN mainly contains three parts: multi-scale feature extraction, feature fusion
and classification. First, multiple convolutional layers and multiple kernels within a
certain convolution layers extract feature maps with different scales. Second, the feature
information of these diverse scales was fused together as the basis to feed the classification
layer. Finally, the softmax layer is adopted to perform the classification.
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As shown in Figure 3, the MSCDN comprises seven convolutional layers, two max-
pooling layers, four fully connected layers, one concat layer, and a softmax classifier.
The Rectified Linear Unit (ReLU) and Batch Normalization (BN) layers are successively
connected after Conv_1 to Conv_5. The aim of ReLU layer is avoid the problems of gradient
explosion and gradient dispersive to further improve the efficient of gradient descent and
back propagation. As for the BN layer, it is a normalized procedure for each batchsize of
internal data for the purpose of standardizing the output data as the normal distribution
with zero mean and unit variance, which can accelerate the convergences. The branches
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of Conv_6 and Conv_7 aim to reduce the depth of the output feature image from Conv_3
and Conv_4, and decrease the computational complexity. The detailed parameters of the
convolution kernel for each layer and other parameters for the MSCDN structure are listed
in Table 2.

Table 2. Detailed configuration of MSCDN network architecture.

Layer
Detailed Description

Output Size
Kernel Size Number Stride Padding

Input -- 35 × 35 × 9
Conv_1 5 × 5 × 9 64 [2,2] same 18 × 18 × 64
Conv_2 3 × 3 × 64 128 [1,1] same 18 × 18 × 128

Maxpool_1 2 × 2 × 128 -- [2,2] [0,0,0,0] 9 × 9 × 128
Conv_3 3 × 3 × 128 256 [1,1] same 9 × 9 × 256
Conv_4 3 × 3 × 256 128 [2,2] same 5 × 5 × 128
Conv_5 3 × 3 × 128 128 [1,1] same 5 × 5 × 128
Conv_6 1 × 1 × 256 32 [1,1] same 9 × 9 × 32
Conv_7 1 × 1 × 128 64 [1,1] same 5 × 5 × 64

Maxpool_2 2 × 2 × 128 -- [2,2] [0,0,0,0] 2 × 2 × 128
Fc_1,2,3 -- 256 -- -- 1 × 1 × 256

Fc_4 -- M -- -- 1 × 1 ×M
Softmax softmax 1 × 1 ×M

M denotes the number of categories of crops.

3. Experiments and Result Analysis
3.1. PolSAR Data

An experimental site, which was established by the European Space Agency (ESA),
was used to evaluate the performances of the proposed method. The experimental area
was an approximate 14 km × 19 km rectangular region located in the town of Indian
Head (103◦66′87.3” W, 50◦53′18.1” N) in southeastern Saskatchewan, Canada. This area
has 14 classes of different type of crops and an ‘unknown’ class including urban areas,
transport corridors and areas of natural vegetation. The number of pixels and total area
for each crop type are summarized in Table 3. The location maps from Google Earth and
ground truth maps of the study area are shown in Figure 4.

Table 3. Crop type and area statistics of study area.

Crop Type Crop Code Number of Pixels Total Crop Area (%)

Unknown Unk 1,323,612 13,236 ha (39.12%)
Lentil Len 217,186 2172 ha (6.42%)

Durum Wheat Duw 101,299 1013 ha (2.99%)
Spring Wheat Spw 577,109 5771 ha (17.05%)

Field Pea Fip 255,108 2551 ha (7.54%)
Oat Oat 70,643 706 ha (2.09%)

Canola Can 459,096 4591 ha (13.57%)
Grass Gra 23,452 235 ha (0.69%)

Mixed Pasture Mip 15,799 158 ha (0.47%)
Mixed Hay Mih 28,756 288 ha (0.85%)

Barley Bar 108,133 1081 ha (3.20%)
Summer fallow Suf 22,445 224 ha (0.66%)

Flax Fla 131,296 1313 ha (3.88%)
Canary seed Cas 47,202 472 ha (1.39%)

Chemical fallow Chf 2682 27 ha (0.08%)
Total 3,383,818 33,838 ha (100%)
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Figure 4. Location maps and Ground truth map of the experimental site.

The experimental PolSAR data sets were simulated with Sentinel-1 system parameters
from real RADARSAT-2 data by ESA before launching real Sentinel-1 systems [58]. The
real RADARSAT-2 datasets were collected on 21 April, 15 May, 8 June, 2 July, 26 July,
19 August and 12 September 2009. The multi-temporal PolSAR data in these 7 periods
almost covered the entire growth cycle of major crops in the experimental area from sowing
to harvesting. The polarization decomposition of the single temporal PolSAR data yields
36 dimensional features. Therefore, 252 dimensional features have been acquired from
7 time-series PolSAR images.

3.2. Evaluation Criteria

For evaluating the performances of different classification methods, the recall rate,
overall accuracy (OA), validation accuracy (VA) and kappa coefficient (Kappa) are consid-
ered to perform comparison.

The overall accuracy can be defined as follows

OA =
M
N

, (29)

where M is the total number of pixels that correctly classified, and N is the total number of
all pixels. Similarly, VA is the proportion of validation samples that are correctly classified
to all validation samples. The recall rate can be written as follows:

Recall =
X
Y

, (30)
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where X is the number of samples that are correctly classified for a certain class, Y is the
number of samples of this class.

The kappa coefficient arises from the consistency test and is commonly used to eval-
uate the classification performance, it measures the consistency of the predicted output
and the ground-truth. Here, we use kappa coefficients to evaluate the entire classification
accuracy of the model. Unlike OA and recall rate that only involve correctly predicted
samples, the kappa coefficient considered various missing and misclassified samples that
located at the off-diagonal of confusion matrix. The kappa coefficient can be calculated
as follows:

Kappa =
OA− P

1− P
, P =

1
N2

M

∑
i

si:s:i (31)

where N is the total number of samples, M is the number of crop categories, si: and s:i are,
respectively, the sum of the i-th row and i-th column elements of confusion matrix.

3.3. Results and Analysis

We now report the comparison of our method with other data compression schemes
and classifiers. First, 9-dimensional compressed features were derived from the origi-
nal 252-dimensional multi-temporal features using various methods, namely LLE, PCA,
stacked sparse auto-encoder (S-SAE) and the proposed NC-SAE. Then, the compressed
9-dimensional features were fed into the SVM, CNN and the proposed MSCDN classifiers.
The ratio of the training samples for each classifier was 1%.

3.3.1. Comparison of the Dimensionality Reduction Methods

Firstly, for the dimensionality reduction, the reconstruction error curves of SAE and
NC-SAE in the training processes are shown in Figure 5. It can be seen that the reconstruc-
tion error of NC-SAE is slightly less than that of SAE. Moreover, the standard deviation
within the same crop class were calculated and plotted in Figure 6A,B for different cat-
egories. The six main crops (i.e., lentil, spring wheat, field pea, canola, barley and flax)
which have relatively larger cultivated areas shown in Figure 6a were chosen to evaluate
the standard deviation. Meanwhile we also choose six easily confused crops shown in
Figure 6b (i.e., durum wheat, oat, chemical fallow, mixed hay, barely, mixed pasture) for
performance evaluation. We can see that the standard deviation of the proposed method
NC-SAE is the smallest. Therefore, a better crop classification performance is expected by
using the features that extracted through NC-SAE.
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selected crops, (a) the six crops with the largest cultivated area, (b) the six crops that are difficult to discriminate; (A) and (B)
illustrate the standard deviation within the selected crops in (a) and (b), respectively.

Additionally, by using CNN classifier, the OA, VA, Kappa coefficients and CPU time
performances for different dimension reduction methods are listed in Table 4, and the
predicted results of the classifier and their corresponding error maps are illustrated in
Figure 7. In this experiment, the size of input data for CNN classifier was set to 15 × 15.

Table 4. Comparison of the classification performance using CNN classifier under various data
compression schemes.

Method
Classification Performance

VA (%) OA (%) Kappa (%) CPU Time

PCA 80.63 87.92 85.23 0.4521 s
LLE 81.18 88.03 85.41 16.8427 s

S-SAE 91.29 94.24 93.03 5.5383 s
NC-SAE 90.26 94.23 93.05 0.5193 s
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of (A–D).

We can see that the dimensionality reduction methods of S-SAE and NC-SAE are
both superior to PCA and LLE. For the CNN classifier, the OA and Kappa of S-SAE and
NC-SAE are approximately 6~8% higher than PCA and LLE. The performances of S-SAE
and NC-SAE are nearly equal. However, keep in mind that these two neural networks
have different structures. The proposed NC-SAE is a single-layer network, while the S-SAE
uses three auto-encoders to sequentially perform the feature compression. Comparing the
CPU time that required computing the compressed features, it can be seen that NC-SAE
takes almost one tenth as long as S-SAE.

3.3.2. Comparison of the Classifier with Different Classification Methods

In this section, we compare the classification performance of feeding the 9-dimensional
features, which are extracted from NC-SAE, into SVM, CNN and MSCDN classifiers. The
classification results and error maps for above classifiers are shown in Figure 8. It can
be readily seen that the proposed MSCDN classifier behaves the best performance. In
order to provide the insight into above result, we further show the OA performances
of the different classifiers, along with the recall rates for each crop in Table 5. One sees
that the OA performance of MSCDN is 24% and 5% higher than that of SVM and CNN.
Observing the recall rate for each crop in Table 5, we see that the poorer OA for SVM
and CNN is mainly due to the low recall rates of several individual crops (namely Duw:
Durum Wheat, Mip: Mixed Pasture, Mih: Mixed Hay, and Chf: Chemical fallow). By
further analyzing the categories of these crops in Table 3, we find that the above mentioned
crops are easily confused with others because they have the same growth cycle or similar
external morphologies with others. For example, Duw (Durum Wheat) is similar to Spw
(Spring Wheat) in terms of external morphology, and Mip (Mixed Pasture) is more easily
confused with Gra (Grass) and Mih (Mixed Hay). We conjecture that the poorer OA
for SVM and CNN arise from the poorer distinguishable features that extracted by their
network architectures.
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Table 5. The recall rates and OA of crop classification of different classifier after NC-SAE dimensional reduction.

Method
Recall Rates for 14 Types of Crops and OA (%)

Len Duw Spw Fip Oat Can Gra Mip Mih Bar Suf Fla Cas Chf OA

SVM 91.4 1.8 98.3 93.9 2.3 95.3 69.5 8.5 42.1 3.0 45.4 40.8 5.8 0 75.22
CNN 97.8 69.2 96.5 99.7 80.5 99.8 89.4 69.0 76.3 84.6 92.2 93.3 90.2 42.9 94.23

MSCDN 99.6 98.4 99.6 99.8 97.9 99.9 98.6 97.3 96.4 98.1 98.9 98.5 99.4 89.9 99.33

Note: The numbers in columns using bold demonstrate the improvements of the recall rates and OA.

From the above analysis, we see that the accurate classification for these easily con-
fused crops is the key point of enhancing the overall accuracy. For deeply understanding
the improvement of our MSCDN classifier, the confusion matrix of crops Duw, Mip, Mih
and Chf for CNN and MSCDN are shown in Table 6. One sees that compared to CNN,
MSCDN greatly improves the recall rates of these easily confused crops, whose averaged
recall rate increased more than 31%. This is not surprising because MSCDN is a multi-scale
neural network, the architecture of which enables to extract the features in different scales
by using multiple kernels in convolution layers, and hence MSCDN is able to capture the
tiny distinctions between the feature maps. Moreover, it should be pointed out that the
above easily confused crops have very small samples in our crop data (only 7.3% of whole
samples). Therefore, the improvement of OA performance for MSCDN will be foreseen.
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Table 6. The partial confusion matrix of crop classification for CNN and MSCDN.

Ground Truth

CNN MSCDN

Duw Mip Mih Chf Duw Mip Mih Chf

Classified
Image

Len 0.58 1.93 0.79 55.9 0.09 0.04 0.26 8.98
Duw 69.2 1.80 0.01 0 98.4 0.65 0 0
Spw 22.9 1.31 1.75 0 0.78 0.14 0.38 0
Fip 0.25 0.07 0.13 0.33 0.18 0.04 0.08 0.67
Oat 1.18 0.02 0.36 0 0 0.61 0.01 0
Can 0.59 0 0.53 0 0.22 0 0.46 0
Gra 0 9.03 11.7 0.07 0 0 2.10 0.26
Mip 0.01 69.0 4.84 0 0.01 97.3 0.05 0
Mih 0.07 3.25 76.3 0 0 0.73 96.3 0
Bar 3.98 0.06 0.21 0 0.21 0.07 0 0
Suf 0 9.54 0 0 0.04 0 0.23 0
Fla 0.92 3.99 3.30 0.70 0.01 0.33 0.01 0.11
Cas 0.21 0 0 0 0 0 0 0
Chf 0 0 0 42.9 0 0 0 89.9

Note: The numbers using bold represent the accuracy of easily confused crops.

3.3.3. The Performance for the Different Size of Input Sample

The size of input sample for classifiers also affects the performance for crop classifica-
tion. After the compression data with NC-SAE, Table 7 gives the classification results of
MSCDN classifier with different sample size, the corresponding training curves are shown
in Figure 9. Firstly, we set the size of input samples for the MSCDN classifier to 15 × 15. In
this scenario, slightly over fitting has been observed when training the MSCDN, which is
shown in Figure 9a. This problem has been ultimately solved by increasing the size of input
sample. Figure 9b shows the training curve for input samples with size of 35 × 35. We see
that the over-fitting can be completely eliminated by expanding the input size. Observing
Table 7, we see that the OA and Kappa increased by 4.12% and 4.98%, ultimately rise to
99.33% and 99.19%, respectively, when increasing the input size from 15 × 15 to 35 × 35,
whereas when the size of input samples was expanded to 55 × 55, both OA and Kappa
only raised approximately 0.3% relative to the 35 × 35, while considerable computational
burden is needed. Therefore, a moderate size 35 × 35 for input samples is recommended
in real applications.
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Table 7. The classification performance of MSCDN with different sample size.

Input Sample Size
Classification Accuracy (%)

VA OA Kappa

15 × 15 91.07 95.21 94.21
35 × 35 98.56 99.33 99.19
55 × 55 99.10 99.47 99.37

Note: The numbers using bold represent the best performance.

For the CNN classifier, the same conclusion can be made. Table 8 further demonstrates
the effect of the different sizes of input sample on classification results. In addition, by
comparing the results in Tables 7 and 8, we can see that classification performance of
MSCDN is always better than CNN under the same sample size.

Table 8. The classification performance of CNN with different sample size.

Input Sample Size
Classification Accuracy (%)

VA OA Kappa

15 × 15 90.26 94.23 93.05
35 × 35 96.53 97.91 97.48
55 × 55 97.07 98.29 97.94

3.3.4. Comparison of Overall Processing Procedures

The overall processing procedures and their performance evaluation are listed in
Table 9. For classifiers of the traditional SVM, CNN and the proposed MSCDN, the data
compression methods such as PCA, LLE, S-SAE and NC-SAE were used to obtain the
compressed 9-dimensional features. Different from the above methods, the LSTM in
Zhong et al. [25] can directly perform the classification with the 36 × 7 feature maps for
a single pixel. Although the LSTM method avoids the feature compression procedure,
the classification accuracy was poor. Whereas the combination of data compressor and
trained classifiers can achieve remarkable crop classification performance. From Table 9,
we can conclude that: (1) the combination of the proposed NC-SAE and MSCDN obtained
the best performance; (2) with the expansion of the input size for CNN and MSCDN, the
classification accuracy for these two classifiers has remarkably increased. However, it
is worth noting that the phenomenon of over-fitting appears in NC-SAE + MSCDN for
15 × 15 sample case as shown in Figure 9, so the classification accuracy will be somewhat
inferior to its competitors.

Table 9. Classification accuracy with different methods.

Method Input Sample Size
Classification Accuracy (%)

VA OA Kappa

LSTM -- 73.10 76.43 70.15
LLE + SVM -- -- 65.51 55.48

S-SAE + SVM -- -- 78.48 72.92

PCA + CNN
15 × 15 80.63 87.92 85.23
35 × 35 93.55 96.10 95.30

S-SAE + CNN
15 × 15 91.29 94.24 93.03
35 × 35 96.81 98.25 97.90

S-SAE + MSCDN
15 × 15 92.05 96.11 95.32
35 × 35 98.12 99.06 98.87

NC-SAE + CNN
15 × 15 90.26 94.23 93.05
35 × 35 96.53 97.91 97.48

NC-SAE +
MSCDN

15 × 15 91.07 95.21 94.21
35 × 35 98.56 99.33 99.19

Note: The numbers using bold represent the best performance.
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4. Discussion

From an increasing number of experiments and analysis, the performance of crop
classification can be improved remarkably based on multi-temporal quad-pol SAR data.
Nowadays, a great number of spaceborne SAR systems launched into orbit around the
Earth can enhance the revisiting period of satellite constellation and obtain a growing
amount of real data, which provides a tremendous chance for multi-temporal data analysis.
Additionally, the wide application of neural network in remote sensing has shown great
abilities. Based on these two attentions, this paper attempted to divide two steps which are
dimensional reduction based on NCSAE and then classification with MSCDN to achieve
the crop classification. The summary for experimental results of Section 3 is discussed in
the following.

4.1. The Effect of NC-SAE

In this paper, the NC-SAE was used to reduce the dimension of features from polari-
metric decomposition. We can see that the NC-SAE has obtained the best performance
compared with other methods through the experimental results in Section 3.3.1. Compared
to the traditional dimension reduction methods PCA and LLE, the classification accuracy
by using the NC-SAE compressed features has improved more than 6%, while nearly
same accuracy compared with S-SAE. However, the S-SAE has three hidden layers with
an intricate structure and more node members in each layer. The structure of NC-SAE is
simple, it has only one hidden layer with 9 node members. The hyper-parameter λ, β and ρ
of NC-SAE were set to 0.1, 2.5 and 0.45, respectively, which are directly inherited from the
empirical value of S-SAE. Therefore, the NC-SAE is a computationally cheaper alternate
of S-SAE.

4.2. The Effect of MSCDN Classifier

MSCDN was employed to classify the features extracted from NC-SAE dimensional
reduction method, where the configuration parameters are empirically determined. The
MSCDN network differs from the classical CNN network in its concatenated multi-scale
features extracted by multiple kernels with different size. Though the slightly over-fitting
has been observed in the training process of MSCDN when setting the input size as
15 × 15 ×M, where M is the dimension of input features. This problem is readily resolved
by expanding the input size to 35 × 35 × M. Moreover, the classification accuracy has
been greatly improved compared to other classifiers. In general, the MSCDN classifier
combined with NC-SAE feature compression method has obtained the best performance,
and its overall accuracy is about 5% higher than our previous work [17].

4.3. Future Work

First of all, the phenomenon of slightly over-fitting when training the MSCDN network
may be resolved by trying to put a dropout layer in MSCDN. Secondly, this study used a
two stage processing networks for crop classification (features compression and subsequent
classification). A more elegant one single network that implements the crop classification
with multi-temporal Quad-Pol SAR data can be foreseen to further simplify the network
and reduce the computation burden.

5. Conclusions

In this paper, we proposed a novel classification method, namely MSCDN, for multi-
temporal PolSAR data classification. To solve the problem of the dimension disaster, firstly,
we constructed a sparse auto-encoder with non-negativity constraints (NC-SAE) which has
an improved sparsity to reduce the data dimension of scattering features extracted from
multi-temporal PolSAR images. Meanwhile, the simulated multi-temporal Sentinel-1 data
provided by the ESA and the established ground truth map for experimental site were used
to evaluate the performances of the proposed methodology. Comparing the performance
of classification result, we can see that the OA of MSCDN classifier is approximately 20%
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higher than that of traditional SVM, but only 1–2% higher than CNN. It seems that the
advantage of MSCDN over the CNN classifier is somewhat trivial, but we have to note that
this insignificant improvement comes from the accuracy improvement of easily confused
crops with very small samples. So the overall improvement is somewhat limited. If the
proposed method is applied to classify the easily confused crops with higher proportion,
the remarkable improvement of OA performance will be anticipated.
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