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Abstract: In regular convolutional neural networks (CNN), fully-connected layers act as classifiers
to estimate the probabilities for each instance in classification tasks. The accuracy of CNNs can be
improved by replacing fully connected layers with gradient boosting algorithms. In this regard, this
study investigates three robust classifiers, namely XGBoost, LightGBM, and Catboost, in combination
with a CNN for a land cover study in Hanoi, Vietnam. The experiments were implemented using
SPOT7 imagery through (1) image segmentation and extraction of features, including spectral
information and spatial metrics, (2) normalization of attribute values and generation of graphs,
and (3) using graphs as the input dataset to the investigated models for classifying six land cover
classes, namely House, Bare land, Vegetation, Water, Impervious Surface, and Shadow. The results
show that CNN-based XGBoost (Overall accuracy = 0.8905), LightGBM (0.8956), and CatBoost
(0.8956) outperform the other methods used for comparison. It can be seen that the combination of
object-based image analysis and CNN-based gradient boosting algorithms significantly improves
classification accuracies and can be considered as alternative methods for land cover analysis.

Keywords: object-based image analysis; gradient boosting; convolutional neural network; land cover

1. Introduction

Machine learning methods have been developed to automate the analysis and enhance
remote sensing observations by introducing new classifiers, segmentation, or optimization
algorithms. These methods are efficient when applied to high spatial resolution data,
including satellites, air-borne, and Unmanned Aerial Vehicle data. Among conventional
methods, ensemble classifier random forest (RF), Neural network, and Support vector
machine (SVM) techniques are regularly employed for image classification and other tasks
(e.g., change detection) with considerable success. These methods have received much
attention due to their ability to handle multi-dimensional data and perform well with
limited training samples [1–7]. Typically, these conventional machine learning approaches
have been applied using shallow classification techniques. However, the massive increase
in the size of datasets (velocity, volume, variety) has resulted in a bottleneck in efficient
data processing [8].
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In more recent years, the advent of deep learning (DL) has led to renewed interest in
neural networks. DL has demonstrated astounding capabilities, primarily attributed to the
automated extraction of essential features, removing the need for identifying case-specific
features. The driving force behind the success of DL in image analysis can be traced to the
following three key factors: (1) More data available for training DNNs, especially in cases
of supervised learning such as classification, where users typically provide annotations, for
example in [9,10]; (2) More processing power, especially the explosion in the availability of
Graphical Processing Units; (3) More algorithms [5,11–13]. Among different deep learning
structures, the convolutional neural network (CNN) is a widely used method successfully
applied to pattern recognition, natural language processing, landcover classification, and
point cloud dataset processing. As they are more efficient for processing large datasets, the
CNN is particularly relevant for tasks involving remotely sensed imagery and other spatial
data. CNN has been used in a wide range of applications, particularly in the classification of
high spatial resolution datasets [14–16], including LULC classification, scene classification,
and object detection [15–20], and for annotation of point cloud datasets [21]. More recently,
recurrent CNNs (R-CNNs) have been used in the analysis of very high spatial resolution
datasets with considerable success. For example, R-CNNs have been used to overcome the
scarcity of labeled training data to detect scalable old and new buildings [22], enable the
regularization of the building footprint [23], and facilitate the rapid extraction of buildings
through iterative inclusion of validated samples [24].

The structure of CNN in land cover classification depends on several factors, such
as the number of convolutional layers, activation functions, loss functions [7,25,26], or
shapes of input data, such as patch-based [27,28] or graph-based [29]. Moreover, the types
of output, either scene-based [9] or pixel-based classes [12,30], influence the selection of
classification methods. Some studies [13,31] have discussed how 1D and 2D graphs and
line thickness improve the classification accuracy compared to several standard CCN-based
methods, whereas others have attempted to integrate machine learning classifiers into
CNN, as in [32]. The object-based image analysis (OBIA) has also been combined with CNN
to take advantage of boundary delimitation of the former and spatial feature extraction
of the latter method [33–38]. In these studies, a dense layer is used in the classification
of image objects, although this classifier can be replaced with other algorithms and are
potentially valuable in land cover analysis.

Another note on the uses of CNNs for remote sensing applications is on the impor-
tance of the band combinations for the improvement of classification accuracies. Numerous
studies focused on the application of high-resolution images using the recently estab-
lished state-of-the-art object-based CNN deep learning technique, where they utilized
optimal band combinations (e.g., three-band combinations) and exhibited significant accu-
racies [39–42]. Furthermore, these works developed an automatic extraction framework
for remote sensing applications from high spatial resolution optical images using CNN
architecture in a large-scale application based on multispectral band combinations. These
approaches offer potential choices of bands in multiple spectral satellite images but offer
none for datasets with limited bands, such as RGB images in common UAVs or several
high-resolution images (SPOT 7). In these cases, the spatial arrangement of objects is a
significant contribution to the overall performance of land pattern classification.

Many recent studies have discussed the robustness of CNN and other ensemble
algorithms in land cover analysis. In brief, CNN reveals its strength with unstructured
data (images), while ensemble methods seem to be better suited to tabulated datasets. In
general, gradient boosting [43–45] is an iterative learning process that learns from the errors
made in the previous step for improved selection of weights in the subsequent iterations.
This process develops a more complete picture of the dataset, and classification results
are statistically reliable. A recent study that focused on land cover [46] compared CNN
and gradient boosting for urban land classification and found small differences between
those methods, although greater effectiveness of tree-based methods in land cover analysis
for classification accuracy has been demonstrated [47]. The combination of CNN and
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gradient boosting algorithms may, indeed, improve the classification of satellite datasets.
Nevertheless, complex human-made objects are replacing natural physical surfaces and,
therefore, more efficient and effective models are increasingly needed. This study extends
previous works [13,26,31,32] to test the potential use of gradient boosting algorithms as
classifiers for the final layer of a CNN to improve the classification performance in terms of
overall accuracy (OA) and error. The aim is to use SPOT7 imagery as input data, prepared
in a sequence of image segmentation, feature extraction, and graph generation, followed by
training of the proposed model for comparison with several other benchmarked methods.
In summary, the main contributions of this manuscript include the construction of 2D input
graphs from object features of the images extracted during image segmentation processes
and the application of gradient boosting algorithms as a replacement for dense layers in
CNN for more accurate land cover classification.

2. Data and Methods
2.1. Study Area and Training Data Preparation

Hanoi, the capital city of Vietnam, was selected as a case study because of its complex
surface morphology and spatial mixture of various land cover types (Figure 1). The city
boundary was extended in 2018 through a decision to merge neighboring provinces with
different landscapes or historically distinctive morphological zones. The central-western
part is a dynamic area because the residential areas are subject to ongoing development
with a mix of high-rise buildings surrounded by open green spaces. The old French area
is distinguishable by its house styles interspersed with small gardens, and it is also home
to government buildings and affluent residential neighborhoods. On the other hand, the
historical center remains unchanged, with its dense population concentration and small-
facade houses. The automated classification of such areas can prove difficult because of the
complex mixture of different land patterns, and accuracies are subject to the choice of the
spatial and spectral resolution of input data.

Figure 1. A subset of the study area. The image objects are set partly transparent and overlaid to SPOT image for visualization.

In this study, SPOT 7 with 1.5 m spatial resolution in the panchromatic band and
6 m for multiple spectral ranges was used as the input dataset. For pre-processing, the
process of combining multispectral and high-resolution panchromatic images with comple-
mentary characteristics often serves as an integral component of remote sensing mapping
workflows [48,49]. Here, the fusion technique was applied to generate a higher resolution
image with spectral information for multiple bands. Even though concerns have been
raised about artifacts in fusion images, several studies have reported positive effects on the
classification accuracy, although accuracy is subject to the detailed application of the fusion
method. Fusion techniques are increasingly being used in remote sensing applications,
such as Wavelength transformation, Browvey transformation, Intensity-Hue-Saturation
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fusion, Principal component transformation, and High pass filtering. In this study, the
Gam Schmidt method [50] was used by simulating panchromatic bands and averaging
multispectral bands. This method was found to be efficient in producing more natural
colors. A more detailed specification of the dataset is presented in Table 1.

Table 1. Specification of SPOT 7 dataset.

Bands Spectral Range (µm) Spatial Resolution (m)

Original image

Blue (B) 0.455–0.525 6.0
Green (G) 0.530–0.590 6.0

Red (R) 0.625–0.695 6.0
Near-Infrared (NIR) 0.760–0.890 6.0

Panchromatic 0.450–0.745 1.5

Fusion (B, G, R, NIR) 1.5

Segmentation was then carried out with the fusion images, using PCI Geomatics
(evaluation version). This software uses the region-growing algorithm by selecting initial
seed points and searching for similar neighbor pixels to form a larger region. The iteration
is continued until desirable outputs are achieved by determining three parameters: scale,
shape, and compactness (30, 0.75, and 0.5, respectively). The scale value influences how
large the objects should be and is defined according to the spatial resolution of the input
image. A sample area of the city covering all typical types of land patterns was chosen for
verifying the proposed model. This subset of 54,234 segmented objects represents various
land cover patterns, including six classes: house, impervious surface, water, bare land,
vegetation, and shadow areas (Figure 1). All 54,234 objects in the study area were visually
allocated into six classes, using higher resolution images as references and ground-truthing
and ancillary documents, such as cultivation plans or current land-use/land-cover maps.

The inclusion of homogeneous pixels can result in valuable geometric shapes (i.e.,
square, round, and rectangle) that are useful for detecting specific human-made objects.
With six input spectral bands, the algorithms produce 52 features, as shown in Table 2,
including (i) spectral statistics of pixel values (min, max, mean, and standard deviations)
and (ii) spatial metrics, such as Circularity, Compactness, Elongation, and Rectangular.
These values can be used in tabulated form with traditional machine learning algorithms
or hybrid models as reported in [11,12]. However, an alternative approach was proposed
to generate plots from these values before feeding through the proposed model. Figure 1
shows the classes of the segmented objects that are set partly transparent for visualization
and overlaid upon the natural-composite SPOT 7 image.

Table 2. Associated attributes of segmented images. Adapted from [11].

Object Features No. of Features Description

Min pixel value 6 Min pixel values for 6 bands
Max pixel value 6 Max pixel values for 6 bands

Mean pixel value 6 Mean pixel values for 6 bands
Standard deviation 6 Standard deviation of pixel value

Min_PP 6 Mean pure pixel
Max_PP 6 Max pure pixel

Mean_PP 6 Mean pure pixel
Standard deviation_PP 6 Standard deviation of pure pixel

Circular 1 Circular
Compactness 1 Compactness

Elongation 1 Elongation
Rectangular 1 Rectangular

Total 52
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2.2. Gradient Boosting Classifiers

Gradient Boosting Machines (GBM) are powerful ensemble machine learning algo-
rithms that employ decision trees to build up the classifiers. Technically, the algorithms
apply iteration by adding models to correct weaknesses in prior models and improve over-
all performance accuracy. Among gradient boosting algorithms, XGBoost, LightGBM, and
CatBoost are often considered as successful classifiers for various applications [44,45,51].
XGBoost uses the pre-sorted and histogram-based algorithm for estimating best splits and
employs parallel processing with a handling capacity of missing values and minimiza-
tion of over-fitting. In addition, this algorithm is based on a leaf-wise pruning strategy
that leverages deep searches for an optimal solution, and the gradient descent algorithm
minimizes errors.

LightGBM, proposed by Microsoft, is a recently developed gradient boosting algo-
rithm or tree-based learning algorithm. It was developed to improve predictive efficiency,
handle large datasets, and reduce training time, and is typically recommended for tabular
datasets. LightGBM differs from other tree-based methods by implementing leaf-wise
splits (Figure 2), which create more complex trees that are more efficient in reducing loss
and resulting in higher accuracy. The split is based on a novel sampling method named
Gradient-Based One Side Sampling [52], in which data with small gradients are excluded,
and the rest is used for estimation of information gain and tree growth. This algorithm is
controlled by a group of several parameters, including (1) boosting parameters, such as
Max_depth, Learning_rate, Max_leaf_node, and gamma, and (2) learning task parameters,
such as loss function type, evaluation metric, and number of iterations. These parameters
control how leaves grow, as briefly shown in (Figure 2). As the tree grows, the model
becomes more complex, the loss is reduced, and the algorithm learns faster. One of the
limitations of such an algorithm is that over-fitting may occur if the dataset is small and a
proper set of model parameters is required to avoid it.

Figure 2. Level-wise vs. leaf-wise tree growth (https://lightgbm.readthedocs.io/en/latest/Features.html, accessed on 17
June 2021).

Catboost, developed by Yandex, is a challenger to the previous two algorithms and
is currently receiving close attention from data science communities. It has proved to be
more effective than others without pre-processing requirements, and handling of over-
fitting is avoided by the ordered boosting approach used in Catboost. During training,
consecutive symmetric decision trees are built with reduced loss in comparison to others.
The symmetrical trees are not a feature of other gradient boosting methods, and faster
training is also achieved.

2.3. Object-Based CNN with GBM Algorithms

The proposed CNN structure is based on several successful models in land cover
classification, such as the number of hidden layers, feature maps, and activated and
loss functions [13,31]. The proposed hybrid model is illustrated in Figure 3 with several
sequential steps. Step 1: A high-resolution image is segmented with various parameters,
namely scale, compactness, and shape. These parameters should be tuned through a
trial-error process to generate the most optimal boundary of potentially similar pixels.
After segmentation, spectral and spatial metric features (Table 2) are associated with each
object. Step 2: Because features are measured in different units and scales, a normalization

https://lightgbm.readthedocs.io/en/latest/Features.html
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step is required to ensure all features have a similar scale. A simple method (x–min)/(max-
min) is applied to keep the original data distribution. Then, the normalized data are
plotted in two-dimensional space. The plots are used as input patches that are fed into
the CNN during the training stages. The total number of all image objects is randomly
split into training/validation datasets and test sets. This hold-out method is commonly
used in the CNN-based method rather than cross-validation because of the large amount of
training data, representing the entire study area well. Step 3: the model is trained with the
categorical log-loss function with fully connected layers as the classifiers. Step 4: Training
data are fed again into the trained model from the previous step. However, the last dense
layer is extracted to build up another training dataset, which is then used to learn three
gradient boosting algorithms.

Figure 3. Object-based convolutional neural network with gradient boosting algorithms.

A more detailed structure of the CNN is presented in Figure 4. It consists of a sequence
of layer stacks, in which the two first convolutional layers map similar grids over input
images and sequentially map smaller grids. The leaky ReLU activation function is used
during the training course to transform the feature spaces. Dropout is also applied to avoid
over-fitting, in which neurons are turned off basing on their assigned probabilities during
the forward stage. The output is flatted before feeding to the fully connected layer (FCN).
This layer acts as a hidden layer in neural networks and outputs the probability for each
class. After training the model with FCN, the last layer is replaced using gradient boosting
algorithms to improve the prediction accuracy.

Figure 4. CNN structures.
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2.4. Accuracy Assessment

For multiple classification tasks, several statistical indicators are used for validating
classifiers’ performances. Multiple errors and overall accuracy are used to validate the
model, and the categorial_logloss functions are used for training. This loss function is
the default option (such as Sparse Multiclass Cross-Entropy Loss and Kullback–Leibler
Divergence Loss, among others) and is preferred for multiclass classification problems and
can be explained as follows:

L(XiYi) = −
c

∑
j=1

yij ∗ log
(

pij
)

(1)

where Yi(yi1, yi2, . . . yi6) is a one-hot encoded target vector representing six land cover classes.
The yij = 1 if ith element is in the class j; otherwise, yij = 0. pij = f (Xi) = Prob shows that
ith element is in class j. This function estimates the average difference between predicted
and observed classes, and a score is calculated. Moreover, the study also compares the
CNN-based gradient boosting algorithms’ performance with traditional classifiers, such
as Random Forest and Support Vector Machine; therefore, the Root Mean Square Error
(RMSE) and Overall Accuracy (OA) are also used. In addition, the model was interpreted
using the salient map method that estimates the prediction capabilities (gradient of loss
functions) for specific classes of each input feature.

3. Result and Discussions

The input images take the form of a graph representing the object’s features, as
presented in Table 2. The input data were normalized to a similar value range [0–1] before
being plotted and saved to single-band images. During the training dataset preparation, the
plot lines’ weight impacts the edges’ recognition in the plots, as discussed in the study [13].
In this regard, we defined the line weight = 2, image size = 76 × 76, line color = black,
and background = white, to generate 54,234 plots/figures in total. An illustration of the
conversion from tabulated data to plots is shown in Figure 5. Among the figures, 50,234
were used for training, and 4000 plots were kept out of the training stage for visualization.
The proportion of classes in the training data are bare soil = 890 images, impervious = 4716,
shadows = 7786, vegetation = 6502, water = 330, and house = 30.010 (Table 3). It could
be seen that the training dataset is unbalanced between a number of training data points
among classes because of the dominance of houses in the urban area.

Table 3. Samples for training, validation, testing the proposed model, and samples for visualization.

Training/Validation/Testing
Samples.

Sample Numbers.
(80% Is Randomly Selected and Used for Training,

20% Is Used for Testing)
Samples for Visualization Sample Numbers

Bare soil 890 (images) Bare soil 71
Impervious surface 4716 Impervious surface 376

Shadows 7786 Shadows 620
Vegetation 6502 Vegetation 518

Water 330 Water 26
House 30,010 House 2.390

Total 50,234 Total 4.000

The applications of CNNs typically use trained networks and retrain them with new
land cover datasets [30]. However, this study did not follow this strategy because the
training data have different perceptions, which represent feature variation in one gray band
image format. The training process would learn edge differences, which are generated
considering changes in image objects’ spectral and spatial information (Figure 5). In this
regard, the proposed model is trained from scratch with a proportion of samples, as shown
in Table 3.



Remote Sens. 2021, 13, 2709 8 of 15

Figure 5. Examples of graphs representing variations of the object’s attributes. The graphs in (b) were used for CNN-based
gradient boosting algorithms. The original tabulated data in (a) were used to learn these algorithms for comparison.

In the training stage, the training dataset (50,234 figures) was randomly split into
training data (80%, 40,188 figures) and test data (20%, 10,046 figures). Because this study
consists of multiple classification tasks, and the categorial_logloss function is used, the
object labels were encoded with the one-hot method. In this regard, an array, for example,
[0,0,0,0,0,1], represents a water object and similar arrays represent other classes depending
on the location of the “1” value. Moreover, the ADAM optimizer was used with learning
rate = 0.00025 and batch size = 512. More input images are generated through data
augmentation/rotation during the training stage, and they are shuffled before each epoch.
The model was trained in 300 epochs in TensorFlow on an 8-cores CPU and an NVIDIA
GTX 1070 GPU.

Before gradient boosting algorithms are replaced for the classification task, the CNN
with fully connected layers was trained, and the categorical log-loss was used as the
objective function. The variation of log-loss is presented in Figure 6, in which, after the
120th epoch, the log-loss value seems to vary in a smaller range. At the 300th epoch, the
log-loss fluctuation is so slight that we could consider terminating the training process and
use the trained model for the next step.
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Figure 6. Variation of the loss value after 300 epochs.

The training data are again fed to the trained model, but the dense layer (before being
fully connected) is extracted to form a new training set (40,188 instances, 128 features) and
test set (10,046 instances, 128 features), respectively. These data were used to learn the
gradient boosting algorithms, and the results are shown in Table 4. On the left side are
values extracted from CNN with a fully connected layer and CNN’s with SVM, XGBoost,
LightGBM, and CatBoost to replace the fully connected layer. These models were trained
with plotted images, as explained in the previous section. Moreover, we considered
verifying these algorithms with a dataset with the original 52 features, as illustrated in
Figure 5. The results are shown on the right side of Table 3. It could be seen that CNN-
CatBoost (OA = 0.8956) and CNN-LightGBM (OA = 0.8956) achieve the highest overall
accuracies and the smallest errors. Thus, the CNN-based classifiers show improvements
compared to traditional methods, which were run with the tabulated dataset. Furthermore,
the higher features of the CNN-based gradient boosting (128) might result in higher
accuracy of these models over the tabulated dataset (52 features).

Table 4. Statistical indicators of CNN-based and benchmark methods. FC: Fully connected layer.

Metrics
CNN with Machine Learning Classifiers

Metrics
Classifiers with Tabulated Data

FC XGBoost LightGBM CatBoost RF SVM XGBoost LightGBM CatBoost

OA 0.8868 0.8905 0.8956 0.8956 OA 0.8401 0.8268 0.8499 0.8533 0.8414

Loss 0.4623 0.4601 0.4553 0.4523
RMSE 0.1599 0.1625 0.1501 0.1466 0.1561

Error 0.1431 0.1404 0.1394 0.1393

For a more detailed analysis of the CNN-based methods, the confusion matrix is
also shown in Tables 4 and 5. For example, in looking at the Producer Accuracy, there is
a high probability of misclassification between Bare land and Impervious and between
Impervious and House. The reasons for these misclassifications might be because of the
similar spectral values of all bands, and the spatial information might be the distinguishable
factors between these classes. Moreover, about 20% of the water objects is misclassified to
shadows because of the low reflectance in these areas, which are sometimes considered
water (high absorption in the visible range).
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Table 5. Confusion matrix of the CNN-based gradient boosting methods. PA: Producer’s Accuracy, UA: User’s Accuracy, OA: Overall Accuracy.

CNN-LightGBM
Classified

CNN-FC
Classified

Vege House Shad Imper Water Bare PA Vege House Shad Imper Water Bare PA

R
ef

er
en

ce

Vege 571 56 70 12 1 0 0.8046 Vege 563 62 59 24 0 1 0.7941

House 67 6646 176 65 0 2 0.9554 House 79 6573 200 100 0 4 0.9448

Shad 122 144 1256 4 5 0 0.8200 Shad 139 126 1234 24 7 0 0.8060

Imper 64 142 30 422 0 2 0.6386 Imper 49 146 27 438 0 0 0.6633

Water 1 1 6 0 24 0 0.7442 Water 1 1 5 1 24 0 0.7442

Bare 10 17 1 50 0 79 0.5071 Bare 10 24 0 46 0 76 0.4882

UA 0.6844 0.9484 0.8165 0.7627 0.8000 0.9469 OA = 0.8956 UA 0.6696 0.9482 0.8091 0.6912 0.7619 0.9279 OA = 0.8868

CNN-CatBoost
Classified

CNN-XGBoost
Vege House Shad Imper Water Bare PA Vege House Shad Imper Water Bare PA

R
ef

er
en

ce

Vege 571 51 69 18 1 0 0.8046 Vege 564 46 73 22 1 3 0.7952

House 65 6649 170 67 0 5 0.9558 House 68 6618 173 92 0 6 0.9512

Shad 113 136 1273 7 3 0 0.8312 Shad 117 130 1266 13 4 1 0.8268

Imper 62 169 27 396 0 6 0.6004 Imper 61 176 29 388 0 7 0.5881

Water 1 1 7 0 23 0 0.7209 Water 1 1 7 0 22 0 0.6977

Bare 8 30 1 33 0 84 0.5403 Bare 9 23 1 36 0 87 0.5592

UA 0.6968 0.9448 0.8228 0.7621 0.8611 0.8837 OA = 0.8956 UA 0.6881 0.9462 0.8169 0.7043 0.8108 0.8429 OA = 0.8905
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The study area is complex, with a mixture of houses and vegetation in a small area,
which is difficult and impractical for such a small area to be classified into more than
one class. In this regard, the object-based image classification proves to be more accurate
since it generates boundaries around the mixed area basing on average spectral variations.
Moreover, in comparison to pixel-based analysis, the OBIA takes spatial metrics into
consideration that help to segregate long-shaped-objects, such as roads, from round-shaped
objects, such as lakes and shadows. Figure 7 shows the classification results of four CNN-
based models in several subset polygons of the study areas. It could be seen that water
objects were correctly classified, as they have a typical spatial structure and low reflectance
in all bands. These objects were more likely to be misclassified to shadows when pixel-
based methods are used because of similar spectral information. Impervious surfaces,
which are mostly considered roads, also achieve good classification results because of their
spatial structure.

Figure 7. Classification results from different CNN-based methods.

In machine learning, the imbalance of training classes impacts classification models’
performance, and several techniques are proposed to cope with these issues. Some of
them are also applied in the experiments, such as generating more data (through adjusting
the scale, compactness, and shape of the image segmentation process to generate smaller
homogeneous objects) and data generation before the training step. For example, the
water bodies cover a smaller space in this study area and encounter small portions of total
training data (large homogenous water pixels to generate a large polygon significantly
to form an object). However, these objects can be accurately detected out of other classes
because of their typical reflectance values and spatial metrics (elongation, circular). The
spatial metrics are considered as the strength of OBIA, with high-resolution images.

There are always requirements for the generalization of proposed methods for different
datasets and applications in machine learning. For example, gradient boosting algorithms
have been found to be efficient in many works [44,45,51]. They have effects in improving
the accuracy of this case study in Vietnam. However, due to the limited access to the
benchmark dataset (most of the open dataset is for scene-based classification, and there are
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no available data on pixel-based classification), it was not easy to verify the performance of
this hybrid network on different data.

On another note, model interpretation plays a significant role in understanding the
impacts of specific features on the classification task’s general performance or, for any
instance, such as using SHAP (SHapley Additive exPlanations). This interpretation can be
implemented with object features, representing spectral and spatial information. For CNN
models with pixel-based input, the sensitivity can be analyzed using several methods, such
as perturbation-based visualization, randomized mask sampling, and backpropagation-
based visualization. In this study, salient mapping was used to visualize the model
during the training process. Figure 8 shows both color and grayscale salient for six classes
to highlight the most important pixels. For the ‘Water’ class, the spatial arrangement
significantly influences determining this class since water bodies in the study area are
mainly open canals and rivers. Spatial information can also be seen as important, as
pixels (in circles) classified as “Elongation,” “Circular,” “Compactness,” and “Rectangular”
display high values.

Figure 8. Salient maps of six classes using CNN-LightGBM.

4. Future Remarks

The shape of the curves has significant impacts on the mapping of convolutional
layers. In this regard, [13] discussed an alternative solution for generating 1D or 2D graphs
that would also bring more diversity to the input patches. In the tabulated dataset, as
illustrated in (Figure 5), the order of columns does not affect machine learning classifiers’
performance. However, the order might have a significant impact when these datasets
are plotted and saved to figures before feeding them to deep learning models. Other
researchers [13,31] plotted the graphs with the registered orders of spectral bands and for
four seasons, respectively. In these studies, graphs were generated using the associated
features from image segments, in which features were ordered by spectral min, mean,
standard deviations, and spatial information (Elongation, Circular, and Rectangular).
Different orders generate different graph shapes, so that deep convolutional layers learn
the edges differently. Re-ordering features are not examined in this study, but they are
worth trying in future works, particularly feature-rich datasets.

The input images of a CNN can have different formats, such as image patches from
multiple spectral satellite data or spectral graphs displaying spectral variations across
all bands. The first one is a typical form in numerous land cover classification stud-
ies [8,14,29,53]. The second approach was investigated in the works of [13,29,31] with
multiple temporal satellite images. Only a single SPOT7 image was used in this study,
and spectral bands are limited to 4. The inclusion of multiple band images, such as Sen-
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tinel 2A, and the combination of multiple spectral bands for segmentation might improve
classification accuracies. This is another notion for future work.

Object-based image analysis has been proved efficient in land cover classification
with high-resolution data [33,35,38], with accurate detection of boundaries land cover
types from the segmentation process. The researchers in [13,35] proposed an approach
to generate 1D and 2D graphs from spectral bands for pixel-based image classification.
This study investigates the potential to extend previous works to take advantage of CNN’s
ability to learn unstructured data (plot/figures from 52 features) and tree-based algorithms
to handle tabular data (128 features from dense layer) for land cover classification. Two
types of methods are considered best-in-class with the data types mentioned above, and
their combination can be of high potential in accurate land monitoring.

5. Conclusions

This study investigates the combination of object-based image analysis, convolutional
neural networks, and gradient boosting classifiers for land cover classification with a case
study in Vietnam. The experience shows an improvement in the overall accuracies with
the use of XGBoost (OA = 0.8905), LightGBM (OA = 0.8956), and CatBoost (OA = 0.8956)
as replacements for the fully connected layers in a CNN. The hybrid proposed to take
advantage of the OBA in defining boundaries of homogeneous pixels or classes, and CNN
contributes to recognizing edges in plots of associated attributes of objects. The last layer
feature’s extraction classifies the task with a tabulated dataset, which is the strength of the
gradient boosting algorithm, as discussed in this study.

Deep learning applies predominantly to the classification of satellite images, aerial
photos, and unmanned aerial vehicle data, with considerable achievements. Since SPOT7
was used in this study, only four spectral bands (R, G, B, and NIR) were used to generate
object attributes and plots before feeding to the CNN. Therefore, the inclusion of more
spectral bands is more relevant. Moreover, the free access to such a dataset is more relevant
to generating seasonally changed features and to detect surface classes better and improve
land monitoring accuracy.
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