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Abstract: In the current study, remotely sensed sea surface ocean temperature (SST) and sea surface
chlorophyll (SSC), an indicator of tuna abundance, were used to determine the optimal feeding
habitat zone of the southern Indian Ocean (SIO) albacore using a habitat suitability model applied to
the 2000–2016 Taiwanese longline fishery data. The analysis showed a stronger correlation between
the 2-month lag SSC and standardized catch per unit effort (CPUE) than 0-, 1-, 3-, and 4-month lag
SSC. SST also exhibited a stronger correlation with standardized CPUE. Therefore, SST and SSC_2
were selected as final variables for model construction. An arithmetic mean model with SST and
SSC_2 was deemed suitable to predict the albacore feeding habitat zone in the SIO. The preferred
ranges of SSC_2 and SST for the feeding habitat of immature albacore were 0.07–0.09 mg m−3 and
16.5–18.5 ◦C, respectively, and mainly centralized at 17.5 ◦C SST and 0.08 mg m−3 SSC_2. The
selected habitat suitability index model displayed a high correlation (R2 = 0.8276) with standardized
CPUE. Overall, temperature and ocean chlorophyll were found to be essential for albacore habitat
formation in the SIO, consistent with previous studies. The results of this study can contribute to
ecosystem-based fisheries management in the SIO by providing insights into the habitat preference
of immature albacore tuna in the SIO.

Keywords: albacore tuna; habitat suitability index; longline fishery; fisheries management; multi-
satellite remote sensing data

1. Introduction

Multisatellite remote sensing has been used to obtain data on sea surface tempera-
ture (SST), sea surface chlorophyll (SSC) [1–3], phytoplankton concentrations, and other
variables since 1978. These data have been highly useful for oceanography and fisheries
management [4–6]. Because of its largescale data collection, remote sensing provides valu-
able support in fisheries exploitation and management [7–10]. For example, it has expanded
understanding of the factors influencing the habitats of tuna and similar species [4,11–15].
Moreover, remote sensing data can help scientists develop sustainable strategies for fish-
eries management, modelers produce forecasts, and fishermen save fuel when detecting
the fishing ground [16]. Tuna regional fisheries management organizations have provided
new insights into ecosystem-based fisheries management (EBFM) using remote sensing
tools [17]. These tools are frequently used in structuring the habitat models of tuna and
similar species [13–15,18–21] and standardization [22,23] of catch per unit effort (CPUE)
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to remove biases due to various factors. SST is one of the finest oceanic parameters used
to relate the tuna distribution with the ocean environment [1]. Phytoplankton biomass is
the indicator of tuna distribution for the resource assessment of fisheries as phytoplankton
is the primary food source in the ocean [8,24]. It was also observed in a previous study
that the phytoplankton patches need a delay of at least 5–7 days to become mature in
the feeding ground, and it was suggested to include 1-month lag chlorophyll data as a
potential indicator [24]. Thus, environmental data obtained from remote sensing tools can
potentially structure habitat preferences and be used for catchability assessment of target
species in an effort to achieve EBFM.

Abundance indices with fishery data are used for assessing the temporospatial stock
to highlight the population variation [25,26], including that of different fish species [27–29].
Furthermore, this method has been applied in ecology recovery studies, species monitoring,
and environmental impact assessment [30]. Various types of habitat models, such as the
generalized additive model (GAM), generalized linear model (GLM), and habitat suitability
index (HSI) model, are in use widely to determine the potential habitat zone of marine
organisms. Habitat modeling is a crucial part of EBFM [17]. Remotely sensed data have
been used to design the habitat model of albacore tuna (Thunnus alalunga) in the South
Atlantic Ocean [31] and North Pacific Ocean [32] and in many other studies [33–35]. Habitat
models with optimal environmental factors have also been described for the Northwest
Pacific neon flying squid (Ommastrephes bartramii) [36,37]. Lan et al. [4] applied GAMs to
determine the CPUE variation in relation to environmental data in the Atlantic Ocean, and
Zainuddin et al. [9] used combined GAM–GLM to determine potential fishing zones using
multisatellite environmental and integrated CPUE data. Thus, habitat models can help to
implement or modify EBFM through the monitoring of fish habitat, prey abundance, and
climate effects [38] as well.

Albacore tuna is an essential commercial species. Many studies conducted in the
Indian Ocean have focused on this species [4,39,40]. The albacore fishery first started
in the 1950s by Japanese longlines. The longline fishery is responsible for more than
80% of the Indian Ocean albacore catch. Albacore has high migration behavior and is
broadly distributed in the important oceans (Indian, Atlantic, and Pacific) from 50◦N to
40◦S, except up to 25◦N in the Indian Ocean [41]. Indian Ocean albacore stock has mainly
been exploited by Korea, Japan, and Taiwan in the past decades. Stock discrimination,
production modeling, and age determination have been widely studied [42–46]. However,
research on habitat distribution and oceanography in the Indian Ocean has been scattered
relative to its prolonged exploitation record. Studies have emphasized that SST [47,48] and
chlorophyll concentration are crucial for albacore distribution [8,39]. The current study
focused on the feeding habitat of immature albacore. The weight and nominal CPUE
distribution of albacore tuna in the southern Indian Ocean (SIO) from 2000 to 2016 are
shown in Figure 1. The main data were categorized into mature and immature albacore
following a previous study [39]. It is very crucial to develop habitat models using satellite
data for promoting EBFM [19]. Accordingly, the present study developed a suitable habitat
model to detect the feeding habitat preference and preferred environment range of albacore
tuna by using remote sensing data and Taiwanese longline fishing data in the SIO.
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Figure 1. Nominal (N) CPUE and average weight (AW) distribution of albacore tuna for the southern Indian Ocean from
2000 to 2016. The area in the red rectangle is the main habitat zone of immature albacore tuna.

2. Materials and Methods
2.1. Albacore Tuna Fishing Data

Albacore tuna fishing data for the SIO were collected from the longline fishing log-
book of Taiwan supplied by the Overseas Fisheries Development Council of Taiwan. The
2000–2016 data with the major fishing season (April to September) [4] with a spatial grid
of 1◦ × 1◦ were used for the analyses. The fishery data consisted of number of hooks em-
ployed, number of catches, albacore weight, year, month, latitude, and longitude. Data were
introduced into the models after calculation. The nominal CPUE of longlines was employed
as the stock abundance indicator in the fishing zones [9,10,26]. Monthly nominal CPUE
was calculated as the number of individuals per 103 hooks (No. of individuals/103 hooks).

CPUEijk = ΣCijk/ΣEijk (1)

where CPUEijk is the nominal CPUE; ΣCijk and ΣEijk are the total catches and hooks em-
ployed (103 hooks) in the 1◦ × 1◦ spatial grid, respectively; and i, j, and k indicate the
month, longitude, and latitude, respectively.

2.2. Standardization of Nominal Catch per Unit Effort Data

Unintentional overestimation of abundance may be caused by the effect of covariates
such as year, month, latitude, and longitude [10,27]. Therefore, a GLM was applied for the
standardization of the nominal CPUE data to overcome bias in catch data as follows:

Log (CPUE + c) = µ + year + month + latitude + longitude + € (2)

where CPUE indicates the nominal catch per unit effort, c is a constant value of 0.1 of the
overall nominal catch mean used in standardization [10,22], µ indicates the intercept, and €
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is a variable with normal distribution and zero mean. The standardized CPUE value was
used to remove the bias due to the influence of covariates.

2.3. Moderate Resolution Imaging Spectroradiometer (MODIS)-Derived Remotely Sensed Data

Initially, two remote sensing environmental parameters—SST and SSC from 2000
to 2016—were derived. SST is a key factor in albacore tuna habitat selection and has a
direct relation with the albacore distribution [9,10]. SSC is an indicator of phytoplankton.
The aquatic food web is established by phytoplankton, which are primary producers
and fed upon by organisms ranging from microscopic zooplankton to multitoned whales.
Invertebrates and small fishes also feed on phytoplankton and are fed upon by bigger
fishes. Moreover, zooplankton and buoyant organisms also pile up near the SSC front
to feed on the phytoplankton [49,50]. Higher-trophic-level predators such as albacore
tuna are attracted by the biomass of these secondary producers [51], which indicates an
indirect relation between SSC and albacore. Therefore, the present study used these two
remotely sensed variables. There is no direct relation between SSC and albacore, as albacore
feeds on secondary producers such as fish (Alepisauridae, Carangidae, Gempylidae, and
Triacanthidae) [52–54] but also on crustaceans [51]. A previous study showed that a
minimum time delay of 5–7 days is required for a phytoplankton patch to mature into
a foraging ground, and it was suggested to include 1-month lag chlorophyll data as a
potential indicator [24]. Moreover, it may take some time to reach the predating zone
by searching, which means a higher concentration of SSC may not mean higher albacore
biomass in a particular time. Thus, the authors tried to use the lag data of SSC also to
see if there was any significant indication for using SSC lag data. A total of six variables
were used for the initial analysis (Table 1). All these data on monthly composite fields
were obtained from the Environmental Research Division Data Access Program (ERDDAP)
database of the National Oceanic and Atmospheric Administration on a spatial grid of
1◦ × 1◦ (https://coastwatch.pfeg.noaa.gov/erddap/index.html, accessed on 2 April 2021)
for consistency with the spatial resolution of fishery data.

Table 1. Remotely sensed variables applied in the model and their data sources.

Variables Units Data Source Resolution

Sea Surface Temperature (SST) ◦C MODIS 1◦ × 1◦

Sea Surface Chlorophyll (SSC_0) mg m−3 MODIS 1◦ × 1◦

Sea Surface Chlorophyll 1-month lag (SSC_1) mg m−3 MODIS 1◦ × 1◦

Sea Surface Chlorophyll 2-month lag (SSC_2) mg m−3 MODIS 1◦ × 1◦

Sea Surface Chlorophyll 3-month lag (SSC_3) mg m−3 MODIS 1◦ × 1◦

Sea Surface Chlorophyll 4-month lag (SSC_4) mg m−3 MODIS 1◦ × 1◦

2.4. Environmental Factor Selection for Model Building

Correlation analysis was executed to select the variables for fitting in the model.
Variables were selected if the correlation coefficient (r) values were nearer to +1 or −1.
One SSC variable from SSC_0 to SSC_4 and SST (Table 1) were selected for fitting into
the model. Initially, Pearson analysis was also performed between the environments
to assess the correlation between current and lag environments. If the correlation was
significant, then another Pearson analysis was conducted between the standardized CPUE
and environmental variables. Thereafter, the parameters were selected according to their r
values for the construction of the final model.

2.5. Suitability Index of Environmental Variables and Standardized CPUE

On the basis of the central tendency of habitat factors [31,32], the suitability index (SI)
for Indian Ocean albacore was computed to clarify the relationship between environmental
variables and standardized CPUE by fitting them in specific latitudes, longitudes, and

https://coastwatch.pfeg.noaa.gov/erddap/index.html
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months through smoothing spline regression [27–29,31,32]. Environmental variables were
used as independent variables, and standardized CPUE was used as the dependent variable.
Normalization of standardized CPUE and selected environmental variables was performed
using the 0 to 1 scale as follows [27–29,31,32]:

SI =
Ŷijk − Ŷijkmin

Ŷijkmax − Ŷijkmin
(3)

where Ŷ indicates the predicted catch per unit effort or environmental parameters; Ŷ min
and Ŷ max are the minimum and maximum observations of environmental variables or
predicted CPUE, respectively; and i, j, and k indicate the month, longitude, and latitude,
respectively.

The SI values (ranging from 0 to 1) were computed by using the summed frequency
distribution of the standardized catch per unit effort for each class. Subsequently, the
calculated SI values of environmental variables and midpoints of each class interval were
used to fit the SI models. Finally, the association between the selected environmental
parameters and SI was computed using the following formula [55–57]:

sim = eα(m+β)2 (4)

where m is the response variable, and α and β are determined by using the least-squares
estimate which minimizes the residual between the observed and estimated SI.

2.6. Development of the HSI Model

Two very common empirical HSI models—the arithmetic mean model (AMM) [31,32,58]
and the geometric mean model (GMM) [31,32,59]—were employed to evaluate habitat
preferences [7,31,32]. The SI values of each environmental factor were introduced into
these two models [7,28,29]. HSI was assumed to have a univariate value range between 0
and 1 [60,61]. The AMM and GMM empirical HSI models were calculated as follows:

HSI − AMM = 1/m
m

∑
n=1

SIn (5)

HSI − GMM = (
m

∏
n=1

SIn )̂(1/m) (6)

where SIn is the SI for the nth environmental factor, and m is the number of environmental
factors inserted into the model. The selected SSC variable and SST were applied indi-
vidually and together as habitat data in each empirical habitat model. SI values > 0.6,
obtained through various integrations of habitat factors, were then incorporated into the
HSI model [31,32].

2.7. Model Selection and Validation

The performance of the HSI models was evaluated, and the model with the lowest
Akaike information criterion (AIC; [60]) value was used for testing and validation. The
performance of the selected HSI model was evaluated on the basis of the summed monthly
standardized CPUE values from 2000 to 2016, which were tested according to the analyzed
HSI value intervals [56,57]. Subsequently, the linear correlation between the selected HSI
model and CPUE was determined to evaluate whether the HSI model can predict the
potential habitats. Finally, the spatial distribution of HSI values was determined using the
selected HSI model and mapped using ArcGIS (version 10.2) software to predict potential
feeding habitats; these data were then compared to standardized CPUE data.
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3. Results
3.1. Spatiotemporal Variation of Standardized CPUE in the SIO

To remove the bias due to different factors, the nominal albacore CPUE data were
standardized using the GLM (Figure 2a). The Pearson correlation coefficient values of
nominal and standardized CPUE for the entire time series and monthly mean were 0.589
and 0.861, respectively.

Figure 2. (a) Time series of nominal (nom.) and standardized (sta.) catch per unit effort (CPUE)
data and (b) the changes in the sum of standardized CPUE, yearly. Average of standardized
CPUE (c) monthly, (d) latitudinally, and (e) longitudinally.

The sum of standardized CPUE was highest in 2010 (approximately 70,000) and the
lowest in 2012 (approximately 8212; Figure 2b). The major fishing period in the SIO
is from April to September; thus, the data of these 6 months were used for the forth-
coming analysis. The average standardized CPUE was the highest in May and July
(>3 individuals/103 hooks; Figure 2c). Standardized CPUE displayed an increasing trend
southward from 15 to 35◦S and then decreased thereafter. The highest standardized CPUE
was observed at 31–35◦S (near 6 individuals/103 hooks). The standardized CPUE was
<1 individuals/103 hooks northward from 15◦S (Figure 2d). The longitudinally standard-
ized CPUE exhibited an increasing trend eastward, and the highest standardized CPUE
was between 90 and 99◦E (>6 individuals/103 hooks; Figure 2e).

3.2. Variable Selection for Fitting into the Final Model

Correlation analysis was performed to select the most suitable SSC variable (SSC_0
to SSC_4). Analysis between the same environments and their lag data revealed higher
correlations, resulting in a collinear effect on standardized CPUE (Table 2). Correlation
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analysis was also performed between the environmental variables and standardized CPUE.
SST had the highest correlation (r = 0.681) with standardized CPUE, whereas among the
SSCs, SSC_2 had the highest correlation (r = 0.224; Table 2). Therefore, SI curves were
constructed for SST and SSC_2, and their data were introduced into the model for the
final analysis.

Table 2. Correlation analysis between different environments and between environmental variables
and standardized CPUE. Bold values were selected for the final model.

SST SSC_0 SSC_1 SSC_2 SSC_3 SSC_4

SSC_0 −0.079 *

SSC_1 −0.041 * 0.877 **

SSC_2 0.049 * 0.815 ** 0.889 **

SSC_3 0.105 * 0.775 ** 0.813 ** 0.893 **

SSC_4 0.123 * 0.743 ** 0.798 ** 0.859 ** 0.875 **

Sta. CPUE −0.681 * −0.152 * −0.189 * −0.224 * −0.197 * −0.166 *
* 0.05 level of significance, ** 0.01 level of significance.

3.3. Variation in Selected Remote Sensing Environmental Variables in the SIO

The area between 0 and 20◦S was warmer than other parts of the SIO during the
study period, with an SST of >20 ◦C (Figure 3). Southward of 20◦S, SST tended to decrease,
and from 40◦S, it was ≤15 ◦C, which was cooler than other parts of SIO during the study
period. The highest standard deviation was observed near 30◦S (>2 ◦C); the lowest was
observed near 40◦S (0.2–0.6 ◦C; Figure 3). An SSC_2 < 0.3 mg m−3 was found in the
area of 15–35◦S 60–100◦E, with generally low deviations (Figure 4). A higher SSC_2 was
observed around the southern coast of Africa throughout the study period, with the
standard deviation > 0.15.

Figure 3. Mean and standard deviations (SD) of SST and SSC_2 from 2000 to 2016.
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Figure 4. Suitability index (SI) curves for (a) SST and (b) SSC_2 for the SIO albacore tuna generated by using a regression
method with smoothing spline. The intersection of the horizontal line and SI curve indicates the environmental variables
with the optimal range.

3.4. SI Curves of Selected Environmental Factors and Modeling the HSI of Albacore Tuna

With SI > 0.6, the preferred ranges [49] of SST and SSC_2 for albacore tuna were
16.5–19.5 ◦C and 0.07–0.09 mg m−3, respectively (Figure 5). Summed standardized CPUE
was mainly centralized in the area that had 17.5 ◦C SST and 0.08 mg m−3 SSC_2. The
AMM-derived HSI model with SST and SSC_2 obtained the lowest Akaike index criterion
value, 1.432 (adjusted r2 = 0.839). Furthermore, SSC_2 had a lower AIC value than SST, with
a higher adjusted r2 value (Table 3).

AIC, Akaike’s information criterion; AMM, arithmetic mean model; GMM, general
mean model; SSC_2, sea surface chlorophyll @ 2 months lag; SST, sea surface temperature.

3.5. Validation of the HSI models and HSI prediction

The final AMM model performance was validated by the comparison of the average
standardized CPUE using all three models (SST, SSC_2, and SST + SSC_2; Figure 5). Linear
regression analysis revealed a higher r2 value for SST + SSC_2 (r2 = 0.8276) than SST
(r2 = 0.8071) and SSC_2 (r2 = 0.8154; Figure 5a–c).

Therefore, HSI-AMM based on SST + SSC_2 was deemed suitable for the HSI pre-
diction the albacore. The AMM (temporal) with SSC_2 and SST was employed to detect
albacore tuna habitat during the fishing season (April to September) in the SIO between
2000 and 2016. Maps were shaped for the spatial distribution (monthly) of the standardized
CPUE and HSI (Figure 6). The predicted monthly mean HSI was high (>0.6) between 40◦S
and 30◦S from April to September (Figure 6). Specifically, high HSI was extensively dis-
tributed in 35–40◦S, 60–100◦E in April and 30–35◦S, 50–100◦E in September. The monthly
variations in standardized CPUE can be observed in a more concentrated manner by
evaluating the optimal HSI value distribution on the HSI map. In April, the optimal
HSI value was at approximately 35–40◦S, with a low habitat suitability index value of
less than 0.6 northward of 35◦S. After April, the high HSI values exhibited a northward
shift until September. Standardized CPUE followed the same pattern as the HSI values
(Figure 6). Higher CPUE (>10) was detected around 35◦S, 60–100◦E from April to June but
at approximately 35◦S, 50–100◦E from July to August. In September, higher standardized
CPUE was mainly concentrated on the Madagascar’s southwest coast, around 50–70◦E.
Figure 7 showed monthly spatial distribution of SIO albacore standardized CPUE in rela-
tion to SSC_2 and SST from April to September (major fishing period) where the red line
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indicates the 17.5◦C SST isotherm in the current month, and the green line represents the
0.08 mg m−3 SSC_2 isopleth at a time delay of 2 months.

Figure 5. Association between average standardized monthly CPUE and AMM derived (a) HSISST,
(b) HSISSC_2, and (c) HSISST+SSC_2 values for albacore tuna in the SIO.

Figure 6. Monthly HSI predicted maps and albacore CPUE using an arithmetic mean model with
SST and SSC_2 data.
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Figure 7. Monthly spatial distribution of SIO albacore standardized CPUE in relation to SSC_2 and
SST from April to September (major fishing period). The red line indicates the 17.5 ◦C SST isotherm
in the current month, and the green line represents the 0.08 mg m−3 SSC_2 isopleth at a time delay of
2 months.

Table 3. Comparison between two empirical habitat suitability index models with the selected remote sensing environmental
parameters for the SIO albacore tuna.

Environmental
Variables

AMM GMM

α β Adjusted r2 AIC P(F) α β Adjusted r2 AIC P(F)

SST 1.962 5.206 0.783 28.115 <0.01 1.962 5.206 0.783 28.115 <0.01

SSC_2 1.318 2.812 0.819 13.568 <0.01 1.318 2.812 0.819 13.568 <0.01

SST, SSC_2 0.534 1.221 0.839 1.432 <0.01 4.394 3.104 0.178 42.046 <0.01

4. Discussion

Earlier studies demonstrated the environmental relation of albacore tuna in the south-
ern Indian Ocean, but in the present manuscript, it was shown specifically for the immature
albacore. Moreover, none of the previous studies used the chlorophyll lag data to find the
difference in projected habitat due to the use of lag. The current study found that SSC_2
was a better clarifier.

The term “total allowable catch” was first used in 2000 [43]. Since then, efforts to
rebuild worldwide albacore tuna stocks have been increasing, with size selectivity rules
for harvesting. EBFM should be guided by optimal biological parameters and should use
different practical tools. An understanding of the tempo-spatial distribution of species and
the influences of the oceanic environment on their distribution can help in the effective
planning of stock rebuilding [62]. These tools are applicable to Taiwanese fishing fleets in
the SIO that are part of the albacore tuna fishing industry. The present study was conducted
to model the habitat preferences of albacore tuna in the SIO using environmental variables
remotely sensed during 2000–2016. An empirical AMM-derived HSI model using both
SSC_2 and SST data was deemed to be optimal for modeling SIO albacore tuna habitat
suitability. HSI > 0.6 with an optimal environment of 17.5 ◦C SST and 0.08 mg m−3 SSC_2
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indicated higher chances of albacore presence. Several studies worldwide have offered
hypotheses regarding albacore’s preferred environmental ranges and the environmental
influences on their habitat [6,9,19,32]. AMM-based HSI exhibited a favorable monthly
variation of standardized CPUE, which showed a northward shifting from 40◦S in April
to 30◦S in September. Moreover, higher standardized albacore CPUE and higher HSI
coincided mainly in the area of 30–40◦S from April to September. Consequently, the
migration of albacore schools northward of 40◦S may increase the catch probability near
30◦S from June to September. Low HSI and lower standardized CPUE were observed
in areas beyond the 30–40◦S zone. In contrast, the favorable habitat region was 30–40◦S
from April to September. The current study focused on the feeding habitat zone of the
SIO immature albacore tuna. Chen et al. [39] stated that the initial length and weight at
maturity of the Indian Ocean albacore tuna were 90 cm and 14 kg, respectively (Figure 1).
Figure 1 also indicates that albacore tuna with length < 90 cm and weight < 14 kg were
noted in the 30–40◦S area, implying that immature albacore inhabit that area from April
to September.

Temperature [4,39] and chlorophyll [40–42] are key predictors of suitable albacore
habitat because they indicate the source of food for albacore [19,31,32]. Several abundance
models for albacore distribution have used temperature and chlorophyll [31,32]. However,
the present study employed a different method of using chlorophyll data by using remotely
sensed data and lag values (SSC_0 to SSC_4 and SST), following a suggestion [24] and
experimental results of previous studies. Initially, the current and 1-, 2-, 3-, and 4-month
lag data for chlorophyll were used to determine which of them performed optimally. SST
and 2-month lag chlorophyll (SSC_2) data provided the optimal results. There is no direct
relation between chlorophyll and albacore because albacore feeds on secondary producers
such as fish [52,53], shrimp, squid, and octopus [54]. A previous study showed a better
correlation between 1-month chlorophyll lag and albacore catch (r = 0.982) than chlorophyll
with no lag (r = 0.907). It may take some time for phytoplankton patches to become
prominent [24]; therefore, it may take some time for secondary producers to reach the
high-chlorophyll zone, and it can take more time for albacore to reach secondary producers
for feeding. These results indicate that a higher concentration of chlorophyll does not mean
higher albacore biomass at the same time. These results suggest that chlorophyll does not
have an immediate effect on albacore distribution, but a delayed effect. Present results
provide new insights into using chlorophyll data with a 2-month lag for determining
albacore tuna distribution. SST and SSC_2 in the range of 16.5–18.5 ◦C and 0.07–0.09 mg
m−3, respectively, were associated with a higher albacore tune distribution in the SIO,
with the highest abundance near 17.5 ◦C and 0.08 mg m−3. Lan et al. [4] stated that a 95%
higher CPUE was in the SST of 16–18.5 ◦C. For immature albacore, 18.9 ◦C was considered
an appropriate SST [39]. Lee et al. [62] concluded that SST (17–21 ◦C) explained the
predominant habitat pattern of albacore tuna in the SIO and reported that SST is the primary
factor influencing the albacore tuna distribution. In a previous study, it was discovered
that CPUE is strongly associated with SSC in the range of 0.1–0.2 mg m−3. Arrizabalaga
et al. [63] reported that albacore favors relatively low chlorophyll levels (0.11–0.22 mg m−3),
although it can tolerate a wide range of chlorophyll levels. The temperature range in the
present study is consistent with that reported in previous studies, with slight differences
due to variations in the study period [64]. In comparison, the chlorophyll range exhibited
slight differences, which may be due to the use of 2-month lag data in the present study.
The area between 30 and 40◦S showed higher standardized CPUE, which may be attributed
to favorable SSC_2 and SST in this area (Figure 7) during the study period. HSI-AMM
based on SSC_2 was a more accurate indicator of albacore aggregation than that based on
SST, suggesting that the feeding habitat of immature albacore was between 30 and 40◦S
during the study period. Higher abundance was observed near the areas with a 17.5 ◦C
and 0.1 mg m−3 isopleth line (Figure 7). Thus, SST and SSC_2 can help determine the areas
with a higher probability of albacore aggregation, which is similar to the previous findings.
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Overall, remotely sensed SST and SSC_2 can assist in identifying the distribution pattern
of the SIO albacore tuna.

The highest and lowest catches were in 2010 and 2012, respectively (Figure 2b), likely
due to a negative Indian Ocean Dipole (IOD) event in 2010 (Figure 8a), which lowered the
SST and led to a higher catch. Similar phenomena have been noted in the western Indian
Ocean and other places. The second-highest fishing effort (Figure 9a) during the study
period was in 2010, which may have also contributed to the high albacore catch in 2010
(Figure 9b). By contrast, in 2012, a positive IOD event occurred (Figure 8a), but the lowest
fishing effort (Figure 9a) was also in 2012, leading to the lowest catch (Figure 9b). A study
revealed that April to September is the primary fishing season in the SIO. This may be
because the months of April to September tend to have lower IOD values than the other
months (Figure 9b), allowing the distribution of immature albacore in the SIO from April
to September. Following a related study, the use of geostatistical techniques to calculate the
abundance in SIO may help clarify the reasons for interannual variability.

Figure 8. (a)Yearly and (b) monthly changes in Indian Ocean Dipole (IOD) from 2000 to 2016 in the southern Indian Ocean.
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Nevertheless, saving the future stock of albacore in the SIO requires urgent interven-
tion. There is a lack of proper stock assessment and management, and the exceeding of
maximum sustainable yield continues in the SIO [65]. In addition, climate change may
be a major reason for stock shifting of albacore in the SIO in near future. Assuming that
environmental variables are the primary influence of albacore distribution in the SIO may
be unwise. Future studies should evaluate the effect of climate change on albacore distri-
bution in the SIO. However, factors such as the dynamics of marine fisheries and various
biotic and abiotic factors can also alter the distribution pattern [62,66]. The mechanism of



Remote Sens. 2021, 13, 2669 13 of 16

habitat preference is difficult to determine, and it may change because of other factors such
as prey abundance and fleet behavior. Recently, SEAPODYM has provided useful tools for
achieving EBFM [66] for the South Pacific albacore. Further research using empirical HSI
models, as used in the present study, and population dynamics [67] can help guide EBFM
strategies in the SIO and elsewhere.

5. Conclusions

In summary, an empirical HSI model was constructed using remote sensing data
for albacore in the SIO. The sum of standardized CPUE was highest in 2010 and lowest
in 2012. The months of May and July showed higher standardized CPUE than the rest
of the months. Chlorophyll with 2-month lag data showed a higher correlation with
standardized CPUE than 0-, 1-, 3-, and 4-month lag. The final models were constructed
using only SST and SSC_2. An AMM-based HSI model was developed using the SI values
of remote sensing data and was shown as the optimum empirical HSI model for the SIO
albacore. Two variables SST and SSC_2 were used in the selected model to detect the
habitat preference of albacore. The optimal habitat was detected in areas where SST and
SSC_2 were 16.5–18.5 ◦C and 0.07–0.09 mg/m3, respectively. The predicted monthly mean
HSI was high (>0.6) between 40 and 30◦S from April to September. In particular, high
HSI was extensively distributed in 35–40◦S, 60–100◦E in April and 30–35◦S, 50–100◦E in
September. Moreover, the detection of the suitable habitat with the use of remote sensing
data was associated with the areas with high standardized catch per unit effort, suggesting
that high tuna habitat is connected to favorable SST and SSC_2. However, several uncertain
factors such as global warming, climatic changes, and various abiotic and biotic factors
(e.g., fleet behavior or prey abundance) that could have an impact on the albacore habitat
were not considered in the present study. Future studies will examine these mechanisms to
ensure the long-term tuna stock sustainability under the jurisdiction of RFMOs such as the
ICCAT to ensure the successful regional EBFM in the SIO.
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