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Abstract: Traditional constant false alarm rate (CFAR) based ship target detection methods do not
work well in complex conditions, such as multi-scale situations or inshore ship detection. With
the development of deep learning techniques, methods based on convolutional neural networks
(CNN) have been applied to solve such issues and have demonstrated good performance. However,
compared with optical datasets, the number of samples in SAR datasets is much smaller, thus limiting
the detection performance. Moreover, most state-of-the-art CNN-based ship target detectors that
focus on the detection performance ignore the computation complexity. To solve these issues, this
paper proposes a lightweight densely connected sparsely activated detector (DSDet) for ship target
detection. First, a style embedded ship sample data augmentation network (SEA) is constructed to
augment the dataset. Then, a lightweight backbone utilizing a densely connected sparsely activated
network (DSNet) is constructed, which achieves a balance between the performance and the compu-
tation complexity. Furthermore, based on the proposed backbone, a low-cost one-stage anchor-free
detector is presented. Extensive experiments demonstrate that the proposed data augmentation
approach can create hard SAR samples artificially. Moreover, utilizing the proposed data augmenta-
tion approach is shown to effectively improves the detection accuracy. Furthermore, the conducted
experiments show that the proposed detector outperforms the state-of-the-art methods with the least
parameters (0.7 M) and lowest computation complexity (3.7 GFLOPs).

Keywords: ship detection; data augmentation; lightweight; anchor-free detector; one-stage; synthetic
aperture radar (SAR); deep learning

1. Introduction

Synthetic aperture radar (SAR) has the unique capability of earth observation in
all-weather conditions, regardless of day and night, which gives it an important place
in marine exploration [1–5]. As a multitude of spaceborne SAR sensor platforms (e.g.,
RADARSAT-2, TerraSAR-X [6], and GF-III) are put into operation, high-resolution SAR
images are no longer difficult acquire [7,8], which promotes the use of SAR imaging in
ocean monitoring.

Marine ship target detection in SAR images plays an important role in sustainable
fishing, marine ecosystem protection, and military target strikes. The traditional SAR
ship target detection framework can be mainly divided into four stages: land-sea seg-
mentation, preprocessing, prescreening, and discrimination [9,10], for which researchers
have developed a variety of methods. Since the detection for land areas results in a large
number of false alarms, and since dealing with these false alarms greatly increases the
burden on the system, land-sea segmentation serves as an essential pretreatment. For most
of the general land-sea segmentation methods, such as geographic information system
(GIS), snake model [11], and Otsu [12,13], prior knowledge as well as various handcraft
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features are used to segment the SAR image. In order to improve detection performance,
researchers have proposed preprocessing methods to enhance the ship targets’ characteris-
tics. Weighted information entropy [14] and visual attention mechanism [15,16] serve as
two such methods.

Among the four detection stages, prescreening is the crucial step [17] whose primary
purpose is to locate targets. Actually, many ship detection methods only contain this
step [18]. Among existing detection methods, CFAR based methods [19] have been widely
investigated [20–25]. This type of method determines the detection threshold based on
a pre-established clutter statistical model, which has the characteristic of constant false
alarms [26,27]. These statistical methods strongly rely on the statistical distribution of sea
clutters. However, such models are easily affected by ocean currents, climate, and imaging
systems, which reduces the robustness of CFAR [10]. To alleviate the sea clutter model’s
mismatch risk, researchers have explored many clutter distribution models. However, with
the increasing complexity of the models, parameter estimation becomes a challenge and
even constrains the practical application of CFAR technology.

Discrimination is used by an operator to eliminate non-ship targets based on the clas-
sification features extracted in the prescreening areas. Length-width ratio [10], geometric
shape, scale-invariant feature transform (SIFT) [28], and histogram of oriented gradient
(HOG) [29] are the commonly used features. However, these handcraft features do not
work well in complex inshore areas.

In recent years, due to the significant strides in deep learning in the field of com-
puter vision, i.e., image classification [30], object detection [31,32], and image segmenta-
tion [33,34], researchers try to introduce deep learning methods in ship detection. Deep
learning methods detect the position of ships by spontaneously learning the ships’ charac-
teristics through a labeled dataset. They do not require land-sea segmentation and have
demonstrated satisfactory effects in multi-scale and inshore ship detection tasks. Faster
R-CNN [35] and You Only Look Once (YOLOv1-v3) [36–38] are two classic algorithms
that represent the two-stage and one-stage detectors, respectively, laying the foundation
for the basic architecture for current mainstream detection algorithms. Recently, many
SAR ship detection methods based on these architectures have been proposed [39,40]. A
dense network was constructed by Jiao et al. [41] to extract additional features at different
levels. Additionally, Cui et al. [42] added an attention network in a feature pyramid to
solve the problem of multi-scale ship detection. Wang et al. [43] improved the original SSD
method by introducing an angle regression branch and aggregating semantic information.
Moreover, Lin et al. [44] improved the Faster R-CNN and concatenated three-level features
to obtain multi-scale feature maps. Yang et al. [45] detected ship targets in four different
level features. In addition, to further improve the detection performance and address the
influence of multi-scale and complex backgrounds, Zhao et al. [46] employed receptive
fields block and the convolutional block attention module (CBAM) [47] to build a top-down
feature pyramid. Furthermore, Fu et al. [48] added level-based attention and spatial-based
attention networks into the feature pyramid network to enhance the feature extraction
ability of the detector.

Although current CNN-based ship detection methods have attained compelling re-
sults, certain problems still require further elucidation. Recent deep learning-based ship
detectors mainly focus on detection accuracy. Good performance always comes with a
larger number of parameters as well as a heavy computational burden. However, few
studies focus on reducing the computation complexity. Accordingly, how to balance the
detection performance and the computation complexity is a problem.

Moreover, most recent approaches rely on pre-defined anchor boxes, which makes
them achieve adequate performances [33,39]. However, it should be noted that the anchor-
based detectors suffer from some drawbacks. First, many hyper-parameters are introduced
when designing these anchor boxes. To achieve good detection performance, these pre-
defined anchors require complex manual calibration of the hyper-parameters. Second, ship
targets have large-scale variations (e.g., size and orientation). To adapt to this variation,
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a few different pre-defined anchors should be designed for the detectors. However, it
can be observed that the orientations of ship targets are arbitrary, and the corresponding
bounding boxes also have enormous change. The pre-defined anchors cannot effectively
cover this change. Meanwhile, to acquire better performance, anchors are densely placed
on the image. Considering the sparsity of the ships, redundant pre-defined anchors will
increase the computational burden. Therefore, anchor-free methods may be potentially
better in ship detection tasks, which directly determine the geometric shape by extracting
the semantic information of the target.

Furthermore, as a data-hungry approach, deep learning demands a large number of
training samples to ensure its performance and generalization ability. Compared with
optical datasets, the number of samples in SAR datasets is much smaller, which limits the
detection performance. Data augmentation is an efficient way to address these issues. Crop,
rotation, saturation, bilateral blurring, MixUp, CutMix and Mosaic are the representative
conventional data augmentation methods. However, such methods cannot improve the
detection performance to a satisfactory extent. Many novel data augmentation methods
have been developed to improve the SAR classification performance [49–51]. However,
similar studies in the field of SAR ship detection have hardly been conducted.

In response to the aforementioned problems, this paper proposes DSDet for ship
target detection in high-resolution SAR images, as illustrated in Figure 1. First, a style
embedded ship sample data augmentation network (SEA) is constructed to augment the
dataset. Then, a lightweight densely connected sparsely activated network (DSNet) is
devised as the backbone. Furthermore, based on the proposed backbone, a low-cost one-
stage anchor-free detector is presented, achieving a balance between performance and
computation complexity.
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Figure 1. Architecture of the proposed method.

The proposed detection framework provides the following contributions:

• A new SAR ship sample data augmentation framework based on generative adver-
sarial network (GAN) is proposed, which can purposefully generate abundant hard
samples, simulate various hard situations in marine areas, and improve detection
performance. Additionally, as data augmentation is only applied in the training stage,
it does not incur extra inference costs;

• A cross-dimension attention style embedded ship sample generator, as well as a
max-patch discriminator, are constructed;

• A lightweight densely connected sparsely activated detector is constructed, which
achieves a competitive performance among state-of-the-art detection methods;

• The proposed method is proposal-free and anchor-free, thereby eliminating the com-
plicated computation of the intersection over union (IoU) between the anchor boxes
and ground truth boxes during training. As a result, this method is also completely
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free of the hyper-parameters related to anchor boxes, which improves its flexibility
compared to its anchor-based counterparts.

The remainder of this paper is organized according to the following manner. The style
embedded ship sample data augmentation is introduced in Section 2. Section 3 presents
a detailed description of the lightweight densely connected sparsely activated detection
method. Then, the comparative experimental results with real SAR images are provided
and analyzed in Section 4. Finally, the paper’s conclusion is given in Section 5.

2. Style Embedded Ship Sample Data Network

Usually, a conventional object detector is trained offline. Therefore, researchers always
prefer to take this advantage by developing better training methods to make the object
detector attain better accuracy without increasing the inference cost [52]. Conventional
data augmentation methods crop, rotate, or blur the original sample, whereas hard samples
are not augmented. They still cannot be detected efficiently. To solve this issue, this section
constructs a novel ship sample augmentation method. The concept of this approach is to
create hard samples artificially and purposefully. Specifically, ship slices are embedded
into SAR images to simulate the various hard situations encountered during detection.
However, simply embedding the ship slices into SAR images cannot simulate a real SAR
image as the embedded slices are not in harmony with the surrounding environment.
To address this problem, a style embedded ship sample data augmentation network is
constructed. Figure 2 shows the flow chart of the proposed sample augmentation method.
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Given a real SAR image I, the pre-prepared ship slice images are embedded into I so
as to obtain the embedded image Ie. To improve the generated results, this paper proposed
a two-channel (original SAR image and embedded SAR image) input mechanical. Next,
the ship mask M is made, indicating the regions where the embedded ships are located.
Mask M is only used in the training stage to help improve the final result. The purpose of
the ship sample augmentation method is to train a model that reconstructs Ig to be closed
to the real SAR image. To achieve this goal, a GAN framework is utilized. As shown in
Figure 2, the method consists of two parts: generator G and discriminator D.

Specifically, the real SAR image and the embedded SAR image are treated as positive
and negative samples, respectively. On the one hand, the discriminator is trained to
distinguish positive images from negative images. On the other hand, the generator is
expected to produce a harmonized image that can fool the discriminator. The discriminator
and generator improve the performance during the confrontation. Details are described
as follows.

2.1. Cross-Dimension Attention Style Embedded Ship Sample Generator

Based on U-Net [53], a cross-dimension attention style embedded ship sample gen-
erator is constructed in this section. The architecture of the network is shown in Figure 3.
It follows the framework of the encoder-decoder. The encoder module utilizes classic
convolution to extract features, while the decoder module utilizes deconvolution to expand
the spatial resolution of the features and concatenates the same stage features from the
encoder module. The concatenation operator in U-Net realizes the interaction between
shallow features and deep features. Notably, the importance of features in the shallow
and deep levels is different [54], and we hope the generator pays more attention to the
embedded ships. As a result, to aggregate the features and improve the generated result,
attention block and residual block are inserted, as depicted in Figure 2. The details of the
network are shown in Figure 3.
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The cross-dimension aggregation attention module is realized by capturing the interac-
tion between (C, W), (C, H) and (H, W) dimensions of the input features, respectively [54].
Figure 4 shows the structure of this module. The inputted feature map Fin ∈ RC×H×W

goes through three branches. Taking the second branch as an example, the input feature
Fin ∈ RC×H×W is rotated through 90◦ clockwise along the W axis. F2 ∈ RH×W×C is the
rotated feature. Then, adaptive pooling is applied to preserve a rich representation of the
feature while simultaneously shrinking its depth, which is expressed as:

F2pool
2×W×C = [Maxpool(Fin)2, Avgpool(Fin)2] (1)
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Next, the pooled feature is processed through a standard convolution layer and a
sigmoid activation layer. After this step, the intermediate output is subsequently rotated
through 90◦ anticlockwise along the W axis to obtain F′2 ∈ RC×1×W . Similarly, the output
of the other two branches are F′1 and F′3.

Finally, the residual module is utilized to obtain the aggregation output, shown
as follow:

Fout =
{

Average
(

FinF′1 + FinF′2 + FinF′3
)}

(2)

The generated image Ig = G(I, Ie) is enforced to be close to the real SAR image via:

Lpixel = ‖I − Ig‖2

∣∣(region =!M) + ‖Ie − Ig‖2

∣∣(region = M) (3)

where ‖·‖2 is the L2-norm. region = M represents the region where the embedded ships
are located. region =!M represents the region without the ships. It should be noted that
mask M is only used in the training stage to help improve the final result.

2.2. Max-Patch Discriminator

Discriminator D is designed to help generator G generate more plausible SAR images.
In this section, a max-patch discriminator is constructed, which consists of seven convolu-
tion layers. After each convolution layer, LeakyReLU activation and instance normalization
layers are applied. Sigmoid activation is placed after the last layer. The architecture of the
network is shown in Table 1.

Table 1. The architecture of the Discriminator.

Layer Type Size Number Stride Output Parameter

0 Input — — — 512 × 512 —
1 Conv 4 × 4 32 1 512 × 512 544
2 MaxPool — — 2 256 × 256 —
3 Conv 3 × 3 32 1 256 × 256 9248
4 MaxPool — — 2 128 × 128 —
5 Conv 3 × 3 32 1 128 × 128 9248
6 Conv 3 × 3 64 1 128 × 128 18,496
7 MaxPool — — 2 64 × 64 —
8 Conv 3 × 3 32 1 64 × 64 18,464
9 MaxPool — — 2 32 × 32 —

10 Conv 3 × 3 32 1 32 × 32 9248
11 Conv 3 × 3 1 2 16 × 16 289

Voting is used to determine whether the input is positive or negative. Specifically, the
response values of the network are sorted, then the max N values are selected to calculate
the average, which is taken as the final discrimination result. N is set as 25 in this paper.

Cross entropy is leveraged for training, which is given by:

LD = − log(D(I))− log(1− D(G(I, Ie))) (4)
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LG = − log(D(G(I, Ie))) (5)

where D and G denote the discriminator and the generator, respectively. D(·) and G(·) are
their outputs. LD and LG represent the discrimination quality loss and generation quality
loss, respectively.

The overall loss function of the training process is defined as a weighted sum of the
losses, which is expressed as:

Gloss = argmin
(

λ1Lpixel + λ2LG

)
(6)

Dloss = argmin(LD) (7)

where λ1 and λ2 are set as 1 in this paper. Gloss and Dloss represent the generator loss and
discriminator loss, respectively.

3. Lightweight Densely Connected Sparsely Activated Detector

In this section, firstly, the convolution module is introduced. Then, the lightweight
backbone network is constructed. Finally, the detection framework is described in detail.

3.1. Convolution Module

The conventional convolution neural network is widely used in modern network
architectures, such as ResNet [55], GoogLeNet [56], and Darknet [36–38], which is used
by most of the object detectors in extracting features. However, good feature extraction
ability is always associated with a large number of parameters and high computational
complexity. The group convolution and the depthwise convolution are two architectures
that reduce the computational complexity by changing the convolution density between
all channels. The architectures of the conventional convolution, the group convolution and
the depthwise convolution are shown in Figure 5.
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wise convolution.

According to Figure 5a, the conventional convolution’s filter should process each
feature map to generate a new layer. For Figure 5a, the conventional convolution has
8× 4 = 32 convolution operators. Compared with the conventional convolution, the group
convolution has a lower computational complexity. In regard to Figure 5b, the group
convolution has 4× 4 = 16 convolution operators. The depthwise convolution only needs
to convolute one input channel. Hence, for Figure 5c, the depthwise convolution merely
has 8× 1 = 8 convolution operators. To reduce the computational complexity, the group
convolution and the depthwise convolution are adopted to construct the backbone.

3.2. The Architecture of DSNet Backbone

Target detection requires a wealth of information. In deep convolution networks,
the degree of information abundance varies from low to high, and the special resolution
varies from high to low. With the increases of network depth and decrease of spatial
resolution, a single layer cannot provide enough information. How to better integrate the
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information between different stages and blocks of the network is a problem that needs
further consideration.

Reusing features in deep networks via dense connection is an effective way to achieve
high computational efficiency [57]. The counter-intuitive effect of the dense connected
mode is that it requires fewer parameters than traditional convolutional neural networks
as it does not need to relearn redundant features. A densely connected mode can improve
the flow of information through the network, which makes training easier. Each layer has a
direct path from the loss function and the input information directly to the gradient, which
allows for deeper supervision. Furthermore, a dense connection has a regularization effect,
which reduces overfitting on smaller training data sets [57].

Since a densely connected model reuses shallow features, as the network depth
increases, the number of network layers increases and the computational complexity
also increases significantly. To solve such a problem DSNet is constructed, which adopts
a densely connected model to reuse shallow features and utilizes sparse convolution
(e.g., group convolution and depthwise convolution) networks to activate the feature
layers. Moreover, the output channels of each convolutional layer are shuffled to ensure
communication between different groups. The sparse activate module of this architecture
is shown in Figure 6.
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Figure 7 shows the architecture of DSNet. HSA(·) is the sparse active module. In
addition, the number of pixels occupied by the ship target in SAR image is usually relatively
small. Hence, two networks with different spatial resolutions refer to as DSNet 1.0× and
DSNet 2.0× are constructed, respectively. Details of the DSNet can be found in Appendix A.
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3.3. The Location of Bounding Box

The geometric shape of the ship target is a long ellipse, and the orientation is arbitrary.
Therefore, the corresponding bounding boxes undergo a large change (e.g., extreme aspect
ratios). Figure 8 shows the typical SAR ship images. The design of the anchors is empirical,
which cannot fully describe the shape of ship targets. Although the regression branch can
slightly amend the anchor box, the anchor-based framework still has lower flexibility, and
ships with a peculiar shape may be lost. Therefore, an anchor-free framework could be
more suitable for ship detection.
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Depending on how to encode the bounding box’s location, anchor-free methods can
be divided into point-grouping detectors and point-vector detectors [58]. Point-grouping
detectors use two individual branches to detect key points and their offset maps. These
key points can then be grouped together by the offset maps. The point-vector detectors
determine the bounding box of targets by the key point and its vector. The encoded location
of the bounding box is illustrated in Figure 9.
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the left-top and right-bottom corners, and groups them together by an offset map. (b) shows the center point-vector
detectors form. (c) shows the instance point-vector detectors form. It regards all the points in the ground truth boxes as
positive samples.

Considering point-grouping methods need to cluster the detected corner points, which
suffer from mismatching in the case of densely distributed conditions [57], the point-vector
bounding box is accepted in this paper.

Anchor-based detectors use the pixel position on the input image as the anchor’s
center point to regress the bounding box, amending the preset anchors. In contrast, DSDet
regards the locations of bounding boxes as training samples instead of anchor boxes and
directly regresses the bounding box at the location. All the points in the ground truth boxes
are regarded as positive samples. This is different from anchor-based methods which only
select the high IoU score anchor boxes as the positive samples.
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The predicted bounding box is encoded by a four-dimension (4-D) vector (xt, yt, xb, yb).
Here (xt, yt) and (xb, yb) denote the coordinates of the left-top and right-bottom corners of
the bounding box. The 4-D training target v = (l, t, r, b) is utilized to regress the bounding
box, which is calculated by:

l = x− xt, t = y− yt,
r = xb − y, b = yb − y.

(8)

where (x, y) is the coordinate of the pixel point.

3.4. Deep Feature Fusion Pyramid

Early methods only employed one stage feature map to detect targets. High-level
feature maps have large receptive fields and can capture richer semantic information.
However, it is hard for them to detect small-scale targets due to their low spatial resolution.
In contrast, low-level feature maps have richer spatial information but provide less semantic
information, enabling high localization accuracy but worse classification performance.
This imbalance between different levels reduces multi-scale ship detection performance.
Therefore, it is a natural choice to construct a feature pyramid using different levels of
features to detect targets. Furthermore, different level features capture different context
information. The important features of targets may not distribute in a single level. Hence,
features at different levels should be appropriately fused.

Based on the considerations above, this paper introduces a deep feature fusion pyra-
mid, which aims to let small proposals access the fusion pyramid exploiting more useful
contextual information and large proposals acquire rich spatial information.

The structure is illustrated in Figure 10, for which DSNet is taken as the backbone of
the detector. The output of stages 3–5 are utilized to detect targets. As shown in Figure 1,
the output of stages 3–5 in the network is defined as {C3, C4, C5}. {N3, N4, N5} denotes
the feature levels generated by the feature fusion pyramid. The augmented path starts
from the lowest level C3 and gradually approaches C5. From C3 to C5, the spatial size is
gradually down-sampled with a factor of 2.
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In order to reduce the computational complexity, the feature fusion pyramid is sim-
plified by using fewer convolution operations. In particular, for feature level 3~4, feature
map Ci first passes through a 1 × 1 convolutional layer. Then, each element in this layer is
added with the up-sampled high-level feature to obtain an intermediate feature N′i . Finally,
intermediate feature N′i is processed via down-top path to generate Ni. This process is
summarized as:

N′i =
{

Conv1×1(Ci) + up_sampled
(

N′i+1
)}

, (i = 3, 4)
N′5 = {Conv1×1(C5))},

Ni =
{

N′i + down_sampled(Ni−1)
}

, (i = 4, 5)
N3 =

{
N′3
}

.

(9)

3.5. Loss Function

At the end of the detection, a non-maximum suppression (NMS) process is adopted
to select the position of the targets. NMS process ranks all detection results according to
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their classification confidence and selects the highest classification score bounding box as
the final position of the targets. This process has the risk that low classification confidence
but high-quality bounding boxes may be filtered. To address this issue, generalized focal
loss [59] is introduced in the loss function. The total loss function is constructed as:

L
({

qx,y
}

,
{

bx,y
})

=
1

Npos
∑
x,y
Lqua

(
qx,y, q∗x,y

)
+

1
Npos

N∑
x,y
Lreg

(
bx,y, b∗x,y

)
. (10)

The training loss function consists of two parts: Lqua and Lreg. They represent the
quality loss and regression loss, respectively. Here, Npos is the number of positive sam-
ples, while qx,y and q∗x,y denote the quality prediction score and the ground truth label,
respectively. The ground truth label q∗x,y represents the IoU score of the regressed box. The
quality loss adopts quality focal loss [59] to measure the difference between the predicted
quality and the ground truth label. N denotes the positive region. bx,y and b∗x,y denote the
predicted location and the ground truth box.

Lqua

(
qx,y, q∗x,y

)
= −

(
q∗x,y − qx,y

)β((
1− q∗x,y

)
log
(
1− qx,y

)
+ q∗x,y log

(
qx,y
))

(11)

where β is set as 2.
Distance-IoU loss [60] and distribution focal loss [59] are adopted to measure the

distance between the predicted box and the ground truth box, which are calculated by:

Lreg

(
bx,y, b∗x,y

)
= λ3LDIoU + λ4LDFL (12)

LDIoU = 1− IoU +

∣∣C− B ∪ Bgt
∣∣

|C| (13)

IoU =

∣∣B ∩ Bgt
∣∣

|B ∪ Bgt|
(14)

where B and Bgt represent the predicted box and ground the truth box. C is the smallest
box covering B and Bgt. λ3 and λ4 are set as 0.3 and 2, respectively.

The relative offsets from the location to the four sides of a bounding box are adopted
as the regression targets, as shown in Figure 9c. g is the regressed label. Given the range of
label g with minimum g0 and maximum gn (g0 < g < gn), the range [g0, gn] is divided into
a set {g0, g1, · · · , gn}. The estimated regression value ĝ can be calculated by:

ĝ =
n

∑
i=0

P(gi)gi,
n

∑
i=0

P(gi) = 1 (15)

P(·) can be easily implemented through a SoftMax S(·) layer consisting of n + 1 units,
with P(gi) being denoted as Si for simplicity. n is set as 7, and the interval is 1. Then, the
loss function can be expressed as follow:

LDFL(Si, Si+1) = −((gi+1 − g) log(Si) + (g− gi) log(Si+1)) (16)

where gi and gi+1 are the nearest to the label g (gi < g < gi+1).

4. Experiments and Discussions

In this section, experiments with real SAR images are carried out to assess the compe-
tence of the proposed method. In the following experiments, the dataset and evaluation
metrics are introduced first. Then, the performance of the ship sample augmentation
method is illustrated. Additionally, detailed experiments of the proposed lightweight
detection network are conducted.



Remote Sens. 2021, 13, 2743 12 of 21

4.1. Dataset

The SSDD [61] and HRSID dataset [8] are selected to evaluate the proposed method.
SSDD is the first public SAR ship detection dataset, which is mainly provided by Radarsat-
2, TerraSAR-X, and Sentinel-1 sensors, taken in Yantai, China, and Visakhapatnam, India,
with the resolution of 1 m–15 m. It contains a large number of ship targets in the sea and
coastal areas. In SSDD, there are 1160 images and 2456 ships with an average of 2.12 ships
per image. The training subset contains 928 images, and the test subset contains 232 images.

HRSID is a large SAR ship detection dataset published recently. It contains multi-scale
ships labeled with bounding box in various environments, including different scenes,
sensor types and polarization modes. Statistically, there are 5604 cropped SAR images and
16,951 annotated ships in HRSID. The average number of ships per image is 3. Table 2
shows the main parameters of SSDD and HRSID.

Table 2. The main parameters of SSDD and HRSID.

Parameter SSDD HRSID

Satellite RadarSat-2, TerraSAR-X,
Sentinel-1

Sentinel-1B, TerraSAR-X,
TanDem

Polarization HH, HV, VV, VH HH, VV, HV
Location Yantai, Visakhapatnam Houston, Sao Paulo, etc.

Resolution (m) 1–15 0.5, 1, 3
Cover width (km) ~10 ~4
Image size (pixel) — 800 × 800

Number of training images 928 3642
Number of testing images 232 1962

Total number of ships 2456 16,951

In the data augmentation experiment, half of the training data in SSDD are randomly
selected as positive samples and the other half are used to embed ship slices to train the
generator. The training epoch is 50, and the optimizer is Adam who has a learning rate of
0.0004. Beta 1 and beta 2 are set as 0.9 and 0.999, respectively.

The detector model is pre-trained on the COCO dataset [62]. In the following exper-
iment, the training epoch is 100, and the stochastic gradient descent (SGD) algorithm is
used as the optimizer. The initial learning rate is set as 0.1, and it decays in the 50th and
75th, adopting 0.01 and 0.001, respectively.

4.2. Evaluation Criteria

In order to quantitatively evaluate the detection performance of the network, the
following evaluation criteria are used.

The detection precision and recall are the basic performance evaluation criteria of the
traditional detection algorithms. The definitions are expressed by:

Precision =
TP

TP + FP
(17)

Recall =
TP

TP + FN
(18)

where TP is the number of truly detected ships, FP is the number of backgrounds detected
as ships, and FN represents the number of ships detected as the background. The true
detected ship is defined as the target whose IoU between its bounding box and ground
truth is higher than 0.5.

High precision and recall rate is difficult to meet at the same time, hence, AP shown in
Equation (19) is adopted to evaluate the overall performance of the detection methods.

AP =
∫ 1

0
P(R)dR (19)
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where P denotes precision, and R represents recall. AP is the primary challenge metric with
the calculation of average IoU, which has ten IoU thresholds distributed from 0.5 to 0.95
with a step of 0.05. AP50 is the AP score when the IoU threshold is chosen as 0.5. Similarly,
AP75 is the AP score when the IoU threshold is chosen as 0.75. Aps, APm, and APl denote
the objects with small (area < 322 pixels), medium (322 < area < 642 pixels), and large
(642 < area) size.

4.3. The Performance of the Ship Sample Augmentation Method
4.3.1. The Generated Results of the Proposed Method

Figure 11 shows the generation performance of the proposed sample augmentation
method. Figure 11a shows the original SAR images; Figure 11b shows the embedded
SAR images that simulate the various states of ship targets in the inshore and offshore
areas; Figure 11c illustrates the generated images. Evidently, the embedded ships are
very inconsistent with the surrounding environment (as shown in Figure 11b). On the
contrary, ships in the generated images are observed to be consistent with the surrounding
environment, which demonstrates the effectiveness of the proposed augmentation method.
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4.3.2. The Comparison of the Generated Results between the Proposed Method and U-Net

In order to verify the effectiveness of the proposed generator’s network, the proposed
network is compared with U-Net. Figure 12a shows the embedded SAR images, while
Figure 12b depicts the results of U-Net and Figure 12c illustrates the results of the proposed
method. According to Figure 12, the proposed network has a superior generation perfor-
mance than U-Net. It can be observed that the proposed method not only preserves the
details of the ship targets but also integrates the targets and the background well, which
demonstrates the outperformance of the proposed method.

4.3.3. The Effectiveness of the Proposed Two-Channel Input Mechanical

To verify the effectiveness of the proposed two-channel input mechanical, an experi-
ment is conducted. Figure 13 shows the results of the single-channel (only the embedded
SAR image) input and two-channel input. Evidently, the results of the two-channel input ex-
hibit better performance. The reason is that the two-channel input mechanical increases the
available information of the generator so that the generator can easily find the embedded
targets from the comparison and make it harmonious with the surrounding environment.
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On the contrary, the single-channel input mechanical is unable to specify the target areas
for the generator, which increases the learning difficulty of the generator.
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4.4. The Results of Ship Detection on SSDD
4.4.1. Accuracy

To evaluate the performance of the proposed method, comparison experiments on
Faster R-CNN [35], YOLO-V3 [38], FCOS [58], SSD [63], and EfficientDet [64] are conducted.
The comparison results of the detection performance are quantitatively shown in Table 3.
The results in bold signify the best result of the corresponding index. It can be observed
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from Table 3 that the AP, AP50, AP75, APs, APm, and APl of DSNet with backbone DSNet
1.0× are 59.8%, 94.6%, 69.8%, 55.0%, 66.9%, and 61.8%, respectively. Meanwhile, the AP,
AP50, AP75, APs, APm, and APl of DSNet with backbone DSNet 2.0× are found to be
60.5%, 96.7%, 70.2%, 56.3%, 68.1%, and 58.9%, respectively. Compared with DSNet 1.0×,
DSNet 2.0× exhibits better performance, which demonstrates that using features with high
spatial resolution can improve the detection performance.

Table 3. The comparison of the accuracy of different detectors on the SSDD dataset.

Method Backbone AP (%) AP50 (%) AP75 (%) APs (%) APm (%) APl (%)

Faster
R-CNN

ResNet-100 + FPN 52.0 88.7 57.7 49.9 56.4 34.2
ResNet-100 + FPN + † 53.1 90.2 58.2 53.6 55.4 40.4

YOLO-V3
DarkNet-53 56.9 93.6 64.1 52.0 65.1 64.7

DarkNet-53 + † 57.8 94.2 64.3 53.5 68.4 68.8

FCOS
ResNet-50 + FPN 58.8 93.3 67.0 52.9 68.3 67.8

ResNet-50 + FPN + † 61.5 94.9 70.1 53.4 68.0 68.2

SSD
VGG16 55.2 92.3 59.0 48.3 66.2 63.6

VGG16 + † 56.7 92.9 59.6 48.1 67.1 66.1

EfficientDet
EfficientNet-D4 59.3 89.3 72.1 54.6 66.5 71.1

EfficientNet-D4 + † 59.3 90.1 72.1 55.3 66.4 70.4

DSDet

DSNet 1.0× 59.8 94.6 69.8 55.0 66.9 61.8
DSNet 1.0× + † 60.9 95.8 70.8 56.4 68.9 67.4

DSNet 2.0× 60.5 96.7 70.2 56.3 68.1 58.9
DSNet 2.0× + † 61.5 97.2 71.8 56.5 69.4 65.1

† means the proposed data augmentation method. In this paper 200 SAR images are augmented.

Without considering the data augmentation method, the proposed DSDet (DSNet
2.0×) obtains the highest performance in the AP, AP50, and APs, garnering a 1.2%, 3.1%,
and 1.7% improvement compared to the highest performance of the comparison methods.
As for AP75 and APm, the performance of the proposed DSDet (DSNet 2.0×) is noted
to be slightly lower than the highest performance of the comparison method, with a
rather small gap. In terms of the overall performance, the proposed method demonstrates
obvious advantages. Moreover, when using the proposed data augmentation approach, the
proposed method exhibits obvious superior performance in almost all evaluation criteria.

Figure 14 shows the effect of the proposed data augmentation method on AP50 and
AP75. The proposed data augmentation approach gains 1.5%, 0.6%, 1.6%, 6.3%, 0.6%, 0.8%,
1.2% and 0.5% in terms of AP50 for Faster R-CNN, YOLO-V3, FCOS, SSD, EfficientDet,
DSNet 1.0×, and DSNet 2.0×, respectively. Moreover, the AP75 values of Faster R-CNN,
YOLO-V3, FCOS, SSD, DSNet 1.0×, and DSNet 2.0× also gain 0.5%, 0.2%, 3.1%, 0.6%,
1.0%, 0.8% and 1.6% improvement, respectively. Actually, the AP, APs, APm, and APl
performances are also significantly improved, which means the small, medium, and large
targets’ detection accuracies are also improved, as shown in Table 3. Evidently, the proposed
data augmentation approach can effectively improve the detection performance.

4.4.2. Computational Complexity

The visualization results under different metrics are given in Figure 15 to illustrate the
complexity and accuracy of the proposed method. Here, compared with the comparison
methods, the proposed detector has the least number of parameters (0.7 M), while the
number of parameters in Faster R-CNN, YOLO-V3, FCOS, SSD, EfficientDet are 60.3 M,
61.5 M, 32.1 M, 23.8 M, and 20.5 M, respectively. The second smallest detector EfficientDet
is still larger than the proposed DSDet 1.0× by 29-fold. This signifies that the weight
of the proposed method is far lighter than all other methods. Besides, the proposed
detector receives the lowest computational complexity (3.7 GFLOPs, 14.3 GFLOP), while
that of Faster R-CNN, YOLO-V3, FCOS, SSD, EfficientDet are 134.4 GFLOPs, 87.7 GFLOPs,
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121.1 GFLOPs, 127.8 GFLOPs, 107.5 GFLOPs, respectively. The second-lightest YOLO-
V3 is still heavier than the proposed DSDet 1.0× by 24-fold. Moreover, the accuracy of
the proposed detector is also the highest. In general, the above results demonstrate that,
compared with the comparison methods, the proposed detector has the highest accuracy,
lowest computational complexity, and least number of parameters.
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4.5. Results of Ship Detection on HRSID

To verify the robustness and migration capacity of the proposed detector in different
datasets, the detection performance of the proposed detector is further tested in HRSID
dataset. HRSID provides abundant baselines. We use these baselines to verify the de-
tection performance. Table 4 shows the comparison of different detectors on the HRSID
dataset. According to Table 4, compared with other baselines, HRSDNet with backbone
HRFPN-W40 has the best overall performance, whose AP, AP50, AP75, APs, APm, and
APl criteria are 69.4%, 89.3%, 79.8%, 70.3%, 71.1% and 28.9%, respectively. The detection
accuracy of RetinaNet with backbone ResNet-100 + FPN is noted to be much lower than
the other baselines. The AP, AP50, AP75, APs, APm and APl of RetinaNet with backbone
ResNet-100 + FPN are 59.8%, 84.8%, 67.2%, 60.4%, 62.7%, and 26.5%, respectively.

Additionally, the AP, AP50, AP75, APs, APm and APl of DSNet with backbone DSNet
2.0× are found to be 60.5%, 90.7%, 74.6%, 66.8%, 64.0%, and 7.6%, respectively. The
performance of the proposed DSDet was slightly lower than the highest performance
baseline HRSDNet. Despite the slight sacrifice in accuracy, the model parameter and
model size of the proposed detector is rather small, which are the 1/130.2 and 1/130 of the
HRSDNet with backbone HRFPN-W40. In terms of the model parameter and model size,
the proposed detector outperforms all comparison detectors by a large margin. Moreover,
the proposed detector also attains the highest accuracy in AP50. In general, the proposed
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detector has a competitive overall performance with the least number of parameters and
model size among the state-of-the-art detectors.

Table 4. Comparison of different detectors on the HRSID dataset.

Method Backbone Parameters
(M)

Model Size
(M)

AP
(%)

AP50
(%)

AP75
(%)

APs
(%)

APm
(%)

APl
(%)

Faster R-CNN
ResNet-50 + FPN 41.3 330.2 63.5 86.7 73.3 64.4 65.1 16.4

ResNet-100 + FPN 60.3 482.4 63.9 86.7 73.6 64.8 66.2 24.2

Cascade R-CNN [65]
ResNet-50 + FPN 69.1 552.6 66.6 87.7 76.4 67.5 67.7 28.8

ResNet-100 + FPN 88.1 704.8 66.8 87.9 76.6 67.5 67.5 27.7

RetinaNet [66]
ResNet-50 + FPN 36.3 290.0 60 84.7 67.2 60.9 60.9 26.8

ResNet-100 + FPN 55.3 442.3 59.8 84.8 67.2 60.4 62.7 26.5

Mask R-CNN [33]
ResNet-50 + FPN 43.9 351.2 65.0 88.0 75.2 66.1 66.1 17.3

ResNet-100 + FPN 62.9 503.4 65.4 88.1 75.7 66.3 68.0 23.2

Mask Scoring
R-CNN [67]

ResNet-50 + FPN 60.1 481.1 64.1 87.6 75 65.3 65.8 22.2
ResNet-100 + FPN 79.1 633.1 64.9 88.6 75.4 66.2 67.3 19.6

Cascade Mask
R-CNN [36]

ResNet-50 + FPN 77.0 615.6 67.5 88.5 77.4 68.6 67.4 22.6
ResNet-100 + FPN 96.0 767.8 67.6 88.8 77.4 68.4 69.9 23.9

Hibrid Task
Cascade [36]

ResNet-50 + FPN 79.9 639.3 68.2 87.7 78.8 69 71.2 38.1
ResNet-100 + FPN 99.0 791.6 68.4 87.7 78.8 69.2 72 31.9

HRSDNet [68] HRFPN-W32 74.8 598.1 68.6 88.4 79 69.6 70 25.2
HRFPN-W40 91.2 728.2 69.4 89.3 79.8 70.3 71.1 28.9

DSDet
DSNet 1.0× 0.7 5.6 59.8 90.3 73.3 65.5 62.2 23.1
DSNet 2.0× 0.7 5.6 60.5 90.7 74.6 66.8 64.0 7.6

5. Conclusions

Compared with optical datasets, the number of samples in SAR datasets is much
smaller. Moreover, most state-of-the-art CNN-based ship target detectors are computa-
tionally expensive. To address these issues, this paper proposes a SAR ship sample data
augmentation method as well as a lightweight densely connected sparsely activated de-
tector. The proposed sample data augmentation framework can purposefully generate
abundant hard samples, simulate various hard situations in marine areas, and improve
detection performance. In addition, dense connection and sparse convolution modules are
utilized to construct the backbone. Based on the proposed backbone, a low-cost one-stage
anchor-free detector is presented. The validity of the proposed method is then confirmed
on the public datasets SSDD and HRSID. The experimental results indicated that the
proposed data augmentation method can evidently improve the detection performance.
Benefiting from the lightweight design of the detection network, the proposed detector
achieves competitive performance compared to other state-of-the-art detectors with the
least number of parameters and lowest computation complexity.

Ship instance segmentation in SAR images under complex sea conditions is an im-
portant research topic in the field of detection. The proposed lightweight detector can
be remolded to construct a low-cost SAR ship instance segmentation method. Conse-
quently, our future studies will focus on the ship instance segmentation for high-resolution
SAR images.
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Appendix A

Table A1. The structure of the DSNet 1.0×.

Stage Input Size Operator Output Size
Output

Channel
Number

{Kernel size, Convolution type, Channel
number, Group number, Stride}

1 512× 512 {3× 3, Conv, 12, 1, 2} × 1 256× 256 12

2 256× 256


1× 1, GConv, 6, 6, 2

3× 3, DWConv, 6, 6, 1
1× 1, Conv, 6, 1, 1

× 1

128× 128

18


1× 1, GConv, 6, 6, 1

3× 3, DWConv, 6, 6, 1
1× 1, Conv, 6, 1, 1

× 1 24

3 128× 128


1× 1, GConv, 12, 6, 2

3× 3, DWConv, 12, 12, 1
1× 1, Conv, 12, 1, 1

× 1

64× 64

36


1× 1, GConv, 12, 6, 1

3× 3, DWConv, 12, 12, 1
1× 1, Conv, 12, 1, 1

× 2 60


1× 1, GConv, 24, 6, 1

3× 3, DWConv, 24, 24, 1
1× 1, Conv, 24, 1, 1

× 2 108


1× 1, GConv, 36 6, 1

3× 3, DWConv, 36 36 1
1× 1, Conv, 36 1, 1

× 2 180


1× 1, GConv, 48 6, 1

3× 3, DWConv, 48 48 1
1× 1, Conv, 48 1, 1

× 1 228


1× 1, GConv, 192 6, 1

3× 3, DWConv, 48 48 1
1× 1, Conv, 48 1, 1

× 1 276


1× 1, GConv, 60, 6, 1

3× 3, DWConv, 60, 60, 1
1× 1, Conv, 60, 1, 1

× 1 336

4 64× 64


1× 1, GConv, 96, 6, 2
3× 3, GConv, 24, 24, 1
1× 1, Conv, 24, 1, 1

× 1

32× 32

360


1× 1, GConv, 96, 6, 1
3× 3, GConv, 24, 24, 1
1× 1, Conv, 24, 1, 1

× 2 408


1× 1, GConv, 192, 6, 1
3× 3, GConv, 48, 48, 1
1× 1, Conv, 48, 1, 1

× 2 504


1× 1, GConv, 288, 6, 1
3× 3, GConv, 72, 72, 1
1× 1, Conv, 72, 1, 1

× 1 576
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Table A2. Cont.

Stage Input Size Operator Output Size
Output

Channel
Number

5 32× 32


1× 1, GConv, 192, 6, 2
3× 3, GConv, 48, 48, 1
1× 1, Conv, 48, 1, 1

× 1

16× 16

624


1× 1, GConv, 192, 6, 1
3× 3, GConv, 48, 48, 1
1× 1, Conv, 48, 1, 1

× 2 720


1× 1, GConv, 384, 6, 1
3× 3, GConv, 96, 96, 1
1× 1, Conv, 96, 1, 1

× 2 912


1× 1, GConv, 576, 6, 1
3× 3, GConv, 144, 144, 1
1× 1, Conv, 144, 1, 1

× 1 1056

The difference between DSNet 1.0× and DSNet 2.0× is that the resolutions of the
stages in DSNet 2.0× are 256× 256, 256× 256, 128× 128, 64× 64, 32× 32.
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