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Abstract: Inaccurate Synthetic Aperture Radar (SAR) navigation information will lead to unknown
phase errors in SAR data. Uncompensated phase errors can blur the SAR images. Autofocus is
a technique that can automatically estimate phase errors from data. However, existing autofocus
algorithms either have poor focusing quality or a slow focusing speed. In this paper, an ensemble
learning-based autofocus method is proposed. Convolutional Extreme Learning Machine (CELM) is
constructed and utilized to estimate the phase error. However, the performance of a single CELM is
poor. To overcome this, a novel, metric-based combination strategy is proposed, combining multiple
CELMs to further improve the estimation accuracy. The proposed model is trained with the classical
bagging-based ensemble learning method. The training and testing process is non-iterative and
fast. Experimental results conducted on real SAR data show that the proposed method has a good
trade-off between focusing quality and speed.

Keywords: synthetic aperture radar; autofocus; ensemble learning; extreme learning machine;
convolutional neural network

1. Introduction

Synthetic Aperture Radar (SAR) is an active microwave remote-sensing system. SAR
has been widely applied to both military and civilian fields due to its all-time and all-
weather observation abilities [1]. However, the imaging quality of SAR is usually degraded
by undesired Phase Errors (PEs). These PEs usually come from trajectory deviations and
the instability of the platform velocity [2]. The uncompensated PEs will cause serious image
blurring and geometric distortion of the SAR imagery [3]. The navigation system cannot
provide precise information about these motion errors [4]. For high-quality imaging, espe-
cially high-resolution imaging, it is important to compensate for these PEs. Autofocus is a
data-driven technique, which can directly estimate the phase error from the backscattered
signals [5].

In recent decades, many autofocus algorithms have been developed. These methods
can be classified into the following three categories: sub-aperture-based, inverse-filtering-
based, and metric-optimization-based algorithms. The sub-aperture autofocus algorithm
is also called Map Drift Autofocus (MDA) [6]. MDA divides the full-aperture range-
compressed data into equal-width sub-aperture data. Each sub-aperture datum is imaged
separately to obtain a sub-map. The position offset is determined by finding the position of
the cross-correlation peak between sub-maps [7]. The more sub-apertures that are divided,
the higher the order of phase error that can be estimated [8]. Thus, the sub-aperture-based
algorithms cannot be used to correct high-order phase errors, which are limited by the
number of sub-apertures. The original MDA was developed to correct the phase errors in
azimuth. Recent works focus on two-dimensional phase-error correction. In [9], the MDA
was extended to highly squinted SAR by introducing a squinted-range-dependent map drift
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estimator to correct the range-variant PEs. In [10], a novel, two-dimensional, spatial-variant
MDA is proposed for an unmanned aerial vehicle SAR autofocus.

The Phase Gradient Autofocus (PGA) is a widely utilized, inverse-filtering-based auto-
focus method [11]. There are four main steps in the PGA algorithm: center shift in dominant
scatters, windowing, phase gradient estimation, and iterative correction. The Maximum
Likelihood (ML) [12] and Linear Unbiased Minimum Variance (LUMV) [13] are two of the
methods utilized to estimate the phase gradient. The PGA method can quickly estimate
and correct phase errors of any order through iteration. However, the performance of the
PGA algorithm heavily depends on the existence of the isolating dominant scatters on the
target [14]. The algorithm will not work in a scene without dominant scatters. In addition,
the window width will also affect the performance of the algorithm [15] and should be
carefully set. The original PGA method is proposed for spotlight SAR autofocus [16]. When
utilized for stripmap SAR, the full aperture data must first be divided into smaller aperture
data along the azimuth direction (each sub-aperture size cannot exceed the size of a syn-
thetic aperture) [17,18]. Then, for each sub-aperture data group, apply the PGA algorithm.
In [19], a generalized PGA algorithm, which is suitable for use with the backprojection
algorithm, is developed. Evers et al. [20] the PGA algorithm is extended for SAR over
arbitrary flight paths, including both near-field and bistatic collection geometry.

The metric-optimization-based autofocus algorithms estimate the unknown phase
errors by minimizing metrics such as entropy [21–24], contrast [25,26], or harpness [27,28].
The most commonly used metric-based autofocus method is the Minimum-Entropy-based
Autofocus (MEA) method. Usually, the phase error is modeled as a polynomial model to
reduce the number of optimization variables [29]. These kinds of algorithm can obtain a
higher focusing quality than the above two methods. However, the metric-optimization-
based algorithm has high computational complexity and needs a lot of iterations to con-
verge [30]. Moreover, it is difficult to set an appropriate learning rate. Too small a learning
rate will lead to an increase in iterations, and too large a learning rate will cause it to
converge to a non-optimal solution.

Artificial Neural Network (ANN) is a promising machine-learning technique, used
for classification and regression tasks. Extreme Learning Machine (ELM) is a kind of single,
hidden-layer, feedforward neural network. ELM was first proposed by Huang et al. [31]
in 2004. ELM can also be used to solve the problem of classification and regression [32].
As is widely known, traditional ANN requires thousands of iterative training actions to
minimize the objective function. Unlike traditional ANN, the training process of an ELM
is non-iterative and very fast. The weights from the input layer to the hidden layer are
randomly generated and do not need to be adjusted [33]. The optimization of ELM is
used to solve a minimum norm, least squares solution problem, which has a closed-form
solution [34]. ELM still has universal classification and approximation abilities and can
fit arbitrarily functions [35,36]. In recent years, some ensemble-based ELM methods have
been proposed [37–39]. Due to its properties of fast training times and a robust performance,
ELM is very suitable for ensemble learning.

In this paper, a fast, machine-learning-based autofocus algorithm is proposed. The prob-
lem of SAR autofocus can be regarded as regression and prediction of phase error. In order
to reduce the regression difficulties, the phase errors are modeled as a polynomial, with
a specific degree. The machine learning model is utilized to predict the polynomial co-
efficients. To deal with the two-dimensional SAR image data, a convolutional extreme
learning machine (CELM) is constructed to predict the polynomial coefficients. To im-
prove the performance of a single CELM, multiple individual CELMs are integrated by a
novel, metric-based combination strategy. The bagging-based ensemble learning method is
utilized to train the model. The main contributions of this paper can be summarized as
follows: (1) To the best of our knowledge, this is the first use of machine learning to solve
the SAR autofocus problem. (2) A metric-based combination strategy is proposed. (3) A
novel SAR autofocus scheme, based on our proposed, ensemble, convolutional, extreme
learning machine, is proposed.
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The remainder of this paper is organized as follows. In Section 2, the fundamental
background of SAR autofocus is explained. Section 3 presents our approach to SAR
autofocus. Section 4 describes the dataset, outlines the experimental setup, and presents
the results. In Section 5, the results obtained in the performed experiments, the practical
implications of the proposed method, and future research directions are discussed. Finally,
Section 6 concludes the paper.

2. Fundamental Background

SAR autofocus is a data-driven parameter-estimation technology. It aims to automati-
cally estimate the phase error from the SAR-received data. The residual phase error in the
distance direction is generally so small that it can be ignored after the correction of range
cell migration. The phase errors that needs to be corrected mainly occur in the azimuth
direction [40]. The azimuth phase error estimation and compensation usually occur in the
range-doppler domain. Suppose we have a complex-valued defocused image X ∈ CNa×Nr ,
where Na, Nr are the number of pixels in the azimuth and range, respectively. Denote X
as the range-doppler domain data matrix of X. The one-dimensional azimuth phase error
compensation problem can be formulated as [41]

Ynanr =
1

Na

Na−1

∑
k=0

Xknr exp{−jφk}exp
{

j
2π

Na
kna

}
, (1)

where Y ∈ CNa×Nr is the compensated image matrix; k is frequency index in azimuth. na, nr
are the azimuth and range index subscripts of matrix X, respectively. φk is the k-th element
of the phase error vector φ ∈ RNa×1. Let D be a square diagonal matrix composed of the
elements of vector φ on the main diagonal, i.e., Dφ = diag(exp{−jφ}), where diag(·)
represents the diagonalization operation. Thus, Equation (1) can be expressed in the form
of matrix multiplication as follows:

Y = F̃a(DφX) = F̃a(DφFa(X)), (2)

where Fa, F̃a represent the Fourier transform and the inverse Fourier transform in azimuth,
respectively.

The key problem of autofocus is how to estimate φ from defocused image X. Phase
Gradient Autofocus is a simple autofocus algorithm and has been widely used. Denote
X ∈ CNa×Nr as a defocused SAR image. First, find the dominant scatters (targets with large
intensities) of each range line. Then, center shift these strong scatters along the azimuth
direction to obtain a center-shifted image Z. This method assumes that the complex
reflectivites, except for the dominant scatters, are distributed as zero-mean Gaussian
random noises [41]. To accurately estimate the phase error gradient from these dominant
targets, the center-shifted image Z is windowed. Denote Z ∈ CNa×Nr as the range doppler
domain data (apply azimuth Fourier transform to Z) of Z. The phase gradient estimation
based on Maximum Likelihood (ML) can be formulated as

ˆ̇φ(k) = ∠
Nr−1

∑
nr=0

Z∗k,nr
Zk+1,nr , (3)

where Z∗ is the complex conjugation of Z, ˆ̇φ is the estimated phase error gradient vector,
and ∠ is the phase operation. Another commonly used gradient estimation method is
Linear Unbiased Minimum Variance (LUMV) algorithm. Let G be the gradient matrix of
Z in azimuth, i.e., Gk,: = Zk,: − Zk−1,:, where k = 0, 1, · · · , Na − 1 and Z−1,: = 0 ∈ C1×Nr .
The LUMV-based phase error gradient estimation is expressed by

ˆ̇φ(k) =
∑Nr−1

nr=0 Imag(Gk,nrZ
∗
k,nr

)

∑Nr−1
nr=0 Zk,nrZ

∗
k,nr

, (4)
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where Imag(·) represents taking the imaginary part of a complex number.
Different from PGA, the metric-based autofocus algorithms estimate phase errors by

optimizing a cost function or a metric function. The cost function has the ability to evaluate
the focus quality of the image. In the field of radar imaging, entropy is usually used to
evaluate the focusing quality of an image. The better the focus, the smaller the entropy.
Denote X ∈ CH×W as a complex-valued image; the entropy is defined as

S(X) = −
H−1

∑
i=0

W−1

∑
j=0

|X|2ij
C

ln
|X|2ij

C
, (5)

where H, W are the height and width of the image, respectively, |X|ij is the element in the
i-th row and j-th column of amplitude image |X| ∈ CH×W, ln is the natural logarithm,
and scalar C ∈ R can be computed by [24]

C =
H−1

∑
i=0

W−1

∑
j=0
|X|2ij. (6)

Contrast is another metric used to evaluate an image’s focusing quality. In [30],
contrast is defined as the ratio of the mean square error of the target energy to the mean
value of the target energy

C(X) =

√
E(|X|2 − E(|X|2))2

E(|X|2) , (7)

where E(·) denotes the mathematical expectation operation. The better the image focus
quality, the greater the contrast, and vice versa.

The minimum-entropy based autofocus (MEA) algorithm aims at minimizing

L(X; φ) = −
Na−1

∑
na=0

Nr−1

∑
nr=0

|Y|2nanr

C
ln
|Y|2nanr

C

= − 1
C

Na−1

∑
na=0

Nr−1

∑
nr=0
|Y|2nanr ln|Y|

2
nanr + lnC,

(8)

where φ is the phase error vector, Y is the compensated image and can be computed using
Equation (1). Since C is a constant, minimizing Equation (8) is equivalent to minimizing
the following equation

L(X; φ) = −
Na−1

∑
na=0

Nr−1

∑
nr=0
|Y|2nanr ln|Y|

2
nanr . (9)

Utilize the gradient descent method, one can optimize Equation (9); the iterative
update formula can be expressed as

φt+1 = φt − µ
∂L
∂φ

, (10)

where µ is learning rate, φt+1 is the updated phase error vector, t = 0, 1, · · · , Niter is
iteration counter, and Niter is the maximum iteration number.

The partial derivative of L with respect to φ can be formulated as

∂L
∂φk

= −
Na−1

∑
na=0

Nr−1

∑
nr=0

[(
1 + ln|Y|2nanr

)∂|Y|2nanr

∂φk

]
, (11)
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where k = 0, 1, · · · , Na − 1. According to [24], the final expression is

∂L
∂φk

= −
Na−1

∑
na=0

Nr−1

∑
nr=0

[(
1 + ln|Y|2nanr

)
2Imag

(
−jX∗knr

Xknr

)]
= 2Imag

{
Na−1

∑
na=0

Nr−1

∑
nr=0

[(
1 + ln|Y|2nanr

)(
jX∗knr

Xknr

)]}

= 2Imag

{
Nr−1

∑
nr=0

F∗Xknr exp(−jφk)

} (12)

where F can be calculated by azimuth Fourier transform

F =
Na−1

∑
na=0

[(
1 + ln|Ynanr |2

)
Ynanr exp

(
−j

2π

Na
kna

)]
= Fa

[(
1 + ln|Ynanr |2

)
Ynanr

]
.

(13)

In general, for different types of phase error, φ can be modeled in different forms.
Modeling φ can reduce the number of parameters that need to be optimized and the
complexity of the problem. In this paper, we focus on the polynomial type phase error,
which can be formulated as

φ = φ(α) = α2p2 + α3p3 + · · ·+ αQpQ, (14)

where p ∈ RNa×1 is the azimuth frequency vector, which can be normalized to [−1, 1] or
[−0.5, 0.5], α = [α2, · · · , αQ]

T ∈ R(Q−1)×1 is the polynomial coefficient vector and Q is the
order of the polynomial.

The minimum-entropy-based methods are not restricted by the assumptions in PGA,
but require many iterations to converge. As a result, these methods are more robust than
PGA, and have a higher focus quality, but suffer from slow speed. In this paper, we focus
on the development of a non-iterative autofocus algorithm based on machine learning.
An ensemble-based, machine-learning model is proposed to predict the polynomial coeffi-
cients. The azimuth phase errors are computed according to Equation (14). The SAR image
can be focused by compensating for the errors in azimuth using Equation (2).

3. Materials and Methods

In this section, ensemble learning and extreme learning machine are briefly introduced,
and the proposed ensemble-learning-based autofocus method is described in detail.

3.1. Ensemble Scheme

Ensemble learning combines some weak but diverse models with certain combination
rules to form a strong model. Key to ensemble learning are individual learners with
diversity and the combination strategy. In ensemble learning, individual learners can be
homogeneous or heterogeneous. A homogeneous ensemble consists of members with a
single-type base learning algorithm, such as the decision tree, support vector machine or
neural network, while a heterogeneous ensemble consists of members with different base
learning algorithms. Homogeneous learners are most commonly used [42].

Classical ensemble methods include bagging, boosting, and stacking-based methods.
These methods have been well-studied in recent years and applied widely in different
applications [43]. The key idea of a boosting-based algorithm is: the samples used to train
the current individual learner are weighted according to the learning errors of the previous
individual learner. Thus, the larger the errors in a sample used by the previous individual
learner, the greater the weight that is set for this sample, and vice versa [44]. Therefore,
in the boosting-based algorithm, there is a strong dependence among individual learners.
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It is not suitable for parallel processing and has a low training efficiency. The bagging
(bootstrap aggregating) ensemble method is based on bootstrap sampling [37]. Suppose
there are N′ training samples and M individual learners; then, N samples are randomly
sampled from the original N′ samples to form a training set. M training sets for M
individual learners can be obtained by repeating M times sampling. Therefore, in the
bagging-based method, there is no strong dependence between individual learners, which
makes it suitable for parallel training. In this paper, the bagging-based ensemble method is
utilized to form data diversity.

In ensemble learning, three combination strategies have been widely used, including
averaging, voting, and learning-based strategies [45]. For the regression problem, the first
method is usually utilized, i.e., averaging the outputs of M individual learners to obtain the
final output. The second strategy is usually used for classification problems. The winner is
the candidate with the maximum total number of votes [46]. The learning-based method
is different from the above two methods; it takes the outputs of M individual learners
as the inputs of a new learner, and the combination rules are automatically learned. To
combine the results of multiple individual autofocus learners, we propose a metric-based
combination strategy. In other words, the winner is the candidate with the optimal metric
value (such as minimum-entropy or maximum-contrast. The framework of our proposed
ensemble-learning-based autofocus algorithm is illustrated in Figure 1, where “PEC” repre-
sents the phase error compensation module, which is formulated by Equation (2).
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Figure 1. The framework of our proposed ensemble-learning-based autofocus algorithm.

In Figure 1, there are M homogeneous individual learners. Each learner is a Convolu-
tional Extreme Learning Machine (CELM). Denote X ∈ CNa×Nr as a defocused SAR image,
where Na, Nr are the number of pixels in azimuth and range, respectively. We can obtain M
estimated phase errror vectors φ(1), φ(2), · · · , φ(M). These vectors are used to compensate
for the defocused image X, and M focused images Y(1), Y(2), · · · , Y(M) are obtained. Finally,
our proposed metric-based combination strategy is applied to these images to obtain the
final result. For example, if entropy is utilized as the metric, then the final focused image
can be expressed as

Y = argmin
Y(m)

S
(

Y(m)
)

, m = 1, 2, · · · , M. (15)

Similarly, if contrast is utilized as the metric, then the final focused image can be
expressed as

Y = argmax
Y(m)

C
(

Y(m)
)

, m = 1, 2, · · · , M. (16)

3.2. Convolutional Extreme Learning Machine

The original ELM is a three-layer neural network (input, hidden, output) designed
for processing one-dimensional data. Denote x ∈ Rd×1 as the input vector, and L as the
number of neurons in the hidden layer. Let ai ∈ Rd×1 represent the weight between input
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x and the i-th neuron of hidden layer, and let bi ∈ R be the bias. The output of the i-th
hidden layer neuron can be expressed as

hi = g(ai, bi, x) = g(aT
i x + bi), i = 1, 2, · · · , L, (17)

where g is a nonlinear piecewise continuous function (activation function in traditional
neural networks). The L outputs of the L hidden layer neurons can be represented as
h = [h1, h2, · · · , hL]

T , where h ∈ RL×1.
Denote β ∈ RL×K as the weight, ranging from the hidden layer to output layer; K is

the number of neurons in the output layer. For a classification problem, K is the number
of classes; for a regression problem, K is the dimension of the vector to be regressed.
The output of ELM can be formulated as

y = hT β. (18)

Suppose there is a training set with N training samples: S = {(xn, tn)}N
n=1, where

t ∈ RK×1 is the truth-value vector (for the classification problem, t is the one-hot class
label vector). The hidden layer feature matrix of these N samples is H = [h1, h2, · · · , hN ]

T .
The classification or regression problem for ELM is to optimize

min
β

: ‖β‖σ1
p + λ‖Hβ− T‖σ2

q , (19)

where σ1 > 0, σ2 > 0, p, q > 0, λ > 0 is the regularization factor, T = [t1, t2, · · · , tN ]
T is the

truth-value matrix of the N samples.
Equation (19) can be solved by an iterative method, orthogonal projection method or

singular value decomposition [34,47]. When σ1 = σ2 = p = q = 2, Equation (19) has the
following closed-form solution [32]

β =

{
HT( I

λ + HHT)−1
T, if N ≤ L( I

λ + HTH
)−1

HTT, if N > L,
(20)

where I is an identity matrix. The process of solving β does not need iterative training, and
it is very fast.

The original ELM can only deal with one-dimensional data. For two-dimensional
or a higher dimensional input, it is usually flattened to a vector. This flattened operation
destroys the original spatial structure of input data and leads ELMs to perform poorly
in image-processing tasks. To overcome this problem, Huang et al. [48] proposed a Lo-
cal Receptive-Fields-Based Extreme Learning Machine (ELM-LRF). Differing from the
traditional Convolutional Neural Network (CNN), the size and shape of the receptive
field (convolutional kernel) of ELM-LRF can be generated according to the probability
distribution. In addition, CNN uses a back-propagation algorithm to iteratively adjust the
weights of all layers, while ELM-LRF has a closed-form solution.

In this paper, we propose a Convolutional Extreme Learning Machine (CELM) method
for phase error estimation. The network structure of a single CELM is illustrated in Figure 2.
It contains a convolutional (Conv) layer, an Instance Normalization (IN) layer [49], a Leaky
Rectified Linear Unit (LeakyReLU) nonlinearity [50], a Global Average Pooling (GAP) layer
in range, a flattening layer, and an output layer. As mentioned above, in order to simplify
the prediction problem, we use CELM to estimate the polynomial coefficients instead of
phase errors. In Figure 2, K denotes polynomial coefficients and equals Q− 1, where Q is
the order of the polynomial.
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Figure 2. The structure of a single convolutional, extreme-learning machine for autofocus. The CKS
in azimuth is set to 63; the convolution stride is 1.

The detailed configuration of CELM is shown in Table 1. Suppose there is a complex
SAR image of 256 pixels in both height and width. Denote Co as the number of channels
produced by convolution, and n as the number of images in a batch. The output size of
each layer in CELM is also displayed in Table 1. As shown in Figure 2 and Table 1, there
is only one convolutional layer in a CELM. The convolution stride is set to 1. In Figure 2,
the convolution kernel sizes for azimuth and range are 63 and 1, respectively.

Table 1. Configuration of a single convolutional, extreme-learning machine.

Layer Number Layer Type Output Size

1 Co × 2× ra × 1 Conv+IN+LeakyReLU n× Co × (256− ra + 1)× 256
2 Range GAP(256) n× Co × (256− ra + 1)× 1
3 Flatten n× (Co × (256− ra + 1))
4 (Co × (256− ra + 1))× K FC n× K

Let X ∈ RN×Ci×Na×Nr be convolution input, where N is the number of inputs, and
Na, Nr, Ci are the height, width and channels of X, respectively. In this paper, the con-
volution kernels between channels do not share weights. Denote A ∈ RCo×Ci×Hk×Wk as
the weight matrix of the convolution kernels, where Hk, Wk are the height and width
of the convolution kernel. Co is the number of channels produced by the convolution.
The convolution between A and X can be formulated as

On,co ,:,: =
Ci−1

∑
ci=0

Xn,ci ,:,: ∗Aco ,ci ,:,: (21)

where n = 0, 1, · · · , N − 1, ∗ represents the classic two-dimensional convolution operation,
and Xn,ci ,:,: is the ci-th channel of the n-th image of X, and O ∈ RN×Co×Ho×Wo . In this
paper, Ci equals 2, since the defocused complex-valued SAR image is first converted into a
two-channel image (real channel image and imaginary channel image) before being fed
into CELM. As the phase distortion is in azimuth, we use azimuth convolution to extract
features. Thus, the weight of the convolutional layer is a matrix with size Co × 2× ra × 1,
where Co is the number of channels produced by the convolution, 2 is the number of
channels of the input image, ra is the kernel size in azimuth.

The instance normalization of convolutional features O ∈ RN×Co×Ho×Wo can be ex-
pressed as

O =
O− µ√
σ2 + ε

, (22)
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where Co, Ho, Wo are the channels, height, and width of O, respectively. The mean value µ
and standard variance σ can be calculated by

µ =
1

HoWo

Ho

∑
h=1

Wo

∑
w=1

O:,:,h,w, µ ∈ RN×Co×1×1,

σ2 =
1

HoWo

Ho

∑
h=1

Wo

∑
w=1

(O:,:,h,w − µ)2, σ2 ∈ RN×Co×1×1.

(23)

After convolution and instance normalization, a LeakyReLU activation is applied to
the normalized features O. Mathematically, the LeakyReLU function is expressed as

y = LeakyReLU(x) =
{

x, x ≥ 0
γx, x < 0

, (24)

where γ is the negative slope, set to 0.01 in this paper. Denote Õ = LeakyReLU(O) as
output features of the LeakyReLU nonlinearity. By appying the GAP operation to Õ in the
range direction for dimension reduction, the features after pooling can be expressed as

H̄n,c,i =
Wo

∑
j=1

Õn,c,i,j, (25)

where H̄ is the features after the range GAP. Thus, each feature map is reduced to a feature
vector. For an image, Co feature vectors will be generated. These Co feature vectors are
flattened to a long feature vector h ∈ RL×1 after the flatten operation. Combine the N
feature vectors h1, h2, · · · , hN into a feature matrix

H = [h1, h2, · · · , hN ]
T . (26)

Similar to ELM-LRF, the convolution layer weights are fixed after random initialization.
The weights β from hidden layer to the output (polynomial coefficients) can be solved by
Equation (20).

3.3. Model Training and Testing

In this paper, the classical bagging ensemble-learning method is applied to generate
diverse data and train CELMs. The model trained with the bagging-based method is
called Bagging-ECELMs. Suppose there is a training dataset Strain = {Xn, αn}Ntrain

n=1 , and
a validation dataset Svalid = {Xn, αn}Nvalid

n=1 , where Xn ∈ CNa×Nr is the n-th defocused image,
αn ∈ RK×1 is the polynomial phase error coefficient vector of Xn, and Na and Nr are the
number of pixels in azimuth and range, respectively. Denote M as the number of CELMs.
In order to train the M CELMs, N samples are randomly selected from the training set Strain
as the training samples of a single CELM, and M training sets are obtained by repeating
this process M times. The validation dataset Svalid was utilized to select the best factor λ in
Equation (19). Assuming that there are Nλ regularization factors are set in the experiment,
then each CELM will be trained Nλ times.

The training of a single CELM consists of two main steps: randomly initializing the
input weights A (the weights of the convolution layer) and calculating the output weights
(Equation (20)). The input weights are randomly generated and then orthogonalized using
singular value decomposition (SVD) [48]. Assuming that there are Co convolutional output
channels, the convolution kernel size is ra × 1, where ra is the kernel size in the azimuth
and 1 is the kernel size in the range. Firstly, generate 2Co convolution kernel weights
{wi ∈ Rra×1}2Co

i=1 with standard Gaussian distribution. Secondly, combine these weights
into a matrix Ainit in order

W = [w1, w2, · · · , w2Co ]. (27)
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Thirdly, orthogonalize the weight matrix W ∈ Rra×2Co with SVD, and obtain the
orthogonalized weight A = [a1, a2, · · · , a2Co ] ∈ Rra×2Co . Finally, reshape the weights A
into a matrix with size Co × 2× ra × 1 to obtain the final input weights A.

The pseudocode for training Bagging-ECELMs is summarized in Algorithm 1, where
the entropy-based combination strategy is utilized (Equation (15)). The testing process of
Bagging-ECELMs model is very simple; see Algorithm 2 for details.

Algorithm 1: Training CELMs based on bagging

Input: The orignal training dataset Strain = {Xn, αn}Ntrain
n=1 , validation dataset Svalid =

{Xn, αn}Nvalid
n=1 , trade-off factor set {λ1, λ2, · · · , λNλ

}, the number of CELMs M, the num-
ber of samples N used to train a single CELM.

Output: The input weights {A(1), A(2), · · · , A(M)} and the output weights
{β(1), β(2), · · · , β(M)} of the M CELMs.

1: for m = 1 to M do
2: set smin = +∞
3: randomly select N samples from set Strain to form training set S(m)

train of the m-th CELM

4: randomly initialize the input weights W(m) of the M-th CELM
5: orthogonalize A(m) utilize SVD
6: for nλ = 1 to Nλ do
7: compute feature matrix Htrain of S(m)

train using Equation (26)
8: compute output weights using Equation (20)
9: compute feature matrix Hvalid of Svalid using Equation (26)

10: compute the estimated phase error coefficients Hvalidβ
11: compute the phase error vector using Equation (14) and focus each validation

image using Equation (2)
12: compute the entropy s of all the focused images
13: if s < smin then
14: β(m) ← β
15: smin ← s
16: end if
17: end for
18: end for

Algorithm 2: Testing CELMs

Input: The unfocused complex image X, the number of CELMs M.
Output: The focused images Y.

1: for m = 1 to M do
2: set smin = +∞
3: compute feature matrix Htest of S(m)

test using Equation (26)
4: compute the estimated phase error coefficients Htestβ

(m)

5: compute the phase error using Equation (14) and focus X using Equation (2)
6: compute the entropy s of the focused image Y(m)

7: if s < smin then
8: Y← Y(m)

9: smin ← s
10: end if
11: end for

4. Experimental Results

This section presents the results obtained with the proposed autofocus method. Firstly,
the used datasets are described in detail. Secondly, implementation details, together with
the obtained results, are presented and discussed. All experiments were run in PyTorch1.8.1
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on a workstation equipped with an Intel E5-2696 2.3GHz CPU, 64GB RAM, and an NVIDIA
1080TI GPU. Our code is available at https://github.com/aisari/AutofocusSAR (accessed
on 25 June 2021).

4.1. Dataset Description

The data used for this work were acquired by the Advanced Land Observing Satellite
(ALOS) satellite in fine mode. The ALOS satellite was developed by the Earth Observation
Research Center, Japan Aerospace Exploration Agency, began to serve in 2006, and ended in
2011. ALOS is equipped with a Phased Array L-band Synthetic Aperture Radar (PALSAR).

The PALSAR has three working modes: fine mode, scanning mode and polarization
mode. Specific parameters of the PALSAR in fine mode are shown in Table 2, where PRF
represents Pulse Repetition Frequency, i.e., sampling rate in azimuth. As shown in Table 2,
there are two resolution modes in fine mode: high-resolution (HR) and low-resolution (LR).
With high resolution, the azimuth resolution is about 5 m, the slant range resolution is up
to 5m, and the ground resolution is about 7 m.

Table 2. Platform parameters of ALOS PALSAR in fine mode.

Parameter Notation Value Unit

Platform height H not fixed, e.g., 691,500 m
Platform velocity V not fixed, e.g., 7172 m/s

Antenna length (range) Lr 2.9 m
Antenna length (azimuth) La 8.9 m

Wavelength λ 236.057 mm
Carrier frequency fc 1.27 GHz

Pulse width Tp 27.0 µs
Chirp rate (range) Kr −1037.0370 (HR), −518.5186 (LR) GHz/s
Bandwidth (range) Br 28 (HR), 14 (LR) MHz

Sampling rate (range) Fs 32 (HR), 16 (LR) MHz
Number of samples (range) Nr 10,344 (HR), 5616 (LR) -

Chirp rate (azimuth) Ka 2122.96 Hz
Pulse Repetition Frequency PRF <2700, not fixed Hz

Number of samples (azimuth) Na not fixed -
Resolution ∆a × ∆r about 5× 5 (HR), 5× 10 (LR) m

Swath width Xswath about 40–70 km
Incident angle θi 8–60 degree
Squint angle θs 0 degree

Data rate 240 Mbps
Bit width 5 bit

Nine groups of SAR raw data were used in the experiment, covering the areas of
Vancouver, Xi’an, Heiwaden, Hefei, Florida, Toledo and Simi Valley. More detailed in-
formation, containing the scene name, acquisition date, effective velocity (Vr) and Pulse
Repetition Frequency (PRF), is given in Table 3. All the raw data can be acquired from
https://search.asf.alaska.edu/ (accessed on 25 May 2018) by searching the scene name.
A world map of the nine areas is available from our code repository.

The range doppler algorithm is utilized to process the raw data. Since the original
image is very large, we selected a subregion with a size of 8192× 8192 for each image.
The imaging results of the nine sub-images, processed by the range doppler algorithm,
are shown in Figure 3. The selected areas include sea surface, urban areas, rural areas,
mountains, and other terrains with varying texture complexity, which is an important
guarantee for verifying the performance of the autofocus algorithms.

https://github.com/aisari/AutofocusSAR
https://search.asf.alaska.edu/
https://search.asf.alaska.edu/
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Table 3. Detailed information of acquired SAR data.

Area Scene Name Acquisition Date Vr (m/s) PRF (Hz)

1 Vancouver ALPSRP020160970 11 June 2006 7153 1912.0459
2 Xi’an ALPSRP054200670 30 January 2007 7185 2159.8272
3 Hawarden ALPSRP103336310 2 January 2008 7211 2105.2632
4 Hefei ALPSRP110940620 23 February 2008 7188 2145.9227
5 Langley ALPSRP115120970 23 March 2008 7174 2155.1724
6 Florida ALPSRP268560540 8 February 2011 7190 2159.8272
7 Kaliganj ALPSRP269950430 17 February 2011 7195 2159.8272
8 SimiValley ALPSRP273680670 15 March 2011 7185 2155.1724
9 Toledo ALPSRP278552780 17 April 2011 7178 2141.3276

(a) Vancouver (b) Xi’an (c) Hawarden

(d) Hefei (e) Langley (f) Florida

(g) Kaliganj (h) SimiValley (i) Toledo

Figure 3. The SAR images that were utilized to construct the dataset. Each image was imaged by
the range doppler algorithm with accurate equivalent velocity. These images are down-sampled to
512× 512 for showing.

We generated azimuth phase errors by simulating an estimation error of equivalent
velocity. Of course, the phase errors could also be generated by directly generating poly-
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nomial coefficients. The range of velocity estimation error was setatn an interval of [Vr−
25 m/s, Vr+ 25 m/s], the sampling interval was 2 m/s, and the range doppler algorithm
was used to process imaging. Thus, for every SAR raw data matrix, 25 defocused complex-
valued SAR images would be generated. The images corresponding to sequence numbers 2,
3, 4, 5, 8 in Table 3 were used to construct the training dataset. The images corresponding to
sequence numbers 6, 7 in Table 3 were used to construct the validation dataset. The images
corresponding to sequence numbers 1, 9 in Table 3 were used to construct the testing
dataset. Image patches with size 256× 256 were selected from these images to create the
dataset. We randomly selected 20,000 image patches for training from the 5× 25 = 125
defocused training images. A total of 8000 validation image patches were selected from the
2× 25 = 50 defocused validation images. 8000 testing image patches were selected from
the 2× 25 = 50 defocused testing images.

The entropies of the above unfocused training, validation, and testing images were
9.9876, 10.2911, and 10.0474, respectively. The contrast levels in the above unfocused
training, validation, and testing images were 3.3820, 1.9860, and 3.4078, respectively.

4.2. Performance of the Proposed Method

In this experiment, the degree of the polynomial (Equation (14)) was set to Q = 7; thus,
each CELM had K = 6 output neurons. AN entropy-based combination strategy was used
in this experiment. To analyze the influence of CELMs number on focusing performance, M
was chosen from M = {1, 2, 4, 8, 16, 32, 64}. All CELMs had the same modules as illustrated
in Figure 2. The number of convolution kernels was set to Co = 32. The regularization factor
λ was chosen from {0.01, 0.1, 1, 10, 100}. For each CELM, 3000 samples were randomly
chosen from the above training dataset to train the CELM. The batch size was set to 10.
The NVIDIA 1080TI GPU was utilized to train and testing.

Firstly, we analyzed the influence of convolution kernel size (CKS) ra on the perfor-
mance of the proposed model. In this experiment, the number of CELMs was set to 1, and
the kernel size in azimuth was chosen from {1, 3, · · · , 63}. After training, the entropy and
contrast metrics were evaluated on the training, validation, and testing datasets, respec-
tively. The results are illustrated in Figure 4. As we can see from Figure 4a,b, when ra = 17,
the performance was best. The corresponding entropy and contrast on testing dataset were
9.9931 and 3.7952, respectively.
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Figure 4. The focusing performance versus the azimuth kernel size.

Secondly, the influence of the number of CELMs with the same CKS on focusing
performance was analyzed. In this experiment, the number of CELMs was chosen from
set M. The CKS in azimuth of all CELMs were set to 3 and 17, respectively. The training
time (see Algorithm 1 for training details.) of the model on the 1080TI GPU device is
displayed in Tables 4 and 5. After training, we tested the trained model on the testing



Remote Sens. 2021, 13, 2683 14 of 21

dataset. Then, the entropy, contrast and testing time were evaluated, and the results are
shown in Tables 4 and 5. It can be seen from Tables 4 and 5 that the higher the number
of CELMs, the better the focusing quality, but the focusing time increases. Furthermore,
regardless of the number of CELMs, the performance of Bagging-ECELMs with CKS 17 is
much better than that of Bagging-ECELMs with CKS 3.

Table 4. The influence of the number of CELMs with ra = 3 on focusing performance.

0 1 2 4 8 16 32 64

Entropy 10.0474 10.0435 10.0071 9.9739 9.9490 9.9238 9.9069 9.8965
Contrast 3.4078 3.4333 3.7135 3.9798 4.2039 4.4202 4.5721 4.6723

Training (s) - 82.01 166.95 329.76 673.71 1325.90 2681.57 5293.01
Testing (s) - 6.26 10.38 18.94 35.96 70.00 136.13 271.78

Table 5. The influence of the number of CELMs with ra = 17 on focusing performance.

0 1 2 4 8 16 32 64

Entropy 10.0474 9.9931 9.9564 9.9231 9.8981 9.8792 9.8693 9.8628
Contrast 3.4078 3.7952 4.0938 4.3873 4.6313 4.8170 4.9197 4.9800

Training (s) - 57.51 152.41 289.57 534.42 1291.96 2301.05 5151.04
Testing (s) - 6.12 10.05 18.49 35.51 69.29 134.85 268.55

Thirdly, the influence of the number of CELMs with different CKS on focusing perfor-
mance is analyzed. Suppose there are M CELMs; the azimuth CKS of the m-th CELM is
set as

r(m)
a = max{1, 63− (m− 1)× 64/M}, m = 1, 2, 3 · · · , M. (28)

Equation (28) can generate very different kernel sizes. Here are a few examples:
if M = 2, then the azimuth CKS are 63 and 31; if M = 4, then the the azimuth CKS are 63,
47, 31 and 15; if M = 8, then the azimuth CKS are 63, 55, 47, 39, 31, 23, 15 and 7.

After training all the CELMs, our proposed model is evaluated on the above training,
validation, and testing dataset. The results are illustrated in Figure 5 and Table 6.
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Figure 5. The focusing performance versus the number of CELMs. The entropy, contrast and time
metrics evaluated on the training, validation and testing datasets are illustrated. The kernel size of
each CELM is different.

In Figure 5, when the number of CELMs is 0, there is no autofocus. As is known,
the smaller the entropy, the greater the contrast, indicating that the focusing quality is better.
We can conclude that the higher the number of individual learners (CELMs), the higher
the focusing quality. The autofocus time of the proposed model is approximately linear
with the number of CELMs. However, when the number of CELMs is large, increasing the
number of individual learners has little effect on the focus quality.

The detailed numerical results are given in Table 6. The entropy, contrast and testing
(Algorithm 2) time metrics are evaluated on the testing dataset. The training time metric is
evaluated on the training and validation dataset; see Algorithm 1 for details. As we can
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see from Table 6, the training time of the proposed model is directly proportional to the
number of individual learners. Comparing the results in Tables 4–6 and Figure 4, it can be
found that the size of convolution kernel has a great influence on the performance of the
model. When the optimal kernel size is unknown, using different kernel sizes can yield
more optimal solutions.

Table 6. The influence of the number of CELMs with different CKS on focusing performance.

0 1 2 4 8 16 32 64

Entropy 10.0474 10.0387 9.9706 9.9319 9.9023 9.8808 9.8711 9.8623
Contrast 3.4078 3.4639 3.9824 4.3190 4.6011 4.8025 4.9085 4.9880

Training (s) - 80.57 141.94 303.39 503.34 1324.85 2605.70 4982.68
Testing (s) - 5.94 9.99 18.25 34.98 67.83 130.98 262.96

Finally, to verify the effectiveness of the proposed combination strategy, the classical
average combination strategy, which averages the outputs of M CELMs, is tested. In this
experiment, a different CKS is used, which can be computed by Equation (28). The per-
formances with different numbers of CELM in the testing dataset are shown in Table 7.
The training time, evaluated on training and validation datasets, is also provided. From
Tables 6 and 7, we can conclude that our proposed entropy-based combination strategy
can obtain a higher focus quality. The reason the average method does not work well is
that the phase errors predicted by different CELMs may be cancelled out by each other.

Table 7. The performance of Bagging-ECELMs with average combination strategy.

0 1 2 4 8 16 32 64

Entropy 10.0474 10.0387 10.0065 9.9950 9.9943 9.9850 9.9868 9.9852
Contrast 3.4078 3.4639 3.6926 3.7810 3.7851 3.8486 3.8554 3.8537

Training (s) - 81.68 149.13 299.52 608.76 1363.78 2376.71 4208.93
Testing (s) - 5.19 7.98 14.57 27.31 52.25 101.18 199.57

4.3. Comparison with Existing Autofocus Algorithms

In this experiment, we compared the proposed method with the existing autofocus
methods of PGA-ML, PGA-LUMV [16], and MEA [51]. The training, validation and testing
datasets described in Section 4.1 were used. In the original PGA algorithm, the window
size was set manually. If not set properly, the algorithm will not converge. However, it is
difficult to manually set the window size for the above 8000 test images. We implemented
an adaptive method to determine the window size. Denote Z as the complex-valued image
data where dominant scatters are center-shifted. The threshold value Tk which determines
the window size, is calculated by the following formulas

v = 20log10

[
Nr−1

∑
nr=0

Zna ,nr Z
∗
na ,nr

]
, (29)

T =
1

Na

Na

∑
na=0

v, (30)

where Na, Nr are the number of pixels in azimuth and range. Denote is, ie as the positions
that satisfy vi < vis ≤ T < vis+1, ∀i < is and vi < vie ≤ T < vie−1, ∀i > ie, respectively.
Thus, the window size is computed by ie − is + 1.

The maximum number of iterations of PGA-ML, PGA-LUMV and MEA are set to
20, 20 and 400, respectively. The tolerance errors of PGA-ML, PGA-LUMV and MEA are
both set to 1 × 10−4. The learning rates of MEA are set to 1, 10 and 100, respectively.
The number of CELMs is 64 and the convolution kernel size of CELMs can be computed by
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Equation (28). The LeakyReLU nonlinear activation function is utilized in all the CELMs.
See Section 4.2 for detailed experimental settings.

The results of different autofocus algorithms on the testing dataset are shown in Table 8.
In Table 8, MEA-1, MEA-10, MEA-100 represent the MEA algorithms with learning rates 1,
10 and 100, respectively. As is known, the image with lower entropy and higher contrast
has a better focus quality. As shown in Table 8, our proposed method and MEA have a
better focus quality than PGA-based methods.

Table 8. The results of different autofocus algorithms on the testing dataset.

PGA-ML PGA-LUMV MEA-1 MEA-10 MEA-100 Bagging-ECELMs

Entropy 9.8913 9.8879 9.8564 9.8510 9.8565 9.8623
Contrast 4.7447 4.7726 5.0416 5.0944 5.0416 4.9880

In order to intuitively show the focus performance of different methods, three scenes
with different texture complexities and defocusing levels were selected in the experiment.
Figure 6 shows the autofocus results of the PGA-LUMV, MEA and the proposed autofocus
algorithms. It can be seen from the figure that the proposed algorithm and MEA algorithm
are suitable for different scenes. However, the phase-gradient-based methods depend on
strong scattering points, so PGA-LUMV fails for the scene without strong scattering points,
as shown in Figure 6j.

(a) Unfocused image (b) PGA-LUMV (c) MEA (d) Bagging-ECELMs

(e) Unfocused image (f) PGA-LUMV (g) MEA (h) Bagging-ECELMs

(i) Unfocused image (j) PGA-LUMV (k) MEA (l) Bagging-ECELMs

Figure 6. The focus results of different autofocus algorithms. Three scenes with different defocusing
level are illustrated.

The phase error curves of the three scenes, estimated by the above three methods, are
shown in Figures 7–9, respectively. It can be seen from Figures 7 and 9 that the 1st image
and 3rd image have large phase errors and are seriously defocused. However, the 2nd
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image has small phase errors. Wecan see that the phase errors estimated by our proposed
method are the closest to the results of MEA.

0 50 100 150 200 250
Aperture position / samples

40

30

20

10

0

10

20

30

Ph
as

e 
/ r

ad

Estimated phase error
PGA
MEA
Bagging-ECELMs

Figure 7. The azimuth phase error curves of the 1st scene estimated by different algorithms.

0 50 100 150 200 250
Aperture position / samples

0

1

2

3

4

Ph
as

e 
/ r

ad

Estimated phase error
PGA
MEA
Bagging-ECELMs

Figure 8. The azimuth phase error curves of the 2nd scene estimated by different algorithms.
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Figure 9. The azimuth phase error curves of the 3rd scene estimated by different algorithms.

In the experiment, we also evaluated the focus speed of the above four algorithms
on a testing dataset. The NVIDIA 1080TI GPU and Intel E5-2696 CPU device were used
for these algorithms. The results are shown in Tables 9 and 10, respectively. It should be
noted that the PGA-based algorithms performed more slowly on GPU than on CPU. This is
because the center-shifting dominant scatter operations can not be effectively parallelized.
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Table 9. The focusing speed (unit:s) of different autofocus algorithms on GPU.

Batchsize PGA-ML PGA-LUMV MEA-10 Bagging-ECELMs

1 3682.72 3751.82 15,545.53 675.25
10 3426.21 3460.97 1600.66 262.26
20 3263.72 3419.52 768.21 239.09
40 3214.08 3282.10 572.62 239.09

It is well-known that PGA has fast convergence and a sufficient performance for
low-frequency errors, but is not suitable for estimating high-frequency phase error [41].
Meanwhile, MEA requires more iterations and more time to converge, but can obtain a
more accurate phase error estimation. From the results in Tables 8–10, we can conclude
that our proposed algorithm has a good trade-off between focusing speed and quality.

Table 10. The focusing speed (unit:s) of different autofocus algorithms on CPU.

Batchsize PGA-ML PGA-LUMV MEA-10 Bagging-ECELMs

1 2353.78 2372.80 36,376.94 3637.47
10 1672.91 1749.18 7566.39 2856.29
20 1653.33 1740.23 7634.37 2987.71
40 1647.03 1734.39 7815.35 2966.18

5. Discussion

SAR autofocus is a key technique for obtaining high-resolution SAR images. The
minimum-entropy-based algorithm usually has a high focusing quality but suffers from
a slow focusing speed. The phase-gradient-based method has a fast focusing speed but
performs poorly (or even does not work) in a scene where a dominant scatterer does
not exist. Our proposed machine-learning- and ensemble-learning-based autofocus al-
gorithm (Bagging-ECELMs) has a good trade-off between focusing quality and speed.
The experimental results presented in Section 4.3 provide evidence for these conclusions.
In Section 4.2, the performance of our proposed method is thoroughly analyzed. Firstly,
we found that the convolution kernel;s size has a great influence on the performance of the
model. Traversing all convolution kernel sizes is often inefficient and sometimes impossible.
Utilizing different kernel sizes can obtain a performance closer to the optimal solutions
(see Tables 4–6). Secondly, our proposed metric-based combination strategy is much more
effective than the classical average-based combination strategy. The phase errors predicted
by different CELMs may have different symbols, which will lead to phase error cancel-
lations. Last, but not least, we can easily conclude that our proposed Bagging-ECELMs
method performs much better than a single CELM.

However, our proposed Bagging-ECELMs method has the following three disadvan-
tages. Firstly, this model can only be utilized for phase errors that can be modeled as a
polynomial. Secondly, a high number of samples is needed for training. Finally, the fo-
cusing quality is slightly worse than that based on minimum entropy. Bagging-ECELMs
can replace PGA when is used to correct polynomial-type phase errors. When a higher
image focusing quality is required and the type of phase error is unknown, the MEA
method should be used. The prediction results of Bagging-ECELMs can also be used as the
initial values of MEA, to accelerate the convergence speed of MEA. In summary, Bagging-
ECELMs is more suitable for real-time autofocus applications, while MEA is more suited
to high-quality autofocus applications. Different from MEA and PGA, Bagging-ECELMs is
nonparametric at the testing phase and easier to use.

In future research, our work will focus on three aspects. Our proposed algorithm will
be extended to correct sinusoidal phase errors. Boosting- or divide-and-conquer-based
ECELMs will be developed. Although the method proposed in this paper has a good trade-
off between focusing quality and speed, it is still possible to enhance this by improving the
combination strategy and network structure.
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6. Conclusions

In this paper, we propose a machine-learning-based SAR autofocus algorithm. A Con-
volutional Extreme Learning Machine (CELM) is constructed to predict the polynomial
coefficients of azimuth phase error. In order to improve the prediction accuracy of a sin-
gle CELM, a bagging-based ensemble learning method is applied. Experimental results
conducted on real SAR data show that this ensemble scheme can effectively improve the
accuracy of phase error estimation. Furthermore, our proposed algorithm has a good
trade-off between focus quality and focus speed. Future works will focus on sinusoidal
phase error correction, a novel combination strategy, and developing ECELMs based on
boosting or divide-and-conquer. Faster and more accurate SAR autofocus algorithms based
on deep learning will also be studied.
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