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Abstract: While deforestation has traditionally been the focus for forest canopy disturbance detection,
forest degradation must not be overlooked. Both deforestation and forest degradation influence
carbon loss and greenhouse gas emissions and thus must be included in activity data reporting
estimates, such as for the Reduced Emissions from Deforestation and Degradation (REDD+) program.
Here, we report on efforts to develop forest degradation mapping capacity in Nepal based on a pilot
project in the country’s Terai region, an ecologically complex physiographic area. To strengthen
Nepal’s estimates of deforestation and forest degradation, we applied the Continuous Degradation
Detection (CODED) algorithm, which uses a time series of the Normalized Degradation Fraction
Index (NDFI) to monitor forest canopy disturbances. CODED can detect low-grade degradation
events and provides an easy-to-use graphical user interface in Google Earth Engine (GEE). Using
an iterative process, we were able to create a model that provided acceptable accuracy and area
estimates of forest degradation and deforestation in Terai that can be applied to the whole country.
We found that between 2010 and 2020, the area affected by disturbance was substantially larger
than the deforested area, over 105,650 hectares compared to 2753 hectares, respectively. Iterating
across multiple parameters using the CODED algorithm in the Terai region has provided a wealth of
insights not only for detecting forest degradation and deforestation in Nepal in support of activity
data estimation but also for the process of using tools like CODED in applied settings. We found that
model performance, measured using producer’s and user’s accuracy, varied dramatically based on
the model parameters specified. We determined which parameters most altered the results through
an iterative process; those parameters are described here in depth. Once CODED is combined
with the description of each parameter and how it affects disturbance monitoring in a complex
environment, this degradation-sensitive detection process has the potential to be highly attractive to
other developing countries in the REDD+ program seeking to accurately monitor their forests.

Keywords: deforestation; forest degradation; forest management; NDFI; CODED; Collect Earth
Online; Nepal; area estimation; MRV; greenhouse gas emissions

1. Introduction

Forest loss due to deforestation and forest degradation is an important concern in
combating climate change because it reduces the capacity of forests to act as a carbon sink,
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becoming instead a source of greenhouse gas emissions. While significant improvements in
estimating emissions from deforestation have been made globally, tracking and monitoring
forest degradation remains a challenge for many tropical forested countries. The Confer-
ence of the Parties (COP 13) to the United Nations Framework Convention on Climate
Change (UNFCCC) acknowledged the impact of forest degradation in 2007, including
it as a proposed mechanism for reducing emissions within the Reduced Emissions from
Deforestation and Degradation (REDD+) program [1]. As many countries progress to-
wards accessing and implementing result-based payments under the REDD+ mechanism,
forest-related emissions from both deforestation and degradation must be assessed within
a reasonable degree of uncertainty. To estimate these forest-related emissions, countries
use activity data, which describes the extent of human activity causing emissions including
deforestation and degradation and is often measured using estimates of the area of land
cover change, coupled with carbon factors to estimate the loss of carbon pools [1,2].

Forest degradation has no universally accepted definition, which is one of the reasons
it has been more difficult to quantify in a standardized procedure. The United Nations Food
and Agriculture Organization (FAO) defines degradation as the “reduction of the capacity
of a forest to provide goods and services” [3] while the Global Forest Observation Initiative
(GFOI) has described it as a disturbance caused by human intervention in a forested
landscape that results in carbon emissions but not a land cover change [2]. Satellite-based
remote sensing observations are often the tool used to quantify forest loss of any sort,
but the types of degradation that can be observed from space may not be congruent with
policy definitions. Despite these challenges, carbon-focused policies require action by
countries, many of which are drafting and adopting their own national definitions. For a
forest assessment to be useful, the definition of degradation should be explicitly stated and
linked with the tools used to measure it.

Although measuring degradation with remote sensing is challenging, it has become
increasingly tenable. Detecting change with remote sensing can be as simple as comparing
images before and after an event, but this coarse method is often insufficient for degradation
processes observed in forests. Degradation, which includes fuel wood collection, small-
scale timber harvesting, biomass loss from insects, and subcanopy fires, can be reliably
detected only when the temporal density of the images is frequent enough to observe
both long-duration and ephemeral changes in the forest structure [4]. Forests often regrow
following a degradation event, and the emissions from the temporarily reduced forest
would be missed if repeated observations were not made throughout the event’s time
period [5,6]. Additionally, degradation events are often spatially fine-scaled. Disturbances
can be smaller than the resolution of commonly used Earth observations, detectable only
through subpixel analysis [7–9]. Freely available satellite imagery may overcome some of
these challenges. For example, Landsat 7 and 8 data have repeated observations every 16
days, 8 days when used in combination, at 30 m resolution, making degradation detection
more feasible for countries struggling with the prohibitive cost of commercial remote
sensing observations [6,9,10]. Both of these Landsat data sets are integrated into Google
Earth Engine (GEE), a free cloud-computing platform that links vast image data sets with
algorithms and large computational capacity [11]. As these advances make measurement
of degradation more accessible in theory, it becomes important to test and document utility
in practice.

Like many other countries, Nepal has established an emissions reduction payment
agreement with the World Bank’s Carbon Fund to manage forests sustainably. The Carbon
Fund provides a mechanism for developing countries to receive monetary compensation
for reducing forest-related greenhouse gas (GHG) emissions. Carbon Fund payments
are designed to help countries and their stakeholders achieve long-term sustainability
in financing forest conservation (https://www.forestcarbonpartnership.org/carbon-fund
(accessed on 1 May 2021)). Countries in the program must establish a measurement,
reporting, and verification (MRV) system with a national forest monitoring system (NFMS)
to regularly report estimates of changes in forest emissions and carbon stocks [6,12,13].

https://www.forestcarbonpartnership.org/carbon-fund


Remote Sens. 2021, 13, 2666 3 of 19

If degradation accounts for more than 10% of these emissions, it must be included in
the country’s reporting [14,15]. Pearson et al. [14] performed an estimation of forest
degradation emission for 74 developing countries between 2005 and 2010, finding that only
11 of the 74 countries had degradation that fell below this threshold. Nepal was reported
to have around 90% of its emissions from degradation [14].

A key component of any forest monitoring program is identification of the processes
that cause forest loss. Nepal’s REDD+ Readiness Program Proposal identified the major
deforestation and degradation drivers in the country [16–18]. Estimates from 2005 to 2010
indicated the degradation-specific drivers producing the most emissions in Nepal are,
in order of decreasing magnitude, fuel wood collection, timber harvesting, and fire [14].
Because Nepal began promoting scientific forest management (SciFM) in 2012, the dis-
tribution of emission drivers may have shifted since then [19]. Alternatively, Nepal’s
own Strategy and Action Plan for 2018–2022 defined the leading drivers as unsustainable
harvesting, overgrazing, fuelwood collection, forest fires, and conversion of forests to
other land uses [20,21]. The relative impact of each driver varies over time according to
sociopolitical and environmental conditions [17].

Through its documentation process, Nepal has made progress characterizing forest
degradation. A key step was the development of the Forest Reference Level (FRL)/Forest
Reference Emission Level (FREL) and Emission Reduction Project Document [18,21]. Dur-
ing the preparation of the FRL/FREL, only degradation due to fuelwood collection was
assessed. Forest degradation due to grazing, timber extraction, and fire were not included
because of a lack of reliable data. Nepal initially quantified its forest loss and degradation,
or activity data, by analyzing the canopy change maps produced by Hansen et al. [22].
Later, the country worked to provide further detail to its assessment by using the Mor-
phological Spatial Pattern Analysis Tool (MSPA) [23–25] for assessment of deforestation
and forest degradation. This assessment categorized Nepal’s forests as Inner Core or Edge
Forests and mapped the changes between these categories from 2004 to 2014. The transition
from Inner Core to Edge was considered a proxy for forest degradation. This strategy
was supported by subsequent analysis of above-ground biomass estimates completed
using LiDAR, which showed a distinct difference between the Inner Core and Edge Forest
classes [21]. LiDAR data was available only in the Terai Arc Landscape portion of Nepal,
which encompasses the northwest portion of Terai and extends into India. The data set
was not sufficient for forest degradation analysis based on spatial point density (the data
set has 0.8 points per square meter on average) and temporal density (only one time period
is available). The FRL estimation process did not use LiDAR data because of expected
difficulties with financing imaging again in the future [20]. Further, this approach uses
the distance from the forest edge as a proxy for degradation activities, but in reality, these
activities are not evenly distributed across forest edges across the landscape. Because of
these limitations, an improved methodology was needed for estimating emissions due to
forest degradation.

Here, by explicitly mapping locations of forest degradation activities, we report on
efforts to continue developing forest degradation mapping capacity in Nepal. These maps
will support Nepal’s efforts to more accurately estimate activity data across the country
within the context of REDD+. Our goal was to create a process to obtain more precise
unbiased area estimates for activity data, particularly forest degradation. To achieve this
goal, we created a map that represents forest degradation hotspots. This map is used to
allocate samples using the map strata to target collection of data in a more efficient manner
than a simple random sample. Meeting the desired precision goals using a stratified
random sample requires interpretation of fewer points than a simple random sample.
The maps cannot be used alone to estimate activity data because all maps have biased
errors, for example due to class confusion [2]. We demonstrate the usefulness of employing
freely available resources, which means this work could easily serve as a model for other
developing countries working to establish reliable forest degradation monitoring methods
using remote sensing.
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This project aims to assess degradation in Nepal using mapping and sample-based
area estimation methods that are relevant to many other countries working with the Carbon
Fund [2]. Countries including Nepal use these maps and sample interpretation to estimate
activity data—the area of land undergoing land cover/use changes—with associated un-
certainty intervals. We used the Continuous Degradation Detection (CODED) algorithm
to detect changes in forests. This algorithm evaluates a time series of the Normalized
Degradation Fraction Index (NDFI) to monitor forest canopy disturbances [26,27]. A key
benefit of CODED is its use of linear spectral mixture analysis (SMA) to represent grades
of degradation using the NDFI metric, by capturing subpixel and low-grade degradation
events [27]. Another benefit is its application through a graphical user interface in Google
Earth Engine (GEE), which capitalizes on cloud computing and integrated free Earth
observation data sets including Landsat. CODED also differentiates between forest distur-
bances of deforestation and degradation, which is ideal for GHG emission estimations in
REDD+ reporting.

CODED’s many benefits make it a promising tool for estimating activity data; however,
some challenges arise when implementing the tool in an applied setting. CODED requires
specifying values of over a dozen parameters, which should be selected based on the forest
dynamics and spectral conditions of the study region. Additionally, CODED was originally
developed and applied in the Amazon Forest [9,26], so we needed to calibrate the parameter
settings to a new geography. To address these challenges, we used in-depth parameter
testing and results validation on an ecologically diverse region of Nepal. As a result of this
process, we present an approach to parameter selection that can be applied to all of Nepal
and to other study regions to inform sample allocation in degradation hotspots to estimate
activity data. We also discuss the lessons we learned during this analysis and describe
how individual parameter adjustments affect the analysis results. Our comprehensive
description of the algorithm adjustment procedure will be a learning tool for future users
and could save them a great deal of time and effort when tuning CODED to new locations.
Consequently, this disturbance detection process has the potential to be highly attractive to
other developing countries in the REDD+ program seeking to estimate activity data due to
forest degradation and deforestation.

2. Materials and Methods
2.1. Study Region

Nepal is a diverse country—culturally, ecologically, and geographically. Within its
borders there are 118 ecosystem types and 35 distinct forest types. Nepal is composed of
five physiographic regions: the High Himal (part of the Himalayas including Mt. Everest;
up to 8848 m elevation above mean sea level), the High Mountains (543–4951 m elevation),
the Middle Mountains (110–3300 m elevation), the Churia (93–1955 m elevation), and Terai
(the lowland plains; 63–330 m elevation) [28]. In this study, we focus on the Terai region
(Figure 1), which makes up 13.717% of Nepal’s geographic area. The region, which is
20.88% forest and other wooded land area, contains a great amount of forest biodiversity,
varied types of forest management practices, and a disproportionately high amount of
forest disturbance activities. The four most prevalent forest types in Terai are Khair Sissoo,
Sal, Tropical Mixed Hardwood, and Subtropical Mixed Hardwood. The climate of the Terai
region is subtropical and characterized by monsoon seasons (June–September) and dry
winters (December–February) [29]; in general, trees undergo leaf bud burst in February–
April as temperatures rise and the rainy season begins, with greatest leaf cover around
August and minimum leaf cover around January [30]. Average above-ground biomass
is approximately 196 t/ha [29]. The Terai has been experiencing more urbanization and
population densification due to migration from other physiographic regions, which has led
to a higher demand for forest products [31]. Terai is the only region in Nepal where demand
consistently outpaces supply for both timber and fuelwood. This pattern is projected to
continue well into the future [17,21]. We studied these forest changes within the time
period of 2010–2020.
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The direct drivers of forest disturbance in the Terai physiographic region have vari-
able impacts on the landscape that result in different patterns of forest disturbance. For
example, urbanization and infrastructure development result in deforestation, permanently
converting forest to another land cover type, while selective/illegal logging and livestock
grazing result in forest degradation, the reduction in forest cover/quality without a full
land cover conversion. Forest degradation events vary both in degree (partial to entire
loss of forest cover) and temporal magnitude (short-term to long-term reduction in forest
cover). Of particular concern in the Terai region is selective/illegal logging, which results in
small-scale and widespread canopy loss. Recent studies suggest that forest degradation is
an underreported source of carbon emissions [14,32–34], making accurate area estimates of
both deforestation and forest degradation critical to accurately estimating carbon impacts.

2.2. CODED

To detect both deforestation events and the more subtle small-scale forest degradation
events caused by forest disturbance drivers of interest in the Terai ecoregion, we used the
Continuous Degradation Detection (CODED) algorithm. CODED is a free and open-source
tool that runs on GEE. By default, CODED uses freely available optical Earth observation
imagery provided by Landsat satellites. The combination of a free and open-source algorithm,
freely available imagery, and comprehensive documentation (https://coded.readthedocs.io/
en/latest/background.html (accessed on 20 April 2021)) makes CODED an attractive tool for
groups with limited budgets and capacity for developing custom-built solutions for detecting
forest disturbance. CODED was recently updated to include new functionality offered in
GEE. CODED produces maps with four strata classes: stable forest, stable nonforest, forest
degradation, and deforestation.

All Landsat Collection 1 surface reflectance images available within the study period
were cloud masked and used in the algorithm’s analysis. CODED uses subpixel spectral
mixture analysis (SMA) to calculate and evaluate time series changes in NDFI [32,35].
See Equations (4) and (5) in Souza et al. for how NDFI is calculated [27]. CODED uses
linear spectral unmixing to represent subpixel fractions of key spectral endmembers,
including green vegetation (GV), nonphotosynthetic vegetation (NPV), soil, shade, and
clouds [9,27]. CODED then calculates NDFI, which is designed to analyze the endmember
fractions within each pixel in a way that emphasizes the disparities between undisturbed
and disturbed forest canopies. When there are greater proportions of soil and NPV, the
NDFI value is low and indicative of degraded forest conditions or naturally sparse canopy
cover [27,32]. As a result, CODED is able to detect even small-scale disturbances in the
forest canopy, which is typical of forest degradation.

https://coded.readthedocs.io/en/latest/background.html
https://coded.readthedocs.io/en/latest/background.html
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CODED uses time-series analysis of NDFI to detect ephemeral forest degradation
while reducing false positives due to seasonal vegetation patterns. A baseline NDFI pattern,
which accounts for seasonal variation using harmonic regression, is established from a
defined reference period (here pre-2010). To reduce processing requirements, CODED
uses a forest mask, which may be generated using random forest models or provided as a
separate layer.

Training data, comprising different land cover types in the study region, are required
by the algorithm to distinguish between forest disturbances that cause a change in land use
(deforestation) and those that do not (forest degradation). In this study, 3631 training data
points were collected by the first author (RRA). These training data points were collected
in Collect Earth (CE) desktop. Initially, a two-by-two kilometer point grid was laid over
the country, and those points were classified into the six IPCC classes. For this research, we
created a subset of points in the Terai physiographic region and converted these points to
forest and nonforest points.

Changes in NDFI for each pixel were evaluated during the detection period (here
2010–2020) by comparing the observed level of NDFI with a prediction of the expected
range of values from the baseline NDFI pattern. Forest disturbance events were then
identified when a pixel fell outside of the expected range of NDFI a defined number of
times. Multiple observations of change were required to lower the chance of false positives
caused by noise.

2.3. Parameter Testing

Multiple parameters control how sensitive CODED is to detecting changes. These are
particularly important for the model’s sensitivity in detecting forest degradation, as forest
degradation involves subtle changes. We iteratively tested several of these parameters
to find the best performing combination for our study area in the Terai. The parameters
we adjusted include two different versions of CODED (“Original” and “Updated”) [36],
different training data sets, the forest mask (including generating a forest mask within
CODED), the tree cover threshold, the number of consecutive observations required to flag
a change event, and the chi-squared probability, which controls the width of the statistical
change window (Table 1). Parameters not shown in this table were left as the default value.

Table 1. History of the parameters adjusted for each model run in our iterative process.

Inputs and Parameters

Iteration
Number

CODED
Version

Training
Data Forest Mask Tree Cover

Threshold

Number of
Consecutive

Observations
Chi-Squared

Change
Magnitude
Threshold

1 Original Original Created * N/A 3 N/A 1 *
2 Updated Original GFW * 80 * 4 * 0.99 * 1 *
3 Updated Original GFW * 50 4 * 0.99 * 1 *
4 Updated 2017 only GFW * 50 4 * 0.99 * 1 *
5 Updated 2017 only GFW * 20 4 * 0.99 * 1 *
6 Updated 2017 only UMD 10 4 * 0.99 * 1 *
7 Updated 2017 only NLCMS N/A 4 * 0.99 * 1 *
8 Original 2017 only Created * N/A 4 * N/A 1 *
9 Updated 2017 only GFW * 20 6 0.99 * 1 *

10 Updated 2017 only GFW * 20 10 0.99 * 1 *
11 Updated 2017 only Created (Map 8) N/A 5 0.90 0.4

* Default value; GFW: Global Forest Watch; NLCMS: National Land Cover Monitoring System for Nepal.

The “Updated” version of CODED differs slightly from the original in the naming of
the parameters and makes use of the GEE Continuous Change Detection and Classification
(CCDC) implementation to efficiently run over larger areas [36]. Our original training
data set contained points from multiple years, but the vast majority were from 2017. We
therefore tried reducing the training data set to only these 2017 values to better agree
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with the requested single training year in the CODED interface. The forest mask can be
imported or defined as a percent of tree canopy cover, the tree cover threshold parameter,
from the Global Forest Watch (GFW) data set. The number of consecutive observations is
the number of abnormal NDFI values required for the algorithm to flag a potential forest
disturbance. Chi-squared controls the size of the moving time window used for detecting
statistical changes. The change magnitude threshold is a post-processing parameter that
determines what severity of NDFI change events will be counted as a disturbance in the
final output.

We created 11 map iterations in CODED during our testing process (Table 1). Our
first map (iteration 1), created in the original version of CODED, produced moderate
results, so we decided to try using the updated version of CODED because we believed the
parameters were easier to understand and adjust in that version. In contrast to the original
version of CODED, the updated CODED does not create a forest mask on the fly, so we
began with testing the cutoff threshold for defining the forest mask from the default GFW
input [37]. Iteration 2 used a threshold of 80% canopy cover, the default for CODED, and
resulted in high overestimation of forest disturbances. We reduced this default threshold
with GFW to 50% in iteration 3 to examine the impact of this threshold on the results;
this change reduced the overall forested area and the mapped degradations only slightly.
The definition of forest used by Nepalese authorities requires only 10% tree canopy cover,
but preliminary studies by Nepal’s Department of Forest Research and Survey (DFRS)
indicate that areas with at least 30% tree canopy cover best match typical Nepalese forest
characteristics [21]. This discrepancy and the fact that canopy density varies across space
and ecosystem type influenced our decision to test a wide range of tree canopy cover
thresholds in our parameter testing.

At this point we hypothesized that using only one year (2017) of training data points
might improve the results, as our original training data set contained some data points
from 2016 and 2018 as well, and we learned that the updated CODED version assumes
only one year of training data is being used. We did see visible improvement with this
adjustment in map iteration 4, so decided to continue using this training data set from 2017
for future iterations.

In iteration 5, we used a GFW forest mask threshold of 20% to include a broader
definition of forest, but this produced little change in the amount of forest degradation
detected in the final results. We began testing alternative forest masks that we imported
into CODED because we wanted to test whether the forest mask layer, which defines what
CODED considers forest and controls the starting forest area, was the reason we were not
detecting deforestation and degradation in areas where it was expected. Iteration 6 used
the Global Land Analysis & Discovery group at University of Maryland’s Total Canopy
Cover layer with a 10% threshold; we chose this mask as an easily accessible free alternative
to the GFW mask. Iteration 7 used the NLCMS forest class as a mask; we chose to test this
mask because it was produced with the input of local experts on Nepal’s forests instead
of using global models. However, we saw little change with either option. We inferred
that once a reasonable forest mask is found, it does not markedly improve the results to
continue to search for a more accurate forest mask because these iterations had poorer
accuracies than earlier attempts.

For iteration 8, we switched back to the original CODED version to see if our one-year
training data improved the accuracy with that algorithm as well. Through qualitative
inspection, we thought this was our most accurate result so far, and quantitative accuracy
assessment confirmed this (overall accuracy 92.2%). The user’s and producer’s accuracies
were also higher, especially with deforestation-type disturbances (Figure 2). This is the
map we stratified in order to produce our verification data set.
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After further consideration, we decided to also test the parameter for the number of
consecutive observations required to label a disturbance event. We increased the required
consecutive observations from 4 to 6 (iteration 9) and to 10 (iteration 10). However, these
both decreased the number of detected disturbances, even in areas where we knew from
on-the-ground observations that degradation had occurred.

At this point, we had multiple variables that were known to influence the qualitative
accuracy of the map, and others that we suspected may be important, specifically the
chi-squared parameter. Based on our accuracy assessments (Figure 2), we noted that
the forest mask choice (iterations 5 and 7) and the number of consecutive observations
(iterations 9 and 10) decreased accuracy notably by changing the amount of deforestation
and degradation detected. We decided to conduct methodical tests of these parameters in a
small region of the Terai that we had identified as having frequent classification errors. We
also examined variations of the chi-squared and change magnitude threshold parameters
in this manner. Based on the outcome of these methodical tests, we created map iteration
11 using the best combination of parameter values and the forest mask we generated in
map iteration 8 (Table 1).

2.4. Accuracy Assessments and Unbiased Area

To assess map and CODED model accuracy, we used both qualitative and quantitative
measures. Qualitatively, we visually compared the areas mapped as degradation for each
map iteration. We had access to local information of known regions that had experienced
degradation within our study period and were able to use these areas for qualitative checks
and comparison of each map’s performance. In addition, we noted locations where there
was disagreement between the interpreter and the CODED map.

For each map, we calculated quantitative measures of users’ and producers’ accuracies
using confusion matrices. Validation sample locations were chosen based on the stratified
map output of iteration 8. Using GEE’s built-in stratified random sample algorithm, we
created a random stratified sample of the map with 250 sample points in each of the four
map classes (stable forest, stable nonforest, forest degradation and deforestation) for a total
of 1000 points [38,39].



Remote Sens. 2021, 13, 2666 9 of 19

We used Collect Earth Online (CEO), a free, open-source, web-based tool that facilitates
data collection, to collect validation data based on this random stratified sample [40]. We
leveraged CEO’s degradation tool, which calculates a time-series graph of the normalized
difference fraction index (NDFI) for each validation point based on a time series of Landsat
imagery, allowing the interpreter to detect forest degradation [27]. For consistency, the
author most familiar with the Terai landscape (RRA) labeled all of the validation data plots
and created an interpretation key with examples of deforestation and forest degradation.
Bias introduced by interpretation errors is a well-known issue for studies like this one using
interpretation of remotely sensed imagery for validation. We recognize this is a reality
in most practical applications of forest disturbance monitoring and assessment, and we
designed our method of addressing bias in a way that could be easily implemented by most
organizations. This bias cannot be fully eliminated, but it can be mitigated by increasing
the number of trained interpreters used or through continued monitoring of interpretation
accuracy and consistent feedback and discussion to improve interpretations [41,42]. Often
only one skilled interpreter with local forestry knowledge is available; this was true for our
team, so we utilized the latter approach. Quality assurance was conducted by reviewing a
subset of the validation data points twice and discussing interpretation labels of samples
with imagery that was challenging to interpret with the broader team. The interpretation
key used for guiding the process to label samples was improved through collaborative
review and discussion, providing a standardized interpretation process (Interpretation
Supplementary Materials Key S1).

In line with the CODED algorithm, for the validation effort, forest disturbance was
defined as a temporary reduction and subsequent recovery of NDFI and vegetation cover
without a land cover change from forest, while deforestation was defined as a reduction in
NDFI and conversion to another land use, such as agriculture or water (e.g., a riverbed shift).
Of note, these differed from the Nepalese working definitions, which require a minimum
contiguous area of canopy cover to define an area as forest and then use changes in canopy
cover to determine whether forest degradation or deforestation have occurred [21,27].
As CODED is a pixel-based algorithm, there is no minimum size requirement for forest
land cover.

The resulting validation data were used to calculate an error matrix and accuracy
metrics for each map, using an area weighting approach when sampling strata differed
from those of a given map iteration. We used the error matrix in an unbiased ratio estimator
described in [38] to calculate unbiased area estimates and confidence intervals for each
class [41]. These unbiased area estimates and associated confidence intervals are the key
measures of activity data in the REDD+ context and are critical for meeting contractual
agreements [2].

3. Results
3.1. Parameter Testing

We created 11 iterations in CODED during our testing process, which were qualita-
tively and quantitatively evaluated and compared with prior iterations (Table 1; Figure 2).
Through our iterative process we were able to considerably increase the producer’s accu-
racies for both deforestation and degradation (Figure 2). The most influential variables
we adjusted included the forest mask used, chi-squared, and the post-processing magni-
tude threshold.

3.2. Final Map

Using our final map, we calculated unbiased area estimates indicating 105,650 hectares
(+/− 37,264 hectares) of forest degradation and 2753 hectares (+/− 3525 hectares) of defor-
estation occurred during the period of 2010–2020 in the Terai region of Nepal (Figure 3).
This translates to 4.63% and 0.12% of the total area of the Terai and 18.73% and 0.69% of
the starting area of forest, respectively.
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Figure 3. Final CODED output map for all of Terai showing areas of degradation and deforestation occurring between 2010
and 2020 relevant to greenhouse gas emissions estimates, along with areas of stable forest and nonforest.

Overall map accuracy was 91.7%. Producer’s accuracy was 16% for degradation events
and 84% for the deforestation events. User’s accuracy was 34% for degradation and 22%
for deforestation (Table 2). While some of the disagreement between the interpreter and
CODED map results occurred sporadically throughout the landscape, there was consistent
disagreement in areas of sparse forest and in contiguous forests near rivers.

Table 2. Error matrix with sample counts for the Map 11 iteration. Each grid cell is the correspondence
between the final map (rows) and the reference data (columns). Note that the row (map values) totals
do not correspond to the 250 samples originally derived from each class because the map is different
from the stratification used to create the sample (see Section 2.4).

Stable
Forest

Stable
Nonforest Degradation Deforestation Total

Stable forest 208 25 92 26 351
Stable nonforest 1 249 37 1 288

Degradation 28 13 116 21 178
Deforestation 0 35 88 60 183

Total 237 322 333 108

4. Discussion

Iterating across multiple parameters using the CODED algorithm in the Terai region
of Nepal and generating maps and unbiased area estimates of activity data has provided
a wealth of insights not only for detecting forest degradation and deforestation in Nepal
but also for the process of using tools like CODED in applied settings. Using this pro-
cess, we were able to create unbiased area estimates for forest degradation activity data
(105,650 +/− 37,264 hectares) with a margin of error (precision) of 35%, improving on
previous approaches and providing pathways to both fulfill contractual agreements within
the REDD+ context [2] and allow stratified samples derived from the outputs for subse-
quent fieldwork to be small enough to be financially and logistically feasible for Nepal.
Because the Terai region is the most diverse and challenging area to classify in Nepal, we
believe that this process will achieve similar or better results when applied to the entire
country. Our results also highlight the importance of degradation as a source of carbon
emissions [14,32–34]. This work can serve as a model for other developing countries work-
ing to establish reliable forest degradation area estimation methods using remote sensing.

We found that CODED model performance, measured quantitatively and qualitatively
using producer’s and user’s accuracy, varied dramatically based on the model parame-
ters specified, with certain parameters particularly influencing accuracy (Figure 2). For



Remote Sens. 2021, 13, 2666 11 of 19

example, the effect of the magnitude threshold parameter was clearly seen spatially as
overestimation or underestimation when known areas of forest degradation were examined.
The reduction of chi-squared led to markedly higher producer’s accuracy for deforestation
and degradation. The choice of the tree cover threshold seemed to have a large impact on
the user’s accuracy for deforestation detection.

While the majority of the work done for this project was focused on generating the
best-quality map of activity data—specifically forest degradation hot spots—ultimately,
our approach to obtain unbiased area estimates relies on the interpretation of images across
a probabilistic sample allocated using a stratified random sample. The activity data maps
have biased errors due to class confusion or edge effects, so we use these maps with a
stratified sample for area estimation [38,39,43]. The samples are then labeled as being
impacted by forest degradation activities or not. While ground observations are often
considered more accurate sources for assessing activities at these sample locations, these
can be cost-prohibitive, and it can be difficult to assess presence of and timing of past degrad
ation activities in the field, depending on how fast the forest has recovered. An alternative
approach is the interpretation of a time series of available high and moderate resolution
imagery, a chronosequence approach. Remote sensing teams led by McRoberts [41] and
Pengra [42] demonstrated that this approach too introduces bias because interpreters
can mislabel conditions, especially for more-difficult-to-interpret land cover classes, and
depending on the quality of the imagery. Their reccomendation to mitigate for these errors
and bias is to increase the quality control procedures involved with photo-interpretation
such as by having a greater number of interpreters label each sample and training protocols
to enhance interpreter agreement. Recommended quality assurance procedures will be used
during the operational process for estimating and reporting emissions estimates [41,42].

We observed that most disagreements between the CODED maps and the interpreter
occurred in areas of sparse forest and in contiguous forests near rivers. Because of this, we
believe our lower producer’s accuracy for degradation was likely due to classifications
in our reference sample rather than the CODED parameter choices. We will test this
hypothesis in future planned work through a rigorous examination of samples, especially
in the difficult-to-evaluate sparse forest regions. Additionally, the fact that CODED’s
spectral end-members were trained in a tropical environment may also have depressed our
accuracies for degradation events. These same end-members have been used successfully
many times in environments outside the Amazon [27,32,44,45]. While development of
new end-members is outside the scope of this work, we hope to examine this in future
work. However, because degradation is harder to detect remotely than deforestation, and
given that our achieved precision met our reporting goals, we believe that our process is
successful despite this.

Lessons Learned from Using CODED in an Applied REDD+ Context

While exploring the different parameters in CODED, we found two key things directly
applicable to using tools like CODED in an applied REDD+ context where mapping and
estimating the area of degradation are the objective. First, model accuracy was highly
sensitive to parameter choice (Figure 2), and second, while pre-built tools drastically reduce
the time needed to create classifications, significant effort and domain knowledge are still
needed to create a good classification result.

The CODED algorithm uses chi-squared to control the size of the window for detecting
statistical change. A change magnitude threshold variable that filters out low-magnitude
change detections that may be erroneous or insignificant is applied in post-processing.
Changing either of these parameters notably increased or decreased the amount of change
that was detected (Table 3, Figure 4). The data pre-processing parameters that we tested,
including creating temporal composites of the input data, did not have as strong an impact.
To better prepare future users for what to expect when iterating through some of the
most influential variables within CODED, we completed model runs changing only one



Remote Sens. 2021, 13, 2666 12 of 19

parameter at a time and displayed the resulting map effect on a region from our study area
known to have degradation from timber harvesting and deforestation (Figure 4).
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Table 3. Change implications associated with CODED variables determined to be especially impactful on deforestation and
degradation detection.

Model Variable Variable Name in
CODED Variable Controls Increase If You Want To Decrease If You Want To

Chi-squared chiSquareProbability Size of the window for
detecting statistical change

Strongly decrease the
amount of change detected

Strongly increase the
amount of change detected

Consecutive
observations of change Consecutive Obs

Required number of
observed NDFI values

outside the predicted range
for the algorithm to identify

a disturbance event

Detect even short-duration
forest disturbances, but

potentially have
overestimation from

outlier pixels

Exclude potential errors
and short-duration forest

disturbances

Threshold for defining
GFW forest mask Tree cover threshold

The percentage of tree cover
required to categorize a

pixel as forest when making
the forest max within

the algorithm

Include sparse forests in the
generated forest mask,
including more area in

the analysis

Include only dense canopy
forests in the forest mask,

potentially excluding
sparse or deciduous forests

from the analysis

Minimum threshold of
NDFI change to

define disturbance

Minimum Change
Magnitude

The cutoff magnitude in
post-processing for what

NDFI change events will be
counted as a disturbance in

the final output

Include only severe
changes, like deforestation,

and ignore less drastic
changes to the forest that

may be erroneous
degradation detections

Observe lower-magnitude
changes in NDFI and

accept some small
erroneous detections

Further, as we were reviewing model iterations in CEO, we found patterns of omission
error that provide important insight into NDFI, SMA, and CODED. One pattern of omission
error is the result of NDFI saturating at 1 and not capturing variation in Terai (Figure 5; note
comparison with SWIR2, which was not used for analysis but is shown here to demonstrate
a nonsaturating signal). Specifically, under certain ecological conditions, NDFI reaches
a maximum value prematurely such that it does not capture all of the variation. The
ecological conditions noted here are high leaf density during the height of the monsoon
season around August [30]; further exploration of the saturation phenomenon may reveal
additional conditions. As the CODED model is based on SMA, this observation suggests
that the spectral end member approach may need to be recalibrated for our study area,
and potentially other study areas as well. The spectral signature definitions for the end
members used in CODED and NDFI were generated for the Amazon [26,27]. Although
both CODED [32] and NDFI have been successfully used in other environments (e.g.,
West Africa; [44,45]), the assumption that the same end members work for Nepal and
areas outside of the Amazon must be further examined. Other researchers working in
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Southeast Asia have also made note of issues with the SMA approach. For example, in
Kalimantan researchers found that spectral end-member selection needed to be adjusted to
account for differences in terrain and atmospheric conditions causing variation in spectral
reflectance [46–48].
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A second pattern of forest degradation omission arose from the approach to forest
masking used by CODED. In the Terai region, there were some areas that were classified as
various nonforest land covers in 2010 when the forest mask was applied. The verification
data collected identified these areas as forest degradation or deforestation based on second-
growth forest that had grown in the intermediate time period. For CODED to detect
these areas as degradation, however, they must be identified in the forest mask as forest
because CODED does not process the nonforest areas under the often-correct assumption
that nonforested areas like agriculture, water, and urban areas are not likely to become
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forested [26]. However, this assumption may not hold in Southeast Asia, where cyclical
forest-agriculture patterns are common (e.g., shifting agriculture), or in Nepal, where rivers
may change course. This finding highlights that use of a forest mask limits the detection of
disturbances in secondary forest, and that careful consideration of the appropriate time
period of the forest mask is critical if disturbance to secondary forest is a concern.

Other sources of disagreement between the map results and the interpreter in CEO
may be due to complicated environmental scenarios. For example, one issue was mixed
pixels, where a pixel was included in the forest mask but could be seen through high-
resolution imagery to be partially composed of another land cover class. Further discussion
is needed regarding how interpreters should handle labeling these types of pixels. How
CODED handles mixed pixels is also still somewhat unclear. Regions along land use class
borders, which vary slightly over time and with imagery horizontal accuracy, are likely
more prone to labeling confusion by both the algorithm and human-led validation efforts.
It would be advantageous to have repeated validation efforts by different interpreters on
all of these points of confusion, but this is not always possible when resources are limited.

Second, achieving good classification results using CODED required significant effort
and domain knowledge. Understanding the challenges faced in applied settings will
help to build better tools. One challenge was that the connection between parameter and
model output was not always clear. Similarly, the parameter names changed between
the previous iteration of CODED and the current version, and not all of these changes
were documented. Another challenge is that we ran 11 different iterations to arrive at a
satisfactory model. Each iteration involved model specification, model execution, and
model evaluation phases. Model evaluation required both local knowledge, to be able to
qualitatively identify areas of success and failure in the model, and statistical knowledge,
in order to avoid re-stratification and revalidation for each model iteration [38].

However, for many use cases of CODED in applied settings, including this project, the
main goal is not map accuracy but instead creating unbiased estimates of the area of forest
degradation and deforestation with associated uncertainty. These estimates are critical in
the REDD+ context, where estimates of activity data to required levels of precision are
contractually obligated. Thus, spending substantial effort and time on the improvement of
map accuracy is not as worthwhile as improving precision in area estimates. This precision
is achieved through generation of more reference samples.

For other applied teams working to achieve satisfactory classification results using
CODED for area estimation purposes, some of our lessons learned may be insightful. We
learned the importance of creating definitions for forest degradation early in a project’s
lifecycle. At the beginning, the author collecting validation data (RRA) used the Nepalese
definition of degradation (partial forest loss while still above 10% tree canopy cover; [21]),
but our map was generated assuming degradation meant any forest disturbance that does
not result in a land cover change from forest. This definition is in accordance with how
CODED defines degradation as multiple anomalously low NDFI readings (specifically five
consecutive readings for our final map iteration) not followed by a detected land cover
change from forest. Once this miscommunication was realized and resolved, our estimates
of overall map accuracy improved by 13%.

Additionally, we learned that model parameter selection is best done by adjusting one
parameter at a time in a methodical way. A full sensitivity analysis may produce marginally
higher map accuracies, but an analysis of this complexity is impractical for most real-world
applications. We recommend thoroughly testing one parameter at a time so the users can
clearly observe the impacts of adjusting that parameter in their particular environment.
Our general explanation and examples of how each CODED parameter impacts the map
(Table 3 and Figure 4) should provide support for this process, but each environment will
vary slightly in the magnitude and distribution of these impacts, so careful parameter
testing for each use case is recommended. A more complete analysis would involve
retroactively altering parameters after making alterations to others, analyzing how the
parameter changes interact, and seeing if a change to one alters the previously ideal
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setting for another. However, a full sensitivity analysis or this comparatively complex
level of testing would not be feasible for many users. In this study, we seek to explain a
realistic approach for practitioners, detailing an achievable methodology that results in an
acceptable level of accuracy for applied uses.

The graphical user interface makes this process of repeated parameter adjustment
simple for users at any skill level. It is also important for users to understand the relative
magnitude of impact from each parameter and how it interacts with changes in the land-
scape. For example, we found the chi-squared probability parameter, which determines
the size of the statistical boundary surrounding the model residuals that is used to identify
change, to lead to the most obvious map changes. Adding map examples of relative mag-
nitude and spatial impacts on forest degradation and deforestation detection from each
parameter (e.g., Figure 4) would be a useful addition to the documentation of the CODED
algorithm as it becomes more widely used. Further, our parameter selection occurred in
a subtropical forest; users in other ecosystems, such as those with periodic or permanent
snow cover, will have different concerns and may have different key model parameters.
For example, in regions with significant snow cover, NDFI would need to be adjusted to
account for the fact that green vegetation fractions are probably not visible year-round.
Ecosystems with lower tree cover will have correspondingly lower NDFI due to exposure
of the understory and understory vegetation. These regions will not have the same issues
with NDFI saturation as observed in the Terai. Additionally, while spectral mixture analysis
is specifically designed to account for the problem of mixed pixels, in regions with less
canopy cover a mixed forest pixel will look similar to a degraded forest, which is why the
time series component is so important. For the Terai and other ecosystems, a critical first
step is to model the “typical” state of the forest and look for changes from that baseline.

Moving forward, the usability, documentation, and knowledge transfer to applied
teams examining local deforestation and forest degradation patterns will be critical. Fu-
ture creation and modifications to tools like CODED meant for use within the broader
community should include not only comparisons of accuracy to existing products but also
comparisons of usability, ease of use for applied users, limits to the generalizability of
the model or metrics used, and advice for effectively tuning the model. Future research
in Nepal should include additional examination of whether different drivers of forest
degradation are differently detectible and comparison of approaches for detecting degrada-
tion and deforestation, including using different SMA and modelling approaches. More
broadly, future research in the area of forest degradation detection must address how SMA
approaches NDFI saturation in certain environments like the Terai in Nepal.

5. Conclusions

This project was a first attempt at applying a process for tuning CODED, a method for
detecting forest disturbance, in the Terai region of Nepal to create unbiased area estimates
of activity data with sufficient precision to support contractual agreements [2] and allow
stratified samples derived from the outputs for subsequent fieldwork to be small enough
to be financially and logistically feasible. Success in this ecologically and geographically
diverse study area with multiple forest deforestation and degradation drivers suggests
that the process will be successful when applied to all of Nepal. We focused much of
our attention on testing parameters within the CODED algorithm—first to improve the
accuracy and precision of this analysis, but also to contribute to the literature a more
thorough understanding of the relative implications of each parameter adjustment.

We found the chi-squared parameter, the number of consecutive observations required
to define a disturbance event, and the NDFI change magnitude threshold to be especially
influential to the results, with the quality of the forest mask and the training data also
important aspects to consider. It took us 11 iterations to establish an acceptable set of
parameters for our analysis. Lessons learned through the lengthy process highlighted
the positive qualities and areas for potential improvement within the CODED algorithm.
CODED’s use of NDFI and the NDFI prediction algorithm makes it useful for detecting
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forest degradation, which is often small-scale and ephemeral but nonetheless a large
portion of GHG emissions [14,15]. The graphical user interface on a free and open-source
platform with cloud-computing also gives it wide appeal. However, CODED requires
a high level of domain knowledge to achieve accurate classifications, as well as local
knowledge of the forest conditions for useful validation. We have provided an in-depth
examination and documentation of the parameters with examples to contribute to the future
usefulness of CODED for other countries looking to accurately measure deforestation and
forest degradation activity data for implementing result-based payments and for forest
management. Others looking to implement similar frameworks will need to work through
these same steps to tune the CODED algorithm to their specific ecological context; the most
important parameters in other forest ecologies will likely differ from those we found in
the Terai.

Nepal is in the process of implementing the Emission Reduction Program and follow-
ing the required MRV process. In the past, Nepal used proxy-based approaches to estimate
forest degradation, which allocated a 15% conservativeness factor as an uncertainty buffer
to total estimated emission reductions associated with forest degradation [49]. Uncertainty
buffers are utilized by the Emission Reduction Program to encourage countries to reduce
the uncertainty in their estimates and to mitigate the risk of overestimation [50]. Our efforts
using CODED are an important step in order to reduce the uncertainty buffer so that Nepal
can realize more of the monetary benefits from their emission reduction efforts. This study
provides the activity data for forest degradation due to selective logging. This type of
local data source reduces the uncertainty buffer required for emission reduction payment
mechanisms. This will reduce the buffer estimating for carbon payment. At a later date,
the process described here will be applied to the entire country and additional drivers of
forest degradation and deforestation in Nepal in this ongoing collaboration.

Supplementary Materials: The following are available online at https://www.mdpi.com/article/10
.3390/rs13142666/s1, The forest degradation interpretation key used for this analysis is provided as
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