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Abstract: With the development of industrialization and urbanization, heavy metal contamination in
agricultural soils tends to accumulate rapidly and harm human health. Visible and near-infrared
(Vis-NIR) spectroscopy provides the feasibility of fast monitoring of the variation of heavy metals.
This study explored the potential of fractional-order derivative (FOD), the optimal band combina-
tion algorithm and different mathematical models in estimating soil heavy metals with Vis-NIR
spectroscopy. A total of 80 soil samples were collected from an agriculture area in Suzi river basin,
Liaoning Province, China. The spectra for mercury (Hg), chromium (Cr), and copper (Cu) of the
samples were obtained in the laboratory. For spectral preprocessing, FODs were allowed to vary
from 0 to 2 with an increment of 0.2 at each step, and the optimal band combination algorithm was
applied to the spectra after FOD. Then, four mathematical models, namely, partial least squares
regression (PLSR), adaptive neural fuzzy inference system (ANFIS), random forest (RF) and gener-
alized regression neural network (GRNN), were used to estimate the concentration of Hg, Cr and
Cu. Results showed that high-order FOD had an excellent effect in highlighting hidden information
and separating minor absorbing peaks, and the optimal band combination algorithm could remove
the influence of spectral noise caused by high-order FOD. The incorporation of the optimal band
combination algorithm and FOD is able to further mine spectral information. Furthermore, GRNN
made an obvious improvement to the estimation accuracy of all studied heavy metals compared to
ANFIS, PLSR, and RF. In summary, our results provided more feasibility for the rapid estimation of
Hg, Cr, Cu and other heavy metal pollution areas in agricultural soils.

Keywords: visible and near-infrared spectroscopy; heavy metals; fractional-order derivative; optimal
band combination algorithm; generalized regression neural network

1. Introduction

Soil contamination has increased significantly worldwide with the rapid development
of industrialization and urbanization [1–3]. Due to their contamination being covert,
persistent and irreversible, heavy metals are among the most hazardous contamination
types that threaten the health of animals and human beings throughout the food chain [4–8].
Soil heavy metals, especially mercury (Hg), chromium (Cr), lead (Pb), cadmium (Cd) and
copper (Cu), tend to be accumulated in soils because of anthropogenic activities and their
own easy migration properties as common industrial pollutants [9–14]. Thus, it is crucial
to closely monitor the concentration of heavy metals. However, the mechanisms of soil
evolution are complex and difficult to understand [15], and the soil properties may vary
obviously on a small scale [16]. Traditional field sampling is always accompanied by sample
preparation and chemical analysis, which is difficult to apply widely [17]. Alternatively,
because of its low cost and environmental friendliness, visible and near-infrared (Vis-NIR)
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spectroscopy has been used as a viable alternative to laboratory analysis methods for soil
quality assessment [18–21].

Affected by measuring environment, instrument errors or other reasons, spectra
always obtain undesired side effects, such as spectral noises, baseline shift, and mixed
overlapping peaks [20,22]. Spectral preprocessing techniques are utilized to reduce un-
desirable effects and accentuate spectral features [21]. Spectral derivatives are able to
eliminate baseline drift and separate overlapping spectra, thereby turning into a frequently
used spectral preprocessing technique. The positive effect of first derivatives and second
derivatives on heavy metal concentration estimation has been validated and reviewed
by researchers [20,23–25]. Nevertheless, integer derivatives disregard the gradual varia-
tion in the spectrum in slit and curvature, which leads to the loss of subtle information.
Fractional-order derivative (FOD) can refine the order of conventional derivatives. Until
now, researchers only applied FOD to Vis-NIR spectroscopy estimation of Pb, Zn and
Cr [26,27], and the effect of FOD on other heavy metals that tend to accumulate in soils
has not been reported. In addition, as a key spectral preprocessing technique, spectral
dimensionality reduction can reduce data redundancy and improve the accuracy of estima-
tion [28]. The optimal band combination algorithm can find the most suitable bands and
generate an optimal combination through magnifying the correlation between dependent
and independent variables [23,29]. The algorithm has been proved to be able to effectively
eliminate the noise caused by second derivative [23], whereas the improvement to FOD
produced by the algorithm has not been explored yet.

Other than spectral preprocessing techniques, mathematical models also have great
impacts on the Vis-NIR spectroscopy estimation of soil heavy metals [30]. Commonly
used mathematical models include multiple linear regression (MLR) [31], partial least
squares regression (PLSR) [32], random forest (RF) [27], support vector machine (SVM) [33],
and adaptive neural fuzzy inference system (ANFIS) [34]. In previous studies, ANFIS
and RF reported that they performed better than other models [27,34,35]. As a kind of
radial basis function neural network, the generalized regression neural network (GRNN)
has excellent performance in anti-interference, the ability of autonomous learning and
fast convergence speed [36]. In other applications of mathematical models, it has been
proved that GRNN can achieve similar or better performance compared with RF and
ANFIS [37–40]. However, there is no study comparing the performance of GRNN, ANFIS,
and RF in Vis-NIR spectroscopy estimation of heavy metals in soils.

The aim of the study was to explore the potential of using appropriate preprocessing
techniques and mathematical models to improve Vis-NIR spectroscopy estimation accuracy
of heavy metals in soils. Hence, we introduced FOD to highlight the hidden information
of the spectrum, and assessed the effect of optimal band combination algorithm on FOD.
PLSR, GRNN, ANFIS and RF were utilized to estimate the concentration of Hg, Cr and
Cu in soils with the spectral indices produced by the optimal band combination algorithm.
Additionally, the performances of the four mathematical models were compared in detail.

2. Materials and Methods
2.1. Study Area and Sample Collection

The study area is located in the Suzi river basin, Fu Shun city, Liaoning Province,
northeast China, as shown in Figure 1a. The river basin covers an area of 2161 km2, and its
terrain is relatively undulating. Its climate is classified as continental monsoonal, with large
temperature difference. The average annual precipitation and temperature are 759.1 mm
and 5.1 ◦C, correspondingly. The accumulated sunshine hours in the area are between
2280 h and 2670 h, and the frost-free period is approximately 120 to 160 days. The soil types
in the region include Cumulic Anthrosols, Gleyic Luvisols, Haplic Luvisols and Haplic
Phaeozems [41]. The cultivated area accounts for about 13.05% of the study area, mostly
distributed on both sides of the river. In this area, the crop types include rice, vegetables,
and other economic crops. The upper reaches of the river basin are rich in mineral resources,
with many small mines. Part of the mine tailings ponds are not designed according to



Remote Sens. 2021, 13, 2718 3 of 24

standards, which leads to the leakage of heavy metal elements, thereby possibly leading to
heavy metal accumulation in soils.
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Sampling campaigns were carried out in October 2013, and 80 surface soil samples
(0–20 cm) were collected in the study area. The coordinates of the samples sites were
recorded through a handheld global positioning system, as shown in Figure 1b. Sampling
points were randomly set in the cultivated lands along the river. Each sample contained five
mixed subsamples, and non-soil materials were removed during collection. All samples
were sealed in plastic bags and transported to the laboratory. After the samples were
air-dried, the soil samples were passed through a 2 mm sieve. Each sample was divided
into two parts: one part was used for spectral measurements, and the other was used for
property analysis.

2.2. Chemical Analysis and Statistic

The concentration of Cr and Cu in the soil samples was measured through inductively
coupled plasma atomic emission spectroscopy according to HJ 781-2016, and atomic fluo-
rescence spectrometry was used to determine the concentration of Hg. For different heavy
metal elements, the concentration was arranged in ascending order. The training set and
validation set were separated as follows: the second value was selected, and then one value
was selected every three values as the validation, and the remaining values were used as
the training set. Each metal element was divided into a training set and validation set in a
3:1 ratio according to the method. The training set includes 60 samples, and the validation
set includes 20 samples.

2.3. Spectral Measurement and Pretreatment

Spectral measurements of soil were performed with an ASD FieldSpec® 3 field spectro-
radiometer (Analytical Spectral Devices, Inc., Boulder, CO, USA). The device has a spectral
resolution of 3 nm over the 350–1000 nm region and 10 nm over the 1000–2500 nm region,
and records reflectance at 1 nm intervals. Spectral measurements were conducted in a dark
room. The soil samples were uniformly put into black containers with a diameter of 10 cm,
and the surface of soil samples was scraped flat. A 50 W halogen lamp was used as the
light source, and the incident angle was 30◦. The optical fiber probe was perpendicular to
the surface of each sample at a distance of 5 cm. Before spectral measurements, the device
was preheated for 30 min and optimized with a white panel. After every 10 soil samples,
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the whiteboard calibration was also carried out. Each sample was tested ten times, and the
average value was obtained as the actual spectral reflection data.

After spectral measurements, the original spectra were treated by using the Savitzky–
Golay filter [42]. A low order and narrow window size make the smoothing less effec-
tive, whereas a high order and loose window size can cause the over-smoothing phe-
nomenon [21]. It is necessary to select moderate parameters, thus the second order and
a window size of 11 points were determined [23]. After applying the Savitzky–Golay
filter, marginal bands were eliminated, and the region of 400–2400 nm was used for
subsequent analysis.

2.4. Spectral Feature Reduction

Vis-NIR spectroscopy data have a lot of redundant information when predicting a
certain metal element in soils [43]. To avoid the situation of “dimensionality disaster”,
dimensionality reduction and optimal band combination have been widely used in predict-
ing various elements in soils [29,44–50]. In the study, five types of two-band spectral index
are used to explore the suitable band combination for Hg, Cr, and Cu. The spectral indices
include ratio index (RI), normalized difference index (NDI), difference index (DI), product
index (PI), and sum index (SI). In the subsequent analyses, the five spectral indices were
calculated in the training set for the optimal band combination algorithm. Additionally, the
five spectral indices were calculated in both the training set and the validation set as the
input of the model. The calculation details of the indices are listed as Equations (1)–(5). All
combinations were calculated from the wavelength over 400–2400 nm, and the correlation
coefficients with different heavy metal elements were also obtained. For certain heavy met-
als, the combination with the largest absolute value of correlation coefficient was selected
as the optimal index of the corresponding spectral index.

RI(Bm, Bn) = Bm/Bn (1)

DI(Bm, Bn) = Bm − Bn (2)

NDI(Bm, Bn) = (Bm − Bn)/(Bm + Bn) (3)

PI(Bm, Bn) = Bm × Bn (4)

SI(Bm, Bn) = Bm + Bn (5)

where Bm and Bn are the spectral values at bands m and n in the range of 400–2400 nm,
respectively.

2.5. Fractional-Order Derivatives

Compared with integer derivatives, FODs have better ability to extract the detailed
information in the spectral data [44]. FODs are generally expressed in three definitions:
Riemann–Liouville (R-L), Grunwald–Letnikov (G-L), and Caputo [51,52]. R-L is widely
used to compute analytic solutions of simple functions. However, the R-L derivative
of the constant is not equal to 0, which limits the application of R-L. The numerical
implementation of G-L is equivalent to the convolution operation, which makes it suitable
for digital signal processing. Caputo is suitable for dealing with initial value problems of
fractional differential equations, so it is often used in engineering [51]. Due to its simple
description and applicability to the spectrum, G-L was used for calculation of FODs in this
study. The FOD of function f (x) is shown in Equation (6) [47].

dv f (x)
dxv ≈ f (x) + (−v) f (x− 1) +

(−v)(−v + 1)
2

f (x− 2) + . . . +
Γ(−v + 1)

n! Γ(−v + n + 1)
f (x− n) (6)

where v is the order.
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2.6. Model Calculation and Accuracy Evaluation
2.6.1. The Modeling Methods

For comparison, there are four modeling methods (i.e., PLSR, RF, GRNN, ANFIS)
used to develop quantitative estimation models for Hg, Cr, and Cu.

PLSR integrates the characteristic of principal component analysis, canonical correla-
tion analysis and linear regression analysis; therefore, it can avoid the problem of strong
correlation between variables [53,54]. Because of this advantage, PLSR plays an increas-
ingly important role in the analysis of soil Vis-NIR spectrum [55,56]. Before establishing
models, PLSR performed principal component decomposition of the spectral matrix X and
the concentration matrix Y, as Equations (7) and (8):

X = TP + E (7)

Y = UQ + F (8)

where T and P are the scoring matrix and loading matrix of X, respectively; U and Q are
the scoring matrix and loading matrix of X, respectively; E is the error matrix of X, and F is
the error matrix of Y. Then, linear regression is established for T and U, as Equation (9):

U = TB (9)

where B is the regression coefficient matrix. The formula of predicting unknown samples
is shown as Equation (10):

y = x(U′X)′BQ (10)

where x is the spectra of unknown samples, and y is the concentration of unknown samples.
The optimal number of latent variables was determined through the leave-one-out cross
validation procedure.

As an ensemble learning method, RF [57] is developed from a classification and
regression tree (CART) model [24,58]. RF is an ensemble classifier, which is composed of a
group of decision tree classifiers; the formula is shown as Equation (11):

R = {h(x, θk), k = 1, 2, . . . , K} (11)

where θk is the random vector that is independently identically distributed, and K is
the number of decision trees. RF has advantages in processing high dimensional and
multiple linear data, and it is not sensitive to overfitting. Therefore, when many trees are
added, RF do not over-fit, but produce a limited generalization error and large amount
of computation [59,60]. Three primary parameters of RF include the number of trees
to be grown (ntree), the number of predictor variables used to split the nodes at each
partitioning (mtry) and the minimum size of the leaf (nodesize). In this study, we used the
randomForest package to establish models [61]. The default ntree defined in the package is
500, the standard for regression analysis of nodesize is 5, and mtry is one-third of the total
number of inputs.

ANFIS is the network structure that implements the fuzzy inference system and
utilizes hybrid-learning rules [62]. The structure of ANFIS includes an antecedent part
and conclusion part, and the two parts are connected to each other by fuzzy rules in the
network form [63]. The ANFIS has five layers; the output of the first layer is shown as
Equation (12):

O1,i = µAi (x) (12)

where µA is a membership function, x is the input of node i, and O1,i is a membership value.
The output of the second layer is an algebraic product of the input signals, as Equation (13):

O2,i = wi = µAi (x1)× . . .× µCi (xn) (13)
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In the third layer, the ratio of the ith rule’s firing strength to the total summation of all
rules’ firing strength is calculated in each node, as Equation (14):

O3,i = wi =
wi

w1 + . . . + wn
(14)

In the fourth layer, the output of each node is shown as Equation (15):

O4,i = ∑ wi fi (15)

where fi is the corresponding function of each node. The overall output is computed in the
fifth layer, as Equation (16):

O5,i =
∑n

i=1 wi fi

∑n
i=1 wi

(16)

The ANFIS algorithm embedded in the MATLAB fuzzy inference toolbox was used
to develop models. The Subtractive Clustering method was applied for generating FIS to
fuzzify the input data. Furthermore, a hybrid learning algorithm was used to train fuzzy
inference system, and the coverage threshold was fixed to 0.05. The training stopped after
the error remained stable.

GRNN [64] is a memory-based network that is used to approximate the linear and
nonlinear regression between independent variables and dependent variables [65]. GRNN
has four layers, including an input layer, model layer, summation layer and output layer.
In the input layer, the number of neurons is equal to the dimension of the input vector in
the samples. The neuron can directly transmit the input into the model layer. The number
n of samples is equal to the number of neurons in the model layer, and the transfer function
of the neuron i is shown as Equation (17):

Pi = exp

[
− (X− Xi)

T(X− Xi)

2σ2

]
i = 1, 2, . . . , n (17)

where X is the input of the network, Xi is the corresponding training sample, and σ is
the smoothing parameter. In the summation layer, there are two types of neurons. The
summation is performed through two methods: arithmetic summation and weighted
summation; the formulas are shown in Equations (18) and (19):

SD =
n

∑
i=1

Pi (18)

SNj =
n

∑
i=1

yijPi, (19)

where yij is the jth element of the ith output sample. The number of neurons in the output
layer is equal to the dimension k of the output vector. The output of neuron i can be
described as Equation (20):

yi =
SNj

SD
i = 1, 2, . . . , k (20)

GRNN can be thought as the second-class radial basis function (RBF) network, having
the feature of fast and straightforward estimators. The smooth factor is the parameter of
GRNN; the error increases with the increase in smooth factor, and the network generaliza-
tion ability decreases with the decrease in smooth factor. In the study, the optimum smooth
factor was gained as trial and error, according to the mean squared error of estimation [66].

2.6.2. Model Accuracy Evaluation

In this study, the models were established based on the training set, and its accuracy
was evaluated through comparing the predicted concentration and measured concentration
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of the validation set. The division of the training set and validation set was presented
in Section 2.2, and they will be described in detail in Section 3.1. Furthermore, three
parameters, the determination coefficient (R2), root mean square error (RMSE) and residual
prediction deviation (RPD), were utilized as the indicators to evaluate model accuracy. The
calculations of R2, RMSE and RPD are as Equations (21)–(23).

R2 = 1− ∑n
i=1 (ti − pi)

2

∑n
i=1 (ti − t)2 (21)

RMSE =

√√√√√ n
∑

i=1
(ti − pi)

2

n
(22)

RPD =
SD

RMSE
(23)

where ti is the heavy metal concentration of the ith sample in the validation set, pi is the
predicted heavy metal concentration of the ith sample in the validation set, t is the average
heavy metal concentration, and n is the total number of the samples in the validation set;
SD is the standard deviation of the heavy metal concentration in the validation set.

3. Results
3.1. Descriptive Statistics for Heavy Metals

The descriptive statistics of three heavy metals is shown in Table 1. According to
China’s Soil Environmental Quality Control Standards [67], no sample exceeded the risk
screen value of Hg and Cr, but 15 samples exceeded the risk screen value of Cu. Further-
more, 86.25% of Hg, 75% of Cr, and 100% of Cu exceeded the background values. Through
the pollution ratio of the training set and validation set, it can be seen that the heavy metal
concentration distribution of the training set and validation set is similar. Therefore, the
two sets for Hg, Cr, and Cu were comparable and representative of the entire population.

Table 1. Descriptive statistics of soil Hg, Cr and Cu.

Heavy
Metal

Sample
Sets n a Min Max Mean Standard

Deviation CV b Background
Value c

Risk Screen
Value d

Pollution
Ratio e

Hg Entire 80 16.11 258.96 79.67 49.68 62.35% 37 500 86.25%
(ug/kg) Training 60 22.62 229.50 77.92 49.85 63.98% 37 500 85.00%

Validation 20 16.11 258.96 78.33 51.24 65.42% 37 500 86.67%

Cr Entire 80 26.70 130.30 80.13 27.60 34.45% 57.9 150 75%
(mg/kg) Training 60 27.90 129.10 79.46 28.07 35.33% 57.9 150 75%

Validation 20 26.70 130.30 80.41 27.68 34.42% 57.9 150 75%

Cu Entire 80 20.10 80.60 40.47 11.57 28.58% 19.8 50 100%
(mg/kg) Training 60 21.50 70.20 39.99 11.72 29.31% 19.8 50 100%

Validation 20 20.10 80.60 40.30 11.61 28.82% 19.8 50 100%
a Sample number. b Coefficient of variation. c The soil background values of Hg, Cr, and Cu in Liaoning Province [68]. d Control standard
for soil pollution risk of agricultural lands in China [67]. e Percentage of contaminated samples (the soil background values are set
as thresholds).

3.2. Fractional-Order Derivative Spectrum

The spectra of 80 soil samples were processed by FOD, and the results are demon-
strated in Figure 2. The original spectrum was relatively smooth. The spectral reflectance
changed gently and showed an upward trend. Three absorption peaks appeared at ap-
proximately 1410 nm, 1910 nm, and 2210 nm, and the absorption characteristics were not
significant enough. As the order of FOD increases, fractional differential values approached
0, indicating that the baseline drift and mixed overlapping peaks were gradually removed.
The spectral intensity was also reduced, thereby more detailed information of the spectrum
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was mined. This was proven by the presence of more characteristic peaks in the high
fractional-order spectrum. Furthermore, when the order of FOD achieved 2, the spectrum
fluctuated too frequently, indicating that some noise obscures the spectral information.
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3.3. Correlation between Heavy Metals and Optimal Spectral Indices

In order to reduce the redundant information of the spectrum with the optimal band
combination algorithm, the correlation coefficient between heavy metal concentration and
spectral indices was utilized. Hg is shown as an example in Figures A1–A5. As order of
FOD increases, the correlation coefficients of all indices were augmented significantly, and
the distribution pattern of the correlation coefficient was finer. The bands and correlation
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coefficients of the best spectral indices for different fractional-order spectrum are listed
in Tables 2–4. It can be seen that the correlation pattern among different fractional-order
spectra varies from case to case. For three heavy metals, better correlation coefficients are
achieved by high-order spectrum (i.e., from 1-order to 2-order). Therefore, the optimal
bands of high-order spectrum are statistically analyzed. The wavelengths at 1011 nm,
1173 nm, 1295 nm, 1710 nm, 1969 nm, and 2087 nm were selected by multiple high-order
spectra and thus, are particularly important for the estimation of Hg. The wavelengths
at 547 nm, 714 nm, 866 nm, 955 nm, 1137 nm, 2346 nm, and 2342 nm were selected by
multiple high-order spectra and thus, are particularly important for the estimation of Cr.
The wavelengths at 667 nm, 923 nm, 980 nm, 1015 nm, 1129 nm, and 1562 nm were selected
by multiple high-order spectra and thus, are particularly important for the estimation
of Cu.

3.4. Model Estimation and Comparisons

In this study, FOD and four modeling methods were used to establish the estimation
models of Hg, Cr, and Cu. The model’s accuracy was evaluated through comparing
the predicted concentration and measured concentration of the validation set. The Hg
concentration estimation model’s accuracy is listed in Table 5. The Cr concentration
estimation model’s accuracy is listed in Table 6. The Cu concentration estimation model’s
accuracy is listed in Table 7.

Table 2. The bands and correlation coefficient of optimal spectral indices for Hg.

Order of FOD Optimal Spectral Indices Correlation Coefficients a

0 RI475,473,DI1279,1278,NDI475,473,PI1912,1912,SI1912,1912 0.34,0.36,0.34,0.21,0.20
0.2 RI1022,1021,DI1011,1010,NDI1022,1021,PI1904,1904,SI1905,1905 0.36,0.41,0.36,0.21,0.21
0.4 RI1683,1682,DI1012,1009,NDI1683,1682,PI1897,1891,SI1897,1891 0.40,0.43,0.40,0.22,0.22
0.6 RI1024,1018,DI1012,1008,NDI1024,1018,PI1407,1407,SI1407,1407 0.41,0.42,0.41,0.24,0.24
0.8 RI1374,2147,DI2147,1374,NDI2162,1902,PI2321,1364,SI2321,1370 0.43,0.43,0.57,0.36,0.36
1 RI1377,2286,DI2146,1375,NDI1583,1410,PI1364,475,SI1364,475 0.46,0.44,0.51,0.43,0.43

1.2 RI1961,1978,DI1841,1011,NDI1522,677,PI733,707,SI2139,1430 0.54,0.45,0.55,0.43,0.43
1.4 RI925,944,DI1642,1011,NDI1649,495,PI896,609,SI2255,1459 0.55,0.45,0.55,0.44,0.46
1.6 RI1683,1826,DI2138,1011,NDI2228,722,PI1710,1173,SI1710,1173 0.51,0.45,0.57,0.47,0.45
1.8 RI1022,1325,DI2087,1295,NDI1520,658,PI1969,1173,SI1710,1173 0.58,0.49,0.64,0.49,0.47
2 RI1396,1458,DI2087,1295,NDI2357,864,PI1969,1173,SI1710,1173 0.56,0.49,0.58,0.49,0.47

a For a more visual representation, the correlation coefficients are expressed as absolute values.

Table 3. The bands and correlation coefficient of optimal spectral indices for Cr.

Order of FOD Optimal Spectral Indices Correlation Coefficients a

0 RI2259,2262,DI955,954,NDI2262,2259,PI1008,1008,SI1020,1020 0.39,0.40,0.39,0.11,0.10
0.2 RI2258,2262,DI955,954,NDI2262,2258,PI955,955,SI979,979 0.39,0.39,0.39,0.11,0.11
0.4 RI2242,2266,DI1004,985,NDI2266,2242,PI955,955,SI955,955 0.41,0.41,0.41,0.12,0.12
0.6 RI841,849,DI849,841,NDI849,841,PI893,893,SI955,955 0.45,0.43,0.45,0.15,0.14
0.8 RI1211,1135,DI1211,1135,NDI1211,1135,PI2321,2319,SI2320,2320 0.47,0.46,0.47,0.27,0.26
1 RI464,2261,DI713,464,NDI2261,464,PI2089,955,SI955,2089 0.51,0.51,0.51,0.45,0.46

1.2 RI505,1368,DI1137,866,NDI1368,497,PI2259,2231,SI2346,2262 0.50,0.49,0.49,0.46,0.46
1.4 RI972,2390,DI1137,866,NDI1142,714,PI2334,843,SI866,813 0.47,0.49,0.46,0.46,0.48
1.6 RI2345,1847,DI2249,1312,NDI1047,714,PI2342,1831,SI2346,547 0.48,0.48,0.52,0.50,0.48
1.8 RI2228,2087,DI2152,693,NDI2224,955,PI2342,1565,SI2346,547 0.49,0.47,0.47,0.51,0.48
2 RI981,1821,DI814,626,NDI1629,1017,PI2342,1967,SI2346,547 0.48,0.46,0.51,0.50,0.47

a For a more visual representation, the correlation coefficients are expressed as absolute values.
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Table 4. The bands and correlation coefficient of optimal spectral indices for Cu.

Order of FOD Optimal Spectral Indices Correlation Coefficients a

0 RI2261,2266,DI2266,2264,NDI2266,2261,PI998,403,SI403,998 0.44,0.39,0.44,0.08,0.01
0.2 RI980,979,DI980,979,NDI980,979,PI955,955,SI979,979 0.49,0.45,0.49,0.08,0.08
0.4 RI2245,2266,DI980,979,NDI2266,2245,PI939,939,SI939,939 0.49,0.46,0.49,0.09,0.10
0.6 RI2238,2263,DI2262,2227,NDI2263,2238,PI403,403,SI900,403 0.54,0.49,0.54,0.12,0.13
0.8 RI980,932,DI1106,1028,NDI980,932,PI2281,862,SI862,403 0.55,0.54,0.55,0.23,0.24
1 RI1084,890,DI1084,890,NDI1084,890,PI1779,1743,SI2347,2253 0.59,0.58,0.58,0.49,0.49

1.2 RI980,1093,DI2248,980,NDI2263,656,PI980,842,SI2300,980 0.57,0.56,0.60,0.59,0.56
1.4 RI667,1030,DI980,558,NDI667,631,PI2294,980,SI980,868 0.58,0.54,0.58,0.60,0.54
1.6 RI667,1628,DI1129,1015,NDI1428,1304,PI1562,667,SI693,564 0.58,0.54,0.59,0.62,0.53
1.8 RI2070,2103,DI1129,1015,NDI1047,544,PI1562,1554,SI923,667 0.59,0.53,0.62,0.61,0.52
2 RI667,1880,DI1129,1015,NDI1815,1616,PI1966,1936,SI923,667 0.57,0.52,0.58,0.68,0.55

a For a more visual representation, the correlation coefficients are expressed as absolute values.

Table 5. Estimation model accuracy of Hg.

Order
ANFIS PLSR GRNN RF

RMSE a R2 b RPD c RMSE R2 RPD RMSE R2 RPD RMSE R2 RPD

0 48.43 0.01 1.03 48.27 0.01 1.03 47.51 0.04 1.05 47.10 0.06 1.06
0.2 45.68 0.12 1.09 48.08 0.02 1.04 47.51 0.04 1.05 45.99 0.10 1.08
0.4 46.05 0.10 1.08 45.77 0.11 1.09 47.50 0.04 1.05 46.27 0.09 1.08
0.6 48.37 0.01 1.03 47.81 0.03 1.04 47.51 0.04 1.05 47.08 0.06 1.06
0.8 40.62 0.30 1.23 44.10 0.18 1.13 47.06 0.06 1.06 42.41 0.24 1.18
1 44.68 0.15 1.12 47.26 0.05 1.05 46.59 0.08 1.07 47.16 0.06 1.06

1.2 46.39 0.09 1.07 47.59 0.04 1.05 47.30 0.05 1.05 45.69 0.12 1.09
1.4 38.66 0.37 1.29 45.81 0.11 1.09 30.84 0.60 1.62 43.81 0.19 1.14
1.6 43.60 0.19 1.14 45.29 0.13 1.10 36.83 0.43 1.35 43.82 0.19 1.14
1.8 27.92 0.67 1.79 36.63 0.43 1.36 26.81 0.70 1.86 30.06 0.62 1.66
2 33.63 0.52 1.48 39.53 0.34 1.26 29.78 0.62 1.67 34.96 0.48 1.43

a Root mean square error. b Determination coefficient. c Residual prediction deviation.

Table 6. Estimation model accuracy of Hg.

Order
ANFIS PLSR GRNN RF

RMSE a R2 b RPD c RMSE R2 RPD RMSE R2 RPD RMSE R2 RPD

0 24.81 0.18 1.13 25.18 0.15 1.11 24.37 0.21 1.15 25.33 0.14 1.11
0.2 25.92 0.10 1.08 24.82 0.18 1.13 25.45 0.14 1.10 25.06 0.16 1.12
0.4 24.92 0.17 1.13 25.89 0.10 1.08 24.25 0.21 1.16 25.31 0.14 1.11
0.6 21.97 0.35 1.28 23.10 0.29 1.22 21.43 0.39 1.31 21.16 0.40 1.33
0.8 24.29 0.21 1.16 23.68 0.25 1.19 24.01 0.23 1.17 23.67 0.25 1.19
1 22.72 0.31 1.24 22.36 0.33 1.26 21.13 0.40 1.33 24.39 0.21 1.15

1.2 21.03 0.41 1.33 21.08 0.41 1.33 20.65 0.43 1.36 23.50 0.26 1.19
1.4 21.06 0.41 1.33 20.33 0.45 1.38 19.10 0.51 1.47 20.93 0.42 1.34
1.6 18.65 0.54 1.51 21.81 0.36 1.29 16.92 0.62 1.66 15.32 0.69 1.83
1.8 21.60 0.38 1.30 22.64 0.32 1.24 20.63 0.43 1.36 23.02 0.29 1.22
2 23.79 0.24 1.18 23.97 0.23 1.17 20.75 0.42 1.35 24.84 0.18 1.13

a Root mean square error. b Determination coefficient. c Residual prediction deviation.

Four modeling methods and FOD were applied in the modeling process. In the
estimation of different heavy metals, the performances of four methods varied greatly. In
addition, the models based on the fractional-order spectrum showed better estimation
performances than those based on the integer-order spectrum and the original spectrum.
The analyses of variance (ANOVA) were performed on three heavy metals. RMSE was
taken as the dependent variable, and FOD and modeling methods were taken as the
independent variables, as shown in Tables 8–10. The results showed that FOD and the
modeling methods of three heavy metals passed the significance test. For Hg and Cr, the
modeling methods had an influence on the accuracy of estimation (p < 0.05); FOD exerted
a larger effect on the accuracy of estimation (p < 0.01). For Cu, both FOD and the modeling
methods had a significant effect on the accuracy of estimation (p < 0.01).
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Table 7. Estimation model accuracy of Hg.

Order
ANFIS PLSR GRNN RF

RMSE a R2 b RPD c RMSE R2 RPD RMSE R2 RPD RMSE R2 RPD

0 10.00 0.23 1.17 10.15 0.21 1.15 9.01 0.38 1.30 9.98 0.24 1.17
0.2 9.16 0.36 1.28 10.84 0.10 1.08 10.31 0.19 1.14 9.83 0.26 1.19
0.4 9.71 0.28 1.21 9.68 0.28 1.21 8.25 0.48 1.42 9.85 0.26 1.19
0.6 9.00 0.38 1.30 9.02 0.38 1.30 8.04 0.50 1.46 9.82 0.26 1.19
0.8 9.25 0.34 1.27 8.55 0.44 1.37 7.66 0.55 1.53 9.60 0.29 1.22
1 7.95 0.52 1.47 8.42 0.46 1.39 7.33 0.59 1.60 8.27 0.48 1.42

1.2 7.69 0.55 1.52 7.94 0.52 1.48 6.78 0.65 1.73 7.92 0.52 1.48
1.4 7.56 0.56 1.55 8.18 0.49 1.43 7.51 0.57 1.56 7.62 0.56 1.54
1.6 7.80 0.53 1.50 8.15 0.49 1.44 7.22 0.60 1.62 7.82 0.53 1.50
1.8 7.73 0.54 1.52 8.60 0.43 1.36 7.51 0.57 1.56 8.20 0.48 1.43
2 8.19 0.49 1.43 8.75 0.41 1.34 7.71 0.54 1.52 8.18 0.49 1.43

a Root mean square error. b Determination coefficient. c Residual prediction deviation.

Table 8. Analyses of variance with the RMSE values for Hg.

Source of
Variation

Degree of
Freedom

Sum of the
Squares

Mean
Square F-Value p-Value Fcritical

FOD 10 1.51 0.15 18.13 4.2 × 10−10 2.16
Modeling
methods 3 0.08 0.03 3.34 0.03 2.92

Residuals 30 0.25 0.01
Sums 43 1.85

Table 9. Analyses of variance with the RMSE values for Cr.

Source of
Variation

Degree of
Freedom

Sum of the
Squares

Mean
Square F-Value p-Value Fcritical

FOD 10 0.66 0.07 16.22 1.6 × 10−9 2.16
Modeling
methods 3 0.05 0.02 3.97 0.02 2.92

Residuals 30 0.12 0.00
Sums 43 0.83

Table 10. Analyses of variance with the RMSE values for Cu.

Source of
Variation

Degree of
Freedom

Sum of the
Squares

Mean
Square F-Value p-Value Fcritical

FOD 10 0.56 0.06 16.93 9.7 × 10−10 2.16
Modeling
methods 3 0.11 0.04 11.00 4.9 × 10−5 2.92

Residuals 30 0.10 0.00
Sums 43 0.76

3.4.1. Comparison of Results for Fractional-Order Derivatives

In order to intuitively demonstrate the influence of FOD on the estimation of heavy
metals, the RPDs of models were drawn in line charts (Figure 3). The model with 1.8-order
and the GRNN method achieved the best performance in the estimation of Hg, the model
with 1.6-order and the GRNN method achieved the best performance in the estimation of
Cr, and the model with 1.2-order and the RF method achieved the best performance in the
estimation of Cu. Among 12 lines, 4 lines peaked at 1.8-order, 3 lines peaked at 1.6-order,
3 lines peaked at 1.4-order, and 2 lines peaked at 1.2-order. To further elucidate the effect
of FOD, the error bar of three heavy metals was formed based on the RPD of models, as
shown in Figure 4. For Hg and Cr, the accuracy of models varied little between 0-order and
1-order. For three heavy metals, the accuracy of the models using any method improved
greatly between 1.2-order and 1.8-order, and decreased greatly at 2-order. In addition, the
variances of model accuracy for Hg and Cr were larger between 1.4-order and 1.8-order.
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3.4.2. Comparison of Results for Mathematical Models

The models were divided into four categories according to modeling methods for
the three heavy metals. The boxplot of RPD is shown in Figure 5. For Hg, the mean
RPD of models with GRNN reached 1.26, which was 0.05 higher than those with ANFIS,
0.15 higher than those with PLSR, and 0.08 higher than those with RF. The models with
GRNN had the largest difference between maximum and minimum values of RPD. For
Cr, the mean RPD of models with GRNN reached 1.31, which was 0.07 higher than those
with ANFIS, 0.09 higher than those with PLSR, and 0.06 higher than those with RF. For
Cu, the mean RPD of models with GRNN reached 1.50, which was 0.12 higher than those
with ANFIS, 0.18 higher than those with PLSR, and 0.16 higher than those with RF. The
scatterplots of optimal models of Hg, Cr and Cu are shown in Figure 6. Although the
optimal model was implemented by RF in the estimation of Cr, the overall accuracy of
Cr models was still dominated by GRNN. When estimating the concentration of Hg, Cr
and Cu, compared with ANFIS, PLSR, and RF, the models with GRNN were significantly
improved in the quartile values of RPD.
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4. Discussion

In this study, the concentration of three heavy metals in most samples was below the
risk screen value. However, most samples had Hg and Cr concentration that surpassed
the local background value, and all samples had Cu concentration that surpassed the
local background value. In unpolluted natural soils, the heavy metals are at trace concen-
trations [69]. The enrichment of heavy metals indicates the ecological environment has
been disturbed by anthropogenic activities [70,71]. This is related to industrial activities,
especially the non-standard design of mine tailing ponds, which leads to the leakage of
heavy metal elements.

In the study of spectral derivatives, some researchers have reported that the first
derivative produced higher model accuracy than the second derivative when estimating
heavy metals and soil organic matter [72–74]. This phenomenon is related to the fact
that the first derivative can enhance the spectral information while maintaining the con-
tinuity and integrity of spectral information, whereas the second derivative introduces
additional spectral noise [20,72]. In Figure 2, the second derivative spectrum fluctuated
too frequently, indicating that the spectral information was disturbed by spectral noise.
However, in this study, the accuracy of models using the first derivative was similar to
those using the second derivative in the estimation of Cr and Cu, and the accuracy of
models using the second derivative was higher than those using the first derivative in the
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estimation of Hg. How did this phenomenon happen in our experiment? After spectral
derivatives, the spectra were processed by the optimal band combination algorithm. The
algorithm selects the optimal bands, and carries on the mathematical transformation to
the reflectance. In this process, the additional spectral noise caused by the high-order
derivatives is removed. Furthermore, compared with low-order derivatives, high-order
derivatives have the advantages of highlighting spectral information and separating the
minor absorption peaks. Therefore, the accuracy of the models using the second derivative
was similar to that of the first derivative, or even greatly improved. In addition to the
removal of noise, the optimal band combination algorithm also has the ability to reduce
the impact of irrelevant wavelength and cope with the overlapping absorption of soil
components through considering wavelength interactions [48,75,76]. According to the
spectral indices counted in Tables 2–4, a total of 19 wavelengths were selected from the
spectra of three heavy metals, including 547 nm, 667 nm, 714 nm, 866 nm, 923 nm, 955 nm,
980 nm, 1011 nm, 1015 nm, 1129 nm, 1137 nm, 1173 nm, 1295 nm, 1562 nm, 1710 nm,
1969 nm, 2087 nm, 2342 nm, and 2346 nm. These wavelengths are close to the absorption
characteristics of hematite, ferrihydrite, Fe3+, goethite, illite, organic matter, N-H, C-H,
and O-H stretch [56,77]. The spectral characteristics of soil organic matter (SOM) and
clay are closely related to the spectral response of N-H, C-H and O-H covalent bonds [78].
This is consistent with the absorption characteristics obtained. According to previous
studies, due to the strong absorption capacity of SOM, iron oxides and clay, the Vis-NIR
spectroscopy monitoring of heavy metals is through association with proxies (i.e., SOM,
iron and clay) [79,80]. Therefore, Vis-NIR spectroscopy estimation for Hg, Cr and Cu can
be performed indirectly through these components or functional groups.

It is obvious that the spectra after the first derivative are quite different from those
after the second derivative, and most of the subtle information changes are ignored. Tables
2–4 demonstrate how the correlation of spectral indices varies with the order of spectral
derivatives. The characteristic bands of spectral indices have great variation in 1-order
and 2-order. This showed that conventional spectral derivatives lost certain useful spectral
information, and this loss of information is amplified by the optimal band combination
algorithm. Additionally, the correlation coefficient of most spectral indices achieved the
highest value between 1.2-order and 1.8-order, suggesting that FOD is able to detect more
detailed spectral features compared with conventional spectral derivatives. Figure 3 shows
the variation in model accuracy after FOD and the four modeling methods. It can be
seen that the models using FOD achieved better accuracy in the estimation of three heavy
metals, regardless of the modeling method used, and the optimal models appeared at
the 1.8-order, 1.6-order, and 1.2-order. Consistent with the optimal models, the maximum
values of mean RPD for the models were also achieved at 1.8-order, 1.6-order and 1.2-order,
which corresponded to Hg, Cr and Cu, respectively (Figure 4). This further indicates the
advantages of high-order derivatives and the optimal band combination algorithm. High-
order derivatives can highlight the hidden features in the spectrum, and the additional
noise introduced by the high-order derivatives can be removed by the optimal band
combination algorithm. The incorporation of the optimal band combination algorithm and
FOD can enhance the estimation accuracy of heavy metals.

In the study, the ANFIS, PLSR, GRNN, and RF methods were applied to compare the
estimation accuracy of the three heavy metal concentrations. According to Tables 8–10, the
model accuracy listed in Tables 5–7 is influenced not only by FOD but also by modeling
methods, and the more intuitive comparison of modeling methods is shown by boxplots
(Figure 5). PLSR obtained the lowest mean value of model accuracy in the estimation of
the three heavy metals. PLSR is only suitable for linear relationships [16,74,81]. However,
there are various external or internal factors that can enhance the non-linear relationships
between the Vis-NIR spectrum and soil components, such as measurement environment
and characteristics of components [82,83]. Thus, compared with PLSR, the other three
modeling methods are more suitable for estimation of heavy metals in soils due to their
substantial non-linear prediction ability. Among ANFIS, RF and GRNN, GRNN showed
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the best performance in the estimation of heavy metal concentration. The GRNN has
excellent capacity on non-linear mapping and learning speed; in particular, it has greater
advantages in mapping unstable data to more accurate output [39,40,66]. Additionally, the
range of target property is the fundamental factor of model accuracy [84]. The CV values
reached 62.35%, 34.45%, and 28.58% for Hg, Cr, and Cu (Table 1), indicating heavy metal
concentration in this study varied in a wide range with a high degree of dispersion. This is
related to the outperformance of the models using GRNN.

In addition, the study also has some limitations. When dividing the dataset, more
sample selection methods should be considered to enhance the stability of the experiment.
For example, stratified sampling and Kennard–Stone sampling can be used to avoid taking
the output property into account [85]. In the experiment, due to the high CV values
of Hg, Cr and Cu in the samples, the models did not achieve high accuracy [84]. The
representativeness of soil samples is significant for the estimation of heavy metals in soils
using Vis-NIR spectroscopy. In future studies, this should be avoided by taking more
soil samples. Furthermore, because of the optimal band combination algorithm, only five
features were taken as input variables. This is related to the failure of RF to achieve better
performance. Additionally, it is necessary to note the potential limitation of GRNN. It
cannot ignore irrelevant inputs, thereby it is not likely to be suitable enough if existing
more than five or six non-redundant inputs [66]. Thus, methods other than GRNN should
be considered when using the full spectrum for modeling. The optimal results can be
obtained by combining GRNN with appropriate dimensionality reduction methods, such
as the optimal band combination algorithm.

The study of soil components is a multi-factor problem [86]. In the particular area,
the lack of high-resolution spatial variability data always leads to substantial errors [87].
Using Vis-NIR spectroscopy can effectively reduce the workload of sampling, so as to
obtain more spatial variability data. Thus, the incorporation of FOD, the optimal band
combination algorithm and GRNN is a significant method for rapid evaluation of heavy
metal concentration in agricultural soils.

5. Conclusions

In this study, the potential of Vis-NIR spectroscopy to estimate the concentration of
Hg, Cr, and Cu in soils was evaluated. Through the incorporation of FOD, the optimal
band combination algorithm and modeling methods, the optimal models of Hg, Cr, and
Cu were obtained. The optimal validation accuracy of Hg (R2 = 0.70, RPD = 1.86) and Cu
(R2 = 0.65, RPD = 1.73) was achieved by the 1.8-order and 1.2-order reflectance GRNN
model, and the optimal estimated accuracy of Cr (R2 = 0.69, RPD = 1.83) was achieved
by the 1.6-order reflectance RF model. The optimal band combination algorithm is able
to avoid the influence of spectral noise caused by high-order derivatives. Compared with
conventional derivatives, FOD can identify the subtler spectral characteristics of heavy
metals due to its gradual change in treatment of the spectrum. The high-order FOD is
able to highlight hidden information and the separate minor absorbing peak. In addition,
the incorporation of the optimal band combination algorithm and high-order FOD can
further mine spectral information, ignoring noise. The optimal performance was achieved
by the 1.8-order, 1.6-order, and 1.2-order spectra for Hg, Cr, and Cu, correspondingly. For
estimation of heavy metals in soils, the modeling methods with the ability to solve non-
linear problems are more suitable. When using the appropriate dimensionality reduction
method, GRNN provides an obvious improvement to the estimation accuracy of all studied
heavy metals compared to ANFIS, PLSR, and RF. Thus, the incorporation of the optimal
band combination algorithm, FOD, and GRNN for the rapid spectral estimation of Hg, Cr,
and Cu concentration was proven to be feasible. Additionally, this study is vital for the
application of Vis-NIR spectroscopy technology to the investigation of other heavy metal
contaminants in soils. In the future, we will conduct more studies to detect the influence of
GRNN and FOD on Vis-NIR spectroscopy estimation of soil heavy metals through large
soil spectral libraries.



Remote Sens. 2021, 13, 2718 17 of 24

Author Contributions: All of the authors contributed to the study. X.X. conceived and designed the
experiments, analyzed the data and wrote the manuscript. X.X. and Y.Z. processed the data. L.R.,
C.H., D.L. and F.A. contributed greatly to data collection. S.C. reviewed the manuscript. All authors
have read and agreed to the published version of the manuscript.

Funding: This research was funded by the National Key Research and Development Program of
China (Grant No. 2020YFA0714103) and the program for JLU science and technology innovative
research team (Grant No. JLUSTIRT, 2017TD-26).

Acknowledgments: We thank the editors and reviewers for their constructive suggestions and
insightful comments, which helped us greatly improve this manuscript. Furthermore, we also
appreciate the help of publisher in the process.

Conflicts of Interest: The authors declare no conflict of interest.

Appendix A

The correlations coefficients between Hg and the RI, DI, NDI, PI and SI indices of the
spectra after FOD are shown in Figures A1–A5, respectively.
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