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Abstract: Increasingly intense marine heatwaves threaten the persistence of many marine ecosys-
tems. Heat stress-mediated episodes of mass coral bleaching have led to catastrophic coral mortality
globally. Remotely monitoring and forecasting such biotic responses to heat stress is key for effec-
tive marine ecosystem management. The Degree Heating Week (DHW) metric, designed to monitor
coral bleaching risk, reflects the duration and intensity of heat stress events and is computed by
accumulating SST anomalies (HotSpot) relative to a stress threshold over a 12-week moving win-
dow. Despite significant improvements in the underlying SST datasets, corresponding revisions of
the HotSpot threshold and accumulation window are still lacking. Here, we fine-tune the opera-
tional DHW algorithm to optimise coral bleaching predictions using the 5 km satellite-based SSTs
(CoralTemp v3.1) and a global coral bleaching dataset (37,871 observations, National Oceanic and
Atmospheric Administration). After developing 234 test DHW algorithms with different combina-
tions of the HotSpot threshold and accumulation window, we compared their bleaching prediction
ability using spatiotemporal Bayesian hierarchical models and sensitivity—specificity analyses. Peak
DHW performance was reached using HotSpot thresholds less than or equal to the maximum of
monthly means SST climatology (MMM) and accumulation windows of 4-8 weeks. This new con-
figuration correctly predicted up to an additional 310 bleaching observations globally compared to
the operational DHW algorithm, an improved hit rate of 7.9%. Given the detrimental impacts of
marine heatwaves across ecosystems, heat stress algorithms could also be fine-tuned for other bio-
logical systems, improving scientific accuracy, and enabling ecosystem governance.

Keywords: marine heatwaves; sea surface temperature; mass coral bleaching; algorithm
optimisation; spatiotemporal Bayesian modelling; R-INLA

1. Introduction

Anthropocene marine heatwaves are becoming increasingly intense, more frequent
and longer lasting due to climate change [1,2]. These anomalous heat stress events can
have severe implications for a range of marine biota, e.g., influencing shifts in zooplank-
ton communities, declines in key groups such as krill [3-5], die-offs and reproductive fail-
ures of sea-birds [6-8], marine mammal strandings [8] and mass coral bleaching and mor-
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tality events [9]. While surveying in situ ecosystem responses to climate change disturb-
ances is essential to assess impact, it is also very costly. Accurate monitoring of ecosystem
stress remotely and at scale is therefore crucial for effectively managing marine ecosys-
tems and accurately predicting the impacts of climate change on marine biota. While sat-
ellite-based remote monitoring and forecasting programmes have been implemented
across various biological contexts, we focus this study specifically on remote monitoring
and forecasting of coral bleaching. Coral reefs are highly productive ecosystems that pro-
vide habitat to over a million marine species and essential ecosystem services (e.g., coastal
protection, food, fisheries and tourism livelihoods) to hundreds of millions of people, es-
timated to be worth over 350,000 USD ha yr globally [10,11]. These ecosystems are in-
creasingly faced with mass coral bleaching and mortality events [12]. The process of coral
bleaching involves a breakdown in the symbiosis between coral hosts and their endosym-
biotic phototrophic algae and can ultimately lead to full or partial colony mortality [13]
and sub-lethal effects such as reduced growth [14]. Coral bleaching is a stress response
with a variety of triggers (e.g., anomalous temperature, both high and low; anomalous
increases in solar insolation; anomalous salinity, both high and low; reduction in water
quality; and disease; [15]). Episodes of mass coral bleaching occur across large spatial
scales, affect numerous coral taxa and can destroy entire healthy reefs within months.
Pantropical mass bleaching events are becoming recurrent and are caused by the wide-
spread increasing incidence of marine heatwaves under climate change [12,16,17].

Over the past two decades, the National Oceanic and Atmospheric Administration’s
(NOAA) Coral Reef Watch (CRW) programme has developed a suite of tools for monitor-
ing coral bleaching risk using satellite-based sea surface temperature (SST) products. Spe-
cifically, the Degree Heating Week (DHW) metric is used as an indicator of heat stress
levels sufficient to induce coral bleaching. DHW is computed as the accumulation of pos-
itive temperature anomalies (HotSpot) above a hypothesised coral bleaching stress tem-
perature (i.e., 1 °C above the maximum of monthly means SST climatology —MMM) over
the previous 12 weeks [18,19]. The DHW algorithm was designed in the 1990s, and the
HotSpot threshold (1 °C above MMM) and accumulation window (12 weeks) were chosen
based on field and experimental evidence from Panama and the Caribbean [20,21]. Re-
flecting the technological advancements in remote sensing capabilities since then, the SST
and DHW products have increased in spatial resolution (50 to 5 km) and temporal reso-
lution (twice weekly to daily) [22]. Despite these improvements, there has not yet been a
corresponding revision of the HotSpot threshold and accumulation window used in the
operational DHW algorithm.

Alternate DHW algorithms have been applied to evaluate associations between heat
stress and coral bleaching, mostly at local or regional scales [18,23-29]. Particularly for
weak marine heatwaves associated with coral bleaching, computing DHWSs with a lower
HotSpot threshold has proven useful for monitoring bleaching impacts and severity [23-
25]. Evidence also suggests that using a shorter accumulation window in the DHW algo-
rithm can improve coral bleaching predictions in some cases [26,30]. An optimisation
study in which numerous DHW algorithms are tested against a global coral bleaching
dataset could provide the scientific basis necessary to revise the operational DHW metric.
Recently, [30] showed that altering the HotSpot threshold and accumulation window can
improve global coral bleaching prediction skill, based on weather forecasting techniques
that predict bleaching events (yes or no) depending on whether DHWSs exceed a certain
threshold or not. [30] used DHWs computed from the Optimum Interpolation SST (OI-
SSTv2) and coral bleaching records from a summative dataset of 100 well-studied coral
reefs [9]. However, there is a mismatch in spatial scale between these two datasets; the
SST data were extracted from 0.25-degree grid cells (~770 km? at the equator), while the
area extent of each reef in the bleaching dataset ranged from 2 (Southwest Rocks, Aus-
tralia, and St. Lucia, South Africa) to over 9000 km? (Northern Great Barrier Reef, Aus-
tralia). Accordingly, there are potential mismatches between DHW values and bleaching
data in their study. As such, there is a pressing need to apply a more comprehensive DHW
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optimisation study to a global dataset of direct bleaching observations and DHWs derived
from a higher resolution SST dataset.

To construct a global coral bleaching model based on environmental covariates, pre-
dictions should account for spatial and temporal dependencies. For example, corals in
certain geographic regions are likely to respond to heat stress with higher levels of coral
bleaching (e.g., areas influenced by the El Nifio Southern Oscillation) [31,32] and stress
responses are likely to change through time due to coral adaptation and assemblage turn-
over [33,34]. From a statistical standpoint, spatiotemporal uncertainties in the bleaching—
environment relationship must be accounted for to ensure that bleaching predictions are
not just artefacts of spatial or temporal patterns in unmeasured variables. A number of
studies modelling coral bleaching globally as a function of environmental covariates have
assumed that the uncertainty of this relationship is spatiotemporally constant [30,35]. This
assumption is unlikely to be true for coral bleaching responses, given the potential for
coral adaptation [36,37] and the extent to which post-disturbance turnover can alter the
composition of the coral assemblage [34] and therefore its tendency to experience subse-
quent coral bleaching. To address the spatial (but not temporal) issues, [38] introduced a
Bayesian mixed modelling approach that explicitly resolved spatial variability in the un-
certainty of bleaching—environment relationships. This was achieved by treating ecore-
gion and site as hierarchical random effects, but this comes at the cost of a slow runtime,
an issue further compounded by implementing these models via Monte Carlo Markov
chains (MCMC) which run iteratively and slowly [39]. Given these issues, such an ap-
proach would not be appropriate for a coral bleaching optimisation study that aims to test
hundreds of DHW algorithms (i.e., hundreds of statistical models) whilst also accounting
for spatial and temporal dependencies, since such a study would require a prohibitively
large amount of computing resources.

This study seeks to offer a potential revision to the operational NOAA DHW metric
with a view to improving its ability to predict mass coral bleaching. This will require a
suitable methodology that is robust to spatiotemporal correlated uncertainties and runs
with a reasonable computational speed. Here, we apply an alternative approach to mod-
elling bleaching—environment relationships based on integrated nested Laplace approxi-
mation (INLA), which explicitly solves spatial and temporal uncertainties with much
greater computational speed than MCMC [39]. We aim to optimise two DHW algorithm
parameters, the HotSpot threshold (testing levels from MMM —4 to +4 °C) and the accu-
mulation window (testing levels from 2 to 52 weeks) to improve coral bleaching predic-
tions globally whilst still addressing the common issue of spatial and temporal depend-
encies. We achieved this by combining recently developed Bayesian hierarchical model-
ling techniques using INLA with a streamlined parallel computing workflow on a high-
performance computing cluster called “The Rocket”. This allowed hundreds of spatiotem-
poral INLA models to be run in a short time frame (i.e., hours instead of weeks, as would
be the case using MCMC).

2. Materials and Methods
2.1. Coral Bleaching Data

The optimisation study presented here was based on a global dataset of 37,871
bleaching survey records from published and unpublished scientific sources spanning
from 1969 to 2017 [40-42]. Bleaching estimates were quantified by a wide range of survey-
ing methods, including aerial surveys, line-intercept transects, belt transects, quadrats,
radius plots, rapid visual assessments (e.g., manta tows), ad hoc estimates and interviews
with stakeholders. Since data were collected by hundreds of observers globally over sev-
eral decades, data collection protocols for these different general methods are not stand-
ardised.

The original dataset underwent four layers of filtering a priori to ensure its suitability
for analyses. (1) Data were first filtered for errors. This excluded observations that did not
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have a recorded month or year, as well as observations in which the coordinates provided
did not correspond with a coral reef location (5562 observations excluded). (2) Data were
removed if the survey date fell outside the period of peak thermal exposure for that year.
As, for the purpose of this study, we are only interested in coral bleaching that results
from thermal stress (i.e., not bleaching due to cold stress, nutrient enrichment, etc.), in-
stances of bleaching that cannot be linked to the period of peak thermal exposure may not
accurately reflect the status of heat-induced bleaching for that year and location. We de-
fined the period of peak thermal exposure as the month prior to the month of MMM up
to three months after the month of MMM. For example, if the month of MMM was Febru-
ary for a certain location, only observations from January to May were included. Further,
we ensured that the observation was not made before the date of maximum DHW in that
year (19,292 observations excluded). (3) To account for different sampling protocols in
records of percentage bleaching, we computed bleaching as a binary variable. Bleaching
estimates were reported as means, ranges or broad categories. First, we summarised these
as representative minimum and maximum percentages. Then, the absence of ecologically
significant bleaching was defined as having a maximum estimation of 10% bleaching or
less, while the presence of ecologically significant bleaching was defined as having a min-
imum estimation of 20% bleaching or greater. Observations in which the maximum esti-
mation exceeded 10% while the minimum estimation remained below 20% were filtered
out to reduce the chance of misrepresenting bleaching and non-bleaching observations
(Figure S1) (1452 observations excluded). (4) Lastly, to account for spatiotemporal patch-
iness a priori, we only retained years which had greater than 100 independent observa-
tions, had a qualitatively even global distribution and were not temporally isolated (i.e.,
all proceeding years also needed to meet the previous two criteria). This resulted in re-
moval of all data before 2003. Despite having 345 bleaching records in 2002, all data from
this year were removed as over 80% of records were from the Great Barrier Reef region
alone (1185 observations excluded). The resulting dataset included 10,380 unique obser-
vations between 2003 and 2017, with >171 observations per year and sufficient spatial rep-
resentation for each year (Figure 1A).

Accumulated heat stress (see Figure 1B for a DHW example) is considered to be the
mechanism causing mass coral bleaching [43,44], and marine heatwaves typically occur
across hundreds to thousands of kilometers on spatial scales of weather systems. The vast
majority of bleaching observations in the dataset are associated with mass bleaching
events, but despite our filtration process, some bleaching observations will inevitably re-
sult from small-scale local heat stress and other non-heat-related factors. Since the models
presented in this study are based solely on large-scale accumulated heat stress, the model
predictions we present reflect the mechanism of mass coral bleaching (i.e., across large
spatial scales and numerous taxa due to heat stress).
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Figure 1. (A) Distribution of coral bleaching survey records based on estimates of percentage coral bleaching (<10% = no,
>20% = yes), measured at 5724 sites from 84 countries between 2003 and 2017 (N = 10,380) after four layers of a priori
filtering (i.e., removal of errors, matching surveys with the period of peak thermal exposure in the year, accounting for
inconsistent sampling protocols and accounting for spatiotemporal patchiness). (B) World map of maximum levels of heat
stress reached in 2016 as shown by the maximum operational Degree Heating Week (DHWop) metric derived from 5 km
resolution satellite-based sea surface temperature data. Marine heatwaves in 2016 caused widespread mass coral bleaching
globally. Coral bleaching observations from specific locations and years (A) were matched with maximum DHW values
from the 5 km grid cell surrounding the observation coordinates (e.g., B).

2.2. Temperature Data

Heat stress metrics were derived from a combination of CoralTemp v3.1 [19], a gap-
free global 5 km daily satellite-based SST dataset from 1985 until present, and the corre-
sponding 5 km MMM climatology dataset [19,45]. MMM reflects the typical upper limit
of the summertime monthly mean SST for the centre of the baseline period of CRW Her-
itage products (1985-1990 + 1993) [45] and is constant through time for specific locations.
At each spatially referenced survey record, environmental data were extracted from the 5
km grid cell encompassing that coordinate. These data consisted of a single MMM value
and a time series of the daily SST from the start of the pre-survey year until the end of the
survey year.

For the operational DHW metric used by NOAA (DHWop) (Figure 1B), daily
HotSpots were calculated as daily positive SST anomalies relative to MMM (1). Time se-
ries of daily DHWop were then computed using the standard NOAA CRW method (2).
HotSpots greater than 1 °C were accumulated across a 12-week moving window (84 days
inclusive), where i is the date and 7 is the earliest date of the accumulation window. Each
daily HotSpot used in the summation was divided by seven a priori, such that

HotSpot; = SST; — MMM, HotSpot; =0 (1)
. HotSpot,
Operational DHW; = (T), for HotSpot,, =1 2)
n=i-83

As an example, consider a 12-week window ending on 1 April for a specific survey
location. This window includes only three daily SSTs that exceed the MMM, equivalent
to HotSpots of 0.5, 1.4 and 2.8 °C. The DHWop value for 1 April is the summation of 1.4
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and 2.8° each divided by seven, which is 0.6 °C-weeks. The 0.5 °C HotSpot value was not
included in the summation as it was below 1 °C [19].

We computed a total of 234 test DHW metrics (DHWtest), each with unique combina-
tions of HotSpot thresholds (9 levels, from —4 to +4 °C relative to MMM) and accumulation
windows (26 levels, from 2 to 52 weeks). Unlike the operational metric, HotSpots for
DHW!est were calculated relative to the MMM after an adjustment for the specific thresh-
old in question (3). In the operational metric, only HotSpots >1 °C are accumulated; how-
ever, in the test metrics, all positive HotSpots are accumulated. Therefore, values of DHW-
test are numerically different than DHWop but are conceptually the same. Time series of
daily DHWtest were computed as the accumulation of HotSpots (4), where i is the date, n
is the earliest date of the accumulation window and j is the length of the accumulation
window in days minus one, such that

HotSpot; = SST; — MMM + HotSpot Threshold, HotSpot; =0 3)
. HotSpot,
Test DHW; = Z (T)' for HotSpot, =0 4)
n=i—j

2.3. Statistical Approach

The time unit used in the following models is the calendar year. As coral bleaching
is more likely at higher levels of heat stress [43], the maximum of daily DHW values was
computed from the year of each survey record (see max DHWop in Figure 1B). Thus, all
further reference to DHW metrics relate to the annual maximum summary statistic. Given
that the Southern Hemisphere summer starts before the end of the calendar year, there
was a chance of misclassifying maximum DHW values. For instance, a maximum DHW
on the first or last day of a calendar year will be part of the same heatwave event; however,
they will each be assigned to different calendar years. Previously, this has been addressed
by adopting different calendars for each hemisphere [44]; however, this was not necessary
in the current study since no such instances were present in the dataset. The relative per-
formance of DHW metrics for predicting mass coral bleaching was assessed systemati-
cally using the following conceptual framework.

1. For each DHW metric, the association with coral bleaching was tested using a spati-
otemporal generalised linear model (GLM) with a Bernoulli error structure using
INLA.

2. Sensitivity—specificity analysis was performed on this GLM to optimise predictions,
tally model successes and failures and provide metrics for model comparisons.

3. The first two steps were repeated for all DHWhest metrics and DHWop, resulting in 235
separate GLMs and sensitivity—specificity analyses, each run in parallel on separate
Intel Xeon E5-2699 processors via the high-performance computing cluster “The
Rocket”.

4. Model comparisons were used to determine the best-performing models and hence
the optimal HotSpot threshold and accumulation window for predicting coral
bleaching globally using DHWs.

2.4. Model Formulation

We adopted a spatiotemporal Bayesian modelling approach to predict mass coral
bleaching based on DHWs using the R-INLA package (version 21.01.26) [39]. Compared
to more commonly used frequentist approaches, Bayesian inference allows uncertainty to
be more easily interpreted. Moreover, using R-INLA over other Bayesian tools (e.g.,
Monte Carlo Markov chains) provides the opportunity to resolve spatiotemporal correla-
tions explicitly and more rapidly [39].

Observations of mass coral bleaching are often spatiotemporally correlated due to
large-scale climatic drivers. While basic linear regressions applied to such data ignore



Remote Sens. 2021, 13, 2677

7 of 19

these dependencies and lead to pseudoreplication [46], R-INLA circumvents these issues.
In each time point, spatial dependencies are dealt with by implementing the Matérn cor-
relation across a Gaussian Markov random field (GMRF), essentially a map of spatially
correlated uncertainty. This is achieved using stochastic partial differential equations
(SPDE) solved on a Delaunay triangulation mesh of the study area. The parameters ({2)
that determine the Matérn correlation are the range (r—range at which spatial correlation
diminishes) and error (o). Weakly informative prior estimates of these parameters (ro and
00) are recommended when implementing the Matérn correlation [47]. Temporal depend-
encies among these GMRFs are dealt with by imposing a first-order autoregressive pro-
cess (AR1), defined by the AR1 parameter (p) (9). This allows for correlations in model
residuals through time avoiding pseudoreplication.

To test the effect of DHW metrics on coral bleaching, a triangular mesh (Figure 2)
was defined with a maximum triangle edge length of 600 km and a low-resolution convex
hull (convex = —0.03) around the study sites to avoid boundary effects (1790 nodes). This
mesh was repeated for each year in the time series (26,400 nodes). The probability of coral
bleaching for a given observation (CB:i) in a given year () and location (i) was assumed
to follow a Bernoulli distribution (7::) using the logit-link function for binary data. Bleach-
ing was modelled as a function of the DHW metric in question (fixed effect: DHW:) whilst
accounting for additional underlying spatiotemporal correlations among bleaching obser-
vations (random effect: v1),

CB.; ~ Bernoulli(m,;), ®)
Expected(CB,;) = 1., (6)
Variance(CBt,i) =Ty X (1 - Ttt,,-), )
logit(m,;) = Bo + Py X DHW,; + vy + &1y ()
Vei =P X Vp_q; + Uy, )

u;; ~ GMRF(0, ), (10)

&; ~ Normal(0,0?), (11)

where fo is the intercept, f:1 is the DHW parameter estimate, p is the AR1 parameter, ui
represents the smoothed spatial effect from the GMRF mesh, elements of Q2 (r and o) are
estimated from the Matérn correlation and i contains the independently distributed re-
siduals. Following the recommendations from [47], we specified weakly informative pri-
ors for r0(2000 km) and oo (1.15) based on the residual variogram and error from an inter-
cept-only null Bernoulli GLM (Figure S2). We also tested different priors; however, they
had a negligible effect on the estimates of any model parameters. To avoid imposing arti-
ficial temporal dependencies, we used a non-informative default prior for p.
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Figure 2. Constrained refined Delaunay triangulation mesh of 1790 nodes used for spatial correlation in one timestep. The
spatiotemporal correlation over 15 years is computed over 15 such meshes totalling 26,400 nodes. Continents and bleach-
ing survey coordinates (black points) overlay the higher resolution study area (black mesh) and lower resolution convex

hull (grey mesh).

2.5. Model Validation

Standard model validation steps were conducted for the best-performing GLM and
included plotting bleaching observations against fitted values, assessing model residuals
for spatiotemporal correlations using maps and variograms and producing a time series
of maps showing spatiotemporally correlated uncertainty [48]. The dataset presented here
was considerably patchy in both space and time despite prior filtering (e.g., no South Pa-
cific observations in 2003, 2012 or 2013). Patchy data are a pertinent issue in statistics [49]
and can have a considerable effect on the estimated model parameters [50], and model
selection criteria (e.g., deviance information criterion—DIC) [51]. Thus, to address patch-
iness beyond basic filtering, we performed a simulation test (Figure S3 and Figure S4). In
summary, patchiness did not have an important effect on estimated model parameters
(Figure S5), validating the broader model comparison methods and results of the main
study. Full details are described in the Supplementary Materials.

2.6. Sensitivity-Specificity Analysis

To optimise binary predictions from each Bernoulli GLM, sensitivity—specificity anal-
yses were performed using receiver operating characteristic (ROC) curves in R [52] with-
out considering spatiotemporal dependencies. This method is commonly applied in bio-
informatics and medical decision making to determine the performance of binary classi-
fications. Here, sensitivity is defined as the proportion of correctly classified bleaching
observations (true positives), and specificity as the proportion of correctly classified non-
bleaching observations (true negatives). As a probability cut-off is moved over all possible
values, the ROC plot shows the corresponding sensitivity and specificity at each level. The
area under the curve (AUC) from each ROC plot reflects the performance of that GLM
relative to the perfect predictor (AUC = 1) and can be used for multi-model comparisons
based on 95% confidence intervals computed using stratified bootstrap resampling [52].
The hit rate, defined as the proportion of observed bleaching events that were correctly
predicted, was also computed at the optimal cut-off level for each model.



Remote Sens. 2021, 13, 2677

9 of 19

Accumulation window

2.7. Model Comparisons

Model comparisons were based on the Bayesian DIC and two key metrics from the
sensitivity—specificity analysis: AUC and hit rate. DIC is a measure of overall model par-
simony [48] but is based on both the DHW fixed effect and the spatiotemporal random
effect. Therefore, the AUC and bootstrapped confidence intervals were used as the pre-
ferred model comparison metric, as they evaluate the overall performance of a binary
classifier relative to a perfectly predicting model [52], based on the fixed effect only. Hit
rate is an additional metric that allows an easy interpretation of model success.

3. Results
3.1. Model Comparisons

For predicting coral bleaching based on DHW:est, we identified (1) a group of worst-
performing models, (2) a group of better performing models and (3) a suite of best-per-
forming models. (1) Poor GLM performance was associated with DHW/est metrics com-
puted on HotSpot thresholds > MMM + 2 °C or accumulation windows > 22 weeks. This
was evident by low AUC values < 0.7 and high DIC values > 7000 (Figure 3, right and
upper regions). (2) The remaining GLMs (HotSpot threshold < MMM + 1 °C, accumulation
window < 20 weeks) were associated with better coral bleaching predictions (AUC) and
model parsimony (DIC) (Figure 3, lower and lower left regions). (3) Finer determination
of the best models of this subset was made possible by incorporating sensitivity—-specific-
ity uncertainty into model comparisons (Figure 4, 95% bootstrapped confidence intervals).
A performance-optima relationship was apparent between the AUC and the HotSpot
threshold and accumulation window, whereby peak GLM performance was reached
when DHW accumulation windows were 4-8 weeks (Figure 4). When DHW accumula-
tion windows were outside this range (2 weeks or > 10 weeks), the corresponding AUC
was significantly lower than the AUC of the best-performing GLMs (Figure 4, blue shaded
region). Notably, of all the GLMs that used the same accumulation window (grey and
white band groupings, Figure 4), those models applying lower HotSpot thresholds per-
formed better in terms of the AUC and DIC. The 8-week accumulation window resulted
in the best overall fit of the AUC and DIC combined (max DIC = 6812). In summary, the
suite of best-performing models (in terms of bleaching prediction) applied DHW!est met-
rics based on HotSpot thresholds < MMM and accumulation windows of 4-8 weeks.

Deviance Information Criteria (DIC X103) Area Under the Curve (AUC)
B BN
6.9

7.0 71 7.2 7.3 0.5 0.6 0.7

HotSpot threshold relative to MMM (°C)

Figure 3. Model comparison heatmaps showing the deviance information criterion (DIC) and area under the curve (AUC)
for 234 generalised linear models (GLMs) that each predict coral bleaching based on a different DHW:est metric. Raster
cells represent individual GLMs plotted by HotSpot threshold and accumulation window. The threshold and window
used for DHWop are shown by red dashed lines (MMM + 1 °C, and 12-weeks). Results for the DHWop GLM are not shown
on the heatmaps (DIC = 6967, AUC = 0.758).
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specificity analysis) showing the mean and 95% bootstrapped confidence intervals (CI). Each point represents a general-
ised linear model (GLM) that predicts coral bleaching based on a different DHW!est metric, ordered by HotSpot threshold
and accumulation window (both increasing downwards). The hit rate (proportion of observed bleaching events correctly
predicted) is shown for each GLM (point colour), and the AUC of the best GLM is shown as a blue shaded region. Note
the DHWop algorithm is slightly different than the DHW:test algorithm (Equations (1)-(4)).

3.2. Best Model — Validation

The GLM based on the DHW:est metric with a HotSpot threshold of MMM + 0 °C and
an accumulation window of 8 weeks (DHW!estocswk) was a representative of the suite of
best-performing models. The probability of bleaching output from this model (based on
DHWiestocswk and unmeasured spatiotemporally correlated factors) closely matched the
observational bleaching record (Figure 5A). Both the fixed effect (DHWtestocswi) and the
random effect (spatiotemporal uncertainty) provided important contributions to predic-
tions of coral bleaching (Figure S7). The sensitivity—specificity analysis reflected the high
performance for this model, with an AUC value of 0.783 (Figure 5B). The range parameter
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(r) of GMRFs showed that drivers of bleaching other than DHW:testocswk were spatially
correlated up to 697 km (Figure S6), consistent with the spatial scale of climatic and
weather systems. The AR1 parameter (p) of 0.62 indicated a moderate temporal correla-
tion of uncertainty in predicted coral bleaching (i.e., drivers other than DHWhtestoc-swk),
meaning that the uncertainty in bleaching predictions in one year is affected by that of the
previous year by a factor of 0.62 (Figure S6). This can be seen visually on maps of tempo-
rally correlated GMRFs (Figure S7).
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Figure 5. Exploration of best-performing GLM which predicts coral bleaching based on DHW test-oc-
swk (HotSpot threshold = MMM, accumulation window = 8 weeks) and spatiotemporal uncertainty.
(A) Fitted values or bleaching probabilities are shown relative to bleaching observations from the
global dataset, showing a clear separation between bleaching and non-bleaching categories. (B) Sen-
sitivity-specificity analysis is shown for the same GLM without spatiotemporal uncertainty. Sensi-
tivity is defined as the proportion of correctly classified bleaching observations (true positives), and
specificity as the proportion of correctly classified non-bleaching observations (true negatives). Area
under the curve (AUC) and bootstrapped 95% confidence intervals (shown in brackets) reflect the
distance to a perfectly predicting model (AUC =1).
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3.3. Best Model — Understanding Heat Stress

Even though lowering the HotSpot threshold and reducing the accumulation win-
dow improved predictions of mass coral bleaching (Figures 3 and 4), the DHWop metric
still categorised bleaching observations well. DHWop values were greater for bleaching
records than for non-bleaching records (Figure 6). Of the 517 highest heat stress records
(>95th percentile: >9.0 °C-weeks), 78% were associated with coral bleaching observations,
highlighting the importance of heat stress as a proximate cause of coral bleaching. Such
levels of heat stress relate to NOAA CRW Bleaching Alert Level 2. However, in compari-
son to DHWop, the test metric DHW!estocswk showed a higher distribution of heat stress
values overall, but lower extreme values (Figure 6). This is due to a lower HotSpot thresh-
old and shorter accumulation window, respectively. This was characterised by fewer
DHW values of zero (1 vs. 27%), a higher mean (5.2 vs. 2.5 °C-weeks) and a higher 95th
percentile (9.9 vs. 9.0 °C-weeks), but a lower 99th percentile (11.3 vs. 12.5 °C-weeks). The
number of bleaching observations associated with a heat stress of 0 was 6 for DHWhtest.oc-
swk and 122 for DHWop. Given that DHWheestocswk had a lower HotSpot threshold, fewer
bleaching observations are associated with heat stress values of zero. In other words, re-
ducing the HotSpot threshold increased our ability to predict coral bleaching associated
with weak marine heatwaves.
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Figure 6. DHW distributions for bleaching records (red) and non-bleaching records (blue), shown
as histograms and probability density curves. For comparison of different DHW metrics, the oper-
ational metric used by NOAA (DHWqp) is shown alongside one of the best-performing metrics
(DHW/est-oc-swk), calculated using a lower HotSpot threshold (MMM + 0 °C) and a smaller accumula-
tion window (8 weeks).

4. Discussion

Heat stress can have considerable impacts on marine organisms and entire marine
ecosystems [53,54]. The DHW metric is a measure of accumulated heat stress widely used
to predict mass coral bleaching caused by anomalous temperatures above typical sum-
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mertime conditions [35,38,43,44]. The remote-sensed SST products underpinning the op-
erational NOAA DHW metric have improved stepwise over the last two decades
[18,19,28,55]; however, there has not yet been a corresponding revision of the HotSpot
threshold and accumulation window used in this algorithm. Here, we developed 234 dif-
ferent DHW algorithm variants each with a different HotSpot threshold and accumulation
window. We assessed the performance of these DHW:est metrics for predicting mass coral
bleaching globally. Compared to DHW.p, it was possible to improve the coral bleaching
hit rate by up to 7.9% by using different HotSpot thresholds and accumulation windows,
equating to an additional 310 correctly predicted bleached reefs out of a total of 3895 (also
linked to an increased false negative rate of 3%). While temperature may be the dominant
environmental variable associated with mass coral bleaching events, other variables also
have a role. The authors of [15] showed that variations in light leading up to a bleaching
event can affect DHW accuracy. By shortening the accumulation window for DHW, we
potentially increased the effect of light relative to temperature, which could easily account
for an additional 3% of false negatives. As a number of observations of bleaching in the
dataset were likely caused by mechanisms other than accumulated heat stress (water qual-
ity, salinity, disease, etc.), the changes to the DHW algorithm may have allowed these data
to become more prominent in the analysis outcomes. Simply reducing the HotSpot thresh-
old to MMM (or <MMM) rather than MMM + 1 °C resulted in up to 6.8% increases in the
hit rate, whilst using an accumulation window of 8 weeks instead of 12 weeks maximised
this hit rate. Such improvements were also reflected in model comparison metrics from
sensitivity—specificity analyses (increased AUC of 0.02) and Bayesian inference (decreased
DIC of 36). As we tested over 200 different DHW configurations, there is unlikely to be
any typical bleaching event that can be identified using only the improved DHW config-
uration. This is because many of the DHW configurations are very similar and are hence
referred to as the “suite of best-performing” DHW metrics. These were the DHW metrics
with an accumulation window of 4-8 weeks and a HotSpot threshold of MMM or lower.
Models using the 4-8 week accumulation window generally performed better, reflecting
the typical duration of the vast majority of coral bleaching heat stress events to date [1].
Under climate change, however, average sea temperatures and the duration of marine
heatwaves are predicted to continue increasing [1,56], meaning in the future, longer DHW
accumulation windows may better capture the levels of heat stress relevant to coral
bleaching. Given that baselines are shifting throughout biotic and abiotic marine systems
and that rates of adaptation to future environmental conditions are yet unknown, the con-
cepts addressed in this study likely need to be revisited in the future at semi-regular in-
tervals to ensure that the DHW product remains as accurate as possible.

4.1. Complexities of Coral Bleaching

Coral bleaching is a stress response whereby photosynthetic algal symbionts are lost
from the coral host tissues, resulting in the white coral skeleton becoming progressively
more visible [13,57]. Given the complexity of this host-symbiont relationship, survey met-
rics such as “coral bleaching extent” provide limited information from which to infer bio-
logical causes. Coral bleaching is affected by numerous biological factors including sym-
biont community composition and environmental responses (e.g., more or less heat-toler-
ant algal taxa) [58], host heterotrophy (e.g., reliance on the symbiont) [59], the capacity for
acclimation and adaptation both genetic and epigenetic (intra- and inter-generational)
[60,61] and coral taxonomy (e.g., different life history strategies) [24,62]. In addition, other
environmental factors can influence bleaching responses in corals, such as high solar in-
solation, cloudiness, winds, tidal extremes, thermal variability, cold water stress and nu-
trient enrichment [63-69]. Given this suite of biotic and abiotic factors, a perfectly predict-
ing coral bleaching algorithm would need to combine heat stress metrics with other envi-
ronmental and biological parameters that, in many cases, are often not available at suffi-
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cient spatial or temporal scales. NOAA CRW are investigating the potential improve-
ments to DHW via the inclusion of solar insolation with the development of their Light
Stress Damage (LSD) satellite-based product [15].

Here, we refined the ability of a common heat stress metric to predict mass coral
bleaching. Ideally, such an optimisation study would be based on coral bleaching data
that relate to only heat stress-related mechanisms. By filtering the dataset as described,
we did our best to achieve this; however, some bleaching observations in the dataset may
inevitably have been caused by other biotic or abiotic factors, contributing to the noise in
our results. Bleaching observations from surveys may also be subject to other inaccuracies
such as the assumption that sampling only part of a reef is representative of the entire
reef. Despite these points, the model comparisons performed in this study remain valid
as model biases were applied to all models equally. Given these facts, the AUC and hit
rate from sensitivity—specificity analyses are unlikely to reflect the absolute accuracy of
DHW metrics but rather allow comparisons of relative accuracy to determine optimal
HotSpot thresholds and accumulation windows. The optimisation study presented here
was performed on a global coral bleaching dataset. For scientists and practitioners aiming
to assess global patterns in coral bleaching, we show that bleaching predictions can be
improved by computing DHW metrics using an optimal HotSpot threshold of MMM + 0
°C and accumulation window of 8 weeks. Compared to the operational DHW algorithm,
which accumulates only HotSpots greater than MMM + 1 °C, the improved algorithm has
a lower accumulation threshold. Accordingly, some corals (e.g., certain species, or at cer-
tain locations) may undergo bleaching at lower thermal thresholds than previously pre-
dicted. This highlights a need for more research on coral stress responses to low-magni-
tude heat stress. These recommended DHW algorithm refinements are only applicable to
global analyses and predictions of mass coral bleaching caused by heat stress. Moreover,
it is important to note that the quasi-opportunistic nature of coral bleaching surveys (i.e.,
monitoring coral bleaching when DHW values are high, indicating high bleaching risk)
can lead to a confirmation bias in studies of coral bleaching and heat stress. Monitoring
programmes should address this limitation by aiming to survey bleaching more regularly,
even when there is no accumulated temperature stress (i.e., DHW = 0).

4.2. Global and Regional Scales

A regionally sensitive DHW algorithm would likely improve predictions of mass
coral bleaching. For instance, many scientific studies have used variants of the DHW al-
gorithm to better predict coral bleaching in their study site [23-25]. This will likely con-
tinue, since oceanographic and climatic systems, coral assemblages and the distribution
of algal symbiont taxa vary geographically and at regional scales [58,70,71]. For instance,
the thermal regime of the tropical Eastern Pacific is distinct from many other tropical re-
gions, characterised by high variability due to the El Nifio Southern Oscillation, with more
intense warm water conditions typical of La Nifia years compared to El Nifo years [70].
Long-term trends in coral coverage from this region, which have remained very stable
over the past three decades, are atypical compared to most tropical reefs which have suf-
fered persistent declines [12,31]. Such distinct trends in the tropical Eastern Pacific could
be caused by regional adaptation of corals to these highly variable thermal regimes [31].
This is just one example of a region that could benefit from a specific regional DHW opti-
misation. Notably, the methods applied in this study would be easily adapted to develop
such regional DHW products.

4.3. Alternate Heat Stress Algorithm Applications

Optimising heat stress metrics for specific purposes could also be useful for other
marine systems. Marine heatwaves have contributed to marked ecological disturbances
beyond mass coral bleaching and mortality events [53,72,73], yet specific metrics to predict
these other disturbances are not often implemented. The northeast Pacific warming event
of 2013-2015, termed “the blob”, was the subject of unusually high SST anomalies and
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repeated marine heatwaves [74]. The blob was associated with considerable ecological
impacts, including the mass stranding of marine mammals such as sea lions and whales
[8], die-offs and reproductive failure of seabird populations [6-8] and reduced survival
and growth of foraging fish [75]. In all these cases, evidence suggested that declines in
higher trophic levels were associated not to direct effects of heat stress, but to the cascad-
ing effects of heat-mediated declines at lower trophic levels. Reduced abundance and al-
tered composition of zooplankton communities including krill are highly susceptible to
heat stress [3-5], which can result in reduced food availability for higher trophic level
animals (e.g., Cassin’s auklet and Californian sea lion), leading to their emaciation and
mortality [8]. The urgency to understand the full extent of ecological impacts associated
with marine heatwaves could, in part, be addressed by creating new heat stress indicators
that are optimised for specific disturbances using similar methods to those applied here.
While this would not allow for rapid response actions to such events, it would guide ma-
rine protected area design (i.e., focus on conserving thermal refugia) and inform future
projections of marine systems and related policy recommendations.

5. Conclusions

The Anthropocene is characterised by shifting baselines of biological communities,
loss of biodiversity and increasingly severe and frequent climatic disturbances. Thus,
there is a growing need to understand and be able to predict climatic and anthropogenic
disturbances on habitats, particularly those that provide key ecosystem services to socio-
ecological systems. Here, we fine-tuned a commonly used heat stress algorithm to a spe-
cific purpose (i.e., predicting mass coral bleaching) and showed that simple changes (com-
pared to the operational algorithm) can result in a considerable improvement in predic-
tion success. The philosophy behind this optimisation study was to remove prior expec-
tations, run the models and allow the data to reveal the optimal algorithm parameters
(HotSpot threshold and accumulation window) for predicting mass coral bleaching glob-
ally. In this case, coral bleaching observations were correctly predicted up to 7.9% more
often just by reducing the HotSpot threshold and shortening the accumulation window of
the DHW'est metric. Broadly, improving bleaching prediction success of the operational
DHW metric can support stakeholders and end-users such as coral reef managers, inform
the design of MPA networks (e.g., including thermal refugia) and provide more accurate
information which can lead to better conservation and restoration decision making (shift-
ing valuable coral nurseries during heatwaves, assisting with decisions on when to relo-
cate aquarium-grown corals to the reef, etc.). Fine-tuning DHWs also has potential for
other specific systems, such as predicting planktonic shifts and associated impacts on
higher trophic levels. Increasingly under climate change, marine heatwaves are shaping
species populations, biological food webs and even ecosystem structure and function
[12,53,54]. Thus, optimising our predictions of heat stress and the associated ecological
impacts will be key to understanding the future of marine ecosystems.
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cle/10.3390/rs13142677/s1, Figure S1: Coral bleaching data filtration, Figure S2: Model validation,
Figure S3: Patchiness simulation test, Figure S4: Best-performing spatiotemporal GLM example—
estimated posterior distributions, Figure S5: Best-performing spatiotemporal GLM example —spa-
tiotemporal correlation. Figure S6: Best-performing Spatiotemporal GLM example —Estimated Pos-
terior Distributions. Figure S7: Best-performing Spatiotemporal GLM example —Spatiotemporal
Correlation.
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