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Abstract: Airborne light detection and ranging (LiDAR) technology has become the mainstream data
source in geosciences and environmental sciences. Point cloud filtering is a prerequisite for almost
all LiDAR-based applications. However, it is challenging to select a suitable filtering algorithm for
handling high-density point clouds over complex landscapes. Therefore, to determine an appropriate
filter on a specific environment, this paper comparatively assessed the performance of five represen-
tative filtering algorithms on six study sites with different terrain characteristics, where three plots
are located in urban areas and three in forest areas. The representative filtering methods include
simple morphological filter (SMRF), multiresolution hierarchical filter (MHF), slope-based filter (SBF),
progressive TIN densification (PTD) and segmentation-based filter (SegBF). Results demonstrate
that SMRF performs the best in urban areas, and compared to MHF, SBF, PTD and SegBF, the total
error of SMRF is reduced by 1.38%, 48.21%, 48.25% and 31.03%, respectively. MHF outperforms
the others in forest areas, and compared to SMRF, SBF, PTD and SegBF, the total error of MHF is
reduced by 1.98%, 35.87%, 45.11% and 9.42%, respectively. Moreover, both SMRF and MHF keep a
good balance between type I and II errors, which makes the produced DEMs much similar to the
references. Overall, SMRF and MHF are recommended for urban and forest areas, respectively, and
MHF averagely performs slightly better than SMRF on all areas with respect to kappa coefficient.

Keywords: filtering; LiDAR; interpolation; slope; morphology

1. Introduction

Airborne light detection and ranging (LiDAR) technology has been widely accepted
as a powerful tool for generating high-quality digital elevation models (DEMs) [1,2].
Compared to the classical surveying and mapping methods, LiDAR shows many promising
merits, such as the high efficiency for collecting high-density and large-scale point clouds,
which is conducive to the detailed representation of topography [3,4], and forest canopy
penetration ability, which is valuable for forest inventory and management [5,6]. Generally,
the raw LiDAR point clouds include not only the bare earth (BE) points, but also the object
(OBJ) points, which make point cloud filtering indispensable for almost all LiDAR-based
applications, such as landslide detection [7], erosion and deposition quantification [8],
channel-bed morphology recognition [9] and individual tree position extraction [10].

During the past two decades, plenty of filtering algorithms have been presented.
However, each method has its strengths and weaknesses for handling different landscapes,
and the performances of these filtering algorithms vary from one scene to another. Thus,
performance comparison between the filtering algorithms is highly beneficial for the choice
of an appropriate filter, especially for inexperienced users.

To fill this gap, Sithole and Vosselman [11] compared the performances of eight
filtering algorithms on the International Society for Photogrammetry and Remote Sensing
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(ISPRS) benchmark dataset, and found that adaptive triangulated irregular network (ATIN)
(also termed as progressive TIN densification, PTD) outperformed the others, since it used
more context. Zhang and Whitman [12] compared three filtering algorithms including
the elevation threshold with expanding window (ETEW), maximum local slope (MLS),
and progressive morphological filter (PM) on the datasets in urban, mountainous and
coastal areas. Results indicated that the PM method yielded the highest accuracy in urban
and coastal areas, while MLS performs well for the removal of low vegetation in high-
relief areas. Meng et al. [13] classified the existing filtering algorithms into six categories
based on their characteristics, and further demonstrated the high accuracy of ATIN on the
ISPRS dataset. Tinkham et al. [14] assessed two open source point classification algorithms
including Multiscale Curvature Classification (MCC) [15] and Boise Center Aerospace
Laboratory LiDAR algorithm (BCAL) in a semi-arid watershed with mixed vegetation
types. Results showed that BCAL produced more accurate surfaces in very dense and
continuous vegetation, while in areas where steep or sudden changes in slope, MCC
outperformed BCAL. Julge et al. [16] evaluated the performance of six common filtering
algorithms embedded in three freeware programs on four areas with different landscapes.
The filters include ATIN, ETEW, MLS, PM, MCC and weighted linear prediction (WLP).
They concluded that MCC produced the smallest DEM root mean square errors (RMSEs) in
the test areas. Korzeniowska et al. [17] proposed an evaluation of four filtering algorithms
including PM, PTD, WLP and segmentation-based filter on eight test sites with different
landscapes. The results showed that no single method was consistently more accurate
than the others for all types of terrain. Montealegre et al. [18] evaluated the performance
of seven filtering algorithms including ATIN, WLP, MCC, BCAL, ETEW, PM and MLS in
two forested sites. Results demonstrated that MCC achieved the highest accuracy. Zhao
et al. [19] compared the results of MCC, WLP, MF, ATIN, and the slope-based filter (SBF)
in vegetated mountain areas and indicated that the performance of each method varied
under different landscapes. Specifically, SBF and MCC produced the highest accuracy in
flat areas and steep and dense forests, respectively, while WLP and MCC showed good
performance in steep and sparely vegetated areas. Although many comparison studies
have been conducted between the filtering algorithms, their performance were mainly
assessed based on low-density point clouds (<10 points/m2).

With the rapid development of hardware equipment, the collection of high-density
point clouds becomes more and more convenient. However, filtering high-density point
clouds is more challenging than those of the low-density [20], which is mainly due to the
facts that (i) high-density point clouds result in more abnormal points; (ii) high-density
data make parameter setting more difficult, and the improper parameter setting could
lead to poor results; and (iii) high-density data include more information, and the rich
information cannot easily be handled. Montealegre et al. [18] showed that the Type II errors
increase as the point density increases. Serifoglu Yilmaz and Gungor [20] indicated that
with the increase of point density, the performance of the filtering algorithm decreases.

Nevertheless, few studies have been conducted to compare the performance of filtering
algorithms on high-density point clouds. Serifoglu Yilmaz et al. [21] investigated the
results of PM, ETEW, ATIN, MCC, BCAL, gLiDAR and cloth simulation filter (CSF) on
unmanned aerial vehicles (UAV)-based high-density point clouds in two study sites with
simple landscapes, and found that CSF produced the lowest total errors. Zeybek and
Şanlıoğlu [22] obtained the same conclusion to that of Serifoglu Yilmaz et al. [21] in four
study sites with simple landscapes. Serifoglu Yilmaz and Gungor [20] compared the
performance of PM1D/2D, MLS, ETEW and ATIN on UAV-based high-density point
clouds in a small study area, and regarded ATIN as the best method. Klápště et al. [23]
compared six filtering algorithms in a study site with sparsely distributed vegetation and
found that no universal method can outperform the others. From above discussion, it
can be seen that the landscapes adopted in their research are simple and single, which
cannot comprehensively assess the performance of the filtering algorithms. Moreover, the
aforementioned studies mainly filtered the UAV-based photogrammetry point clouds, and
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their conclusions might not be suitable for LiDAR-based data due to their different data
collection manners [24]. Thus, further investigation should be performed on high-density
LiDAR point clouds over complex landscapes.

Based on the aforementioned discussion, the objective of this paper is to compara-
tively assess the performance of five representative filtering algorithms of different types
on airborne LiDAR-based high-density point clouds over complex landscapes, thereby
specifying an optimum filter for one specific scene. Compared to previous studies, the
main contributions of this paper are as follows: (i) the types of filtering algorithms in the
comparison are manifold. Specifically, almost all types of filters are used, including nonlin-
ear (linear) interpolation-based, slope-based, morphology-based and segmentation-based
filters. Thus, the performance of different types could be compared. (ii) The landscapes
of the six plots located in forest and urban areas are complex. Therefore, the merits and
shortcomings of each filter on different landscapes could be obtained. (iii) The airborne
LiDAR point clouds on all the plots are high-density. This caters to the development
of LiDAR systems, since more advanced LiDAR systems are being developed in recent
years and the data density of the collected point clouds becomes increasingly higher. In a
word, we employed six groups of high-density LiDAR point clouds over different complex
landscapes to comprehensively assess the performance of five types of filters, which would
contribute to the selection of a suitable filter over a specified landscape.

The remainder of this paper is organized as follows. The classical filtering algorithms
are reviewed in Section 2. Section 3 introduces the experiments. Results are analyzed in
Section 4. Discussion and conclusion are given in Sections 5 and 6, respectively.

2. Related Works

According to their working principles, the existing filtering methods can be roughly
classified into five categories: slope-based, morphology-based, interpolation-based,
segmentation-based and machine learning-based algorithms.

2.1. Slope-Based Filters

The slope-based filters are based on the assumption that the large slope between two
nearby points is mainly caused by an OBJ point, i.e., the higher one [25]. In other words, one
point is flagged as the BE if the maximum slope between this point and its neighbors does
not exceed the predefined tolerance. To improve the performance on steep slopes, some
adaptive slope-based filters were developed [26,27], where the slope threshold adaptively
changes with respect to terrain slope (Figure 1). Moreover, some scholars [28,29] enhanced
the slope-based filters with the inclusion of elevation difference threshold. Generally, the
slope-based filters have the advantages of simplicity and efficiency. However, they are
highly sensitive to slope threshold, especially in areas with abrupt terrain [30].
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Figure 1. Schematic diagram of adaptive slope-based filters.

2.2. Morphology-Based Filters

Morphology-based filters are mainly based on two fundamental operations, i.e., dila-
tion and erosion. The combination of dilation and erosion produces opening and closing
operations, which are employed to filter point clouds in the morphology-based filters
(Figure 2). More specifically, the raw point clouds are first rasterized based on the lowest
points within a given window size, and then processed with the opening operation. Finally,
points with elevation differences before and after the operations greater than the tolerance
are flagged as OBJ points [31]. However, the performance of the morphology-based filters
is greatly influenced by the window size, which cannot keep a good tradeoff between
the removal of large-size objects and the preservation of detailed ground points. Thus,
progressive morphological filters were proposed [32,33], where the window size of the
filter and elevation difference threshold are gradually increasing. Since the morphological
filters operate on the rasterized point clouds, they have a low computational cost. However,
the transformation from the raw point cloud into the rasterized image inevitably causes
information loss, especially in steep slope areas.
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2.3. Interpolation-Based Filters

Generally, the interpolation-based filters first select some initial ground seeds using a
moving window with the size slightly larger than the maximum object, and then interpolate
these ground seeds using an interpolation method. Finally, new ground points are detected
when their vertical distances to the interpolated surface are less than the given elevation
threshold. ATIN proposed by Axelsson [34] (Figure 3) is considered as a representative
of interpolation-based filters. Due to its high filtering accuracy and integration into the
commercial software named TerrainSolid, ATIN gains considerable attention [35]. Thus,
many studies focused on its enhancement with respect to the selection of ground seeds,
parameter setting, iterative judgment criterion and TIN construction [36–40]. Considering
the inaccuracy of TIN for describing complex terrain surface, many advanced interpolation
methods are recommended to replace TIN for reference ground surface construction, such
as linear prediction [41], thin plate spline [15,42–44] and cubic spline interpolation [45].
Although the interpolation-based filters are praised for their filtering accuracy, they suffer
from a large computational cost.

Remote Sens. 2021, 13, x FOR PEER REVIEW 5 of 20 
 

 

2.3. Interpolation-Based Filters 
Generally, the interpolation-based filters first select some initial ground seeds using 

a moving window with the size slightly larger than the maximum object, and then in-
terpolate these ground seeds using an interpolation method. Finally, new ground points 
are detected when their vertical distances to the interpolated surface are less than the 
given elevation threshold. ATIN proposed by Axelsson [34] (Figure 3) is considered as a 
representative of interpolation-based filters. Due to its high filtering accuracy and inte-
gration into the commercial software named TerrainSolid, ATIN gains considerable at-
tention [35]. Thus, many studies focused on its enhancement with respect to the selection 
of ground seeds, parameter setting, iterative judgment criterion and TIN construction 
[36–40]. Considering the inaccuracy of TIN for describing complex terrain surface, many 
advanced interpolation methods are recommended to replace TIN for reference ground 
surface construction, such as linear prediction [41], thin plate spline [15,42–44] and cubic 
spline interpolation [45]. Although the interpolation-based filters are praised for their 
filtering accuracy, they suffer from a large computational cost. 

 
Figure 3. Schematic diagram of ATIN. 

2.4. Segmentation-Based Filters 
Segmentation-based filters first divide the point cloud into segments using some 

algorithms, such as region growing [37,46] and scanline segmentation [47], and then label 
each segment as BE or OBJ, where points in the same segments have the same labels 
(Figure 4). The advantages of the segmentation-based filters include the preservation of 
terrain break lines and the resistance of sample noise [24,48]. However, their performance 
significantly depends on the quality of segmentation, and the poor segmented results 
could offset the merits of the segmentation-based filters [49]. 

Figure 3. Schematic diagram of ATIN.

2.4. Segmentation-Based Filters

Segmentation-based filters first divide the point cloud into segments using some
algorithms, such as region growing [37,46] and scanline segmentation [47], and then label
each segment as BE or OBJ, where points in the same segments have the same labels
(Figure 4). The advantages of the segmentation-based filters include the preservation of
terrain break lines and the resistance of sample noise [24,48]. However, their performance
significantly depends on the quality of segmentation, and the poor segmented results could
offset the merits of the segmentation-based filters [49].
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2.5. Machine learning-Based Filters

Recently, some machine learning-based filters have been proposed based on machine
learning methods (Figure 5), such as artificial neural network [50], convolutional neural
networks (CNN) [51–54] and AdaBoost [55,56]. Moreover, Yilmaz et al. [57] investigated the
performance of some state-of-the-art machine learning algorithms including artificial neural
network (ANN), support vector machines (SVM), and random forest (RF) for filtering UAS-
based point clouds, and found that SVM-based filter outperformed the others. However,
this kind of filter requires a sufficient number of training points to construct the model, and
the production of training data with different types is rather challenging and subjective.
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It is well known that machine learning-based filters are not easy-to-use since they
require a large number of labeled points to train the model and the quality of the sample
points seriously influences their performance. Moreover, if the labeled points were used to
train the machine learning-based filter, its performance cannot be objectively compared
with those of other filters, since the latter do not require training points. Thus, the machine
learning-based filter was not adopted in our following experiments.

3. Experiments

To fully compare the performance of state-of-the-art filtering algorithms under differ-
ent landscapes, six datasets with complex landscapes were employed in the experiments.
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3.1. Filtering Algorithms

The filtering algorithms were selected based on the rules that they are classical, rep-
resentative and easy-to-use. Thus, five filtering algorithms were adopted including mul-
tiresolution hierarchical filter (MHF), progressive TIN densification (PTD), region growing
segmentation-based filter (SegBF), simple morphological filter (SMRF) and the maximum
local slope-based filter (SBF). The detailed information of each algorithm is introduced in
the following subsections.

3.1.1. Multiresolution Hierarchical Filter (MHF)

MHF belongs to the nonlinear interpolation-based filters, which was originally devel-
oped by Chen et al. [42]. During point cloud filtering, it first selects initial ground seeds
using a moving window with the size slightly larger than the maximum OBJ. Then, the
ground seeds are interpolated by thin plate spline (TPS) to produce a reference ground
surface. Finally, for each candidate point, 9 height differences are computed by comparing
its elevation with those of the grid cell where it is located and its 8 neighboring grid cells.
Thus, if at least four height differences are less than the given threshold, the point is flagged
as BE, and then added to the ground seeds. MHF includes three parameters: maximum
window size, initial DEM resolution and initial elevation difference threshold.

3.1.2. Progressive TIN Densification (PTD)

PTD is a simple linear interpolation-based filter. The method was proposed by Ax-
elsson [34]. It works as follows: the initial ground seeds are first selected with the same
manner as MHF. Then, the TIN surface is constructed using the Delaunay triangulation
algorithm on the ground seeds. For each candidate point, if its vertical distance to the
corresponding triangle surface and the maximum of the three angles between the triangle
surface and lines connecting the candidate and vertices of the triangle are less than the
given thresholds, the point is flagged as BE. The above steps are repeated until no ground
points are selected. PTD has four primary parameters: maximum window size, grid cell
size, elevation difference threshold and angle threshold.

3.1.3. Region Growing Segmentation-Based Filter (SegBF)

The implementation of SegBF is based on the method of [58]. Specifically, the region
growing algorithm is first used to group the point cloud into segments. Then, the ground
segments are selected based on their properties using threshold values. SegBF includes
three main parameters: search radius for plane fitting, maximum difference of normal
vectors and maximum difference in elevation between neighboring points in the same
segment.

3.1.4. Simple Morphological Filter (SMRF)

SMRF [33] belongs to the morphology-based filters. It adopts a linearly increasing
window and simple slope thresholding, together with an image inpainting technique to
filter point clouds. More specifically, the minimum surface is first produced with the image
inpainting method. Then, the minimum surface is iteratively processed with the opening
operation, and the OBJ points are removed based on the elevation differences before and
after the process. Next, the DEM is generated based on the remaining BE points. Finally,
the raw point clouds are classified as BE or OBJ based on their vertical differences to the
generated DEM. SMRF has five parameters: the cell size of the minimum surface grid, a
percent slope value, elevation difference threshold, slope threshold and maximum window
size.

3.1.5. Slope-Based Filter (SBF)

The implementation of SBF is based on the method of [25]. It works as follows. Firstly,
the raw point cloud is covered with grid cells. Then, the minimum point is selected for
each grid cell. Finally, a point is labelled as BE if the maximum slope between this point
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and its neighbors within a predefined distance is less than a tolerance. SBF includes three
parameters: grid cell resolution, slope threshold and search distance.

3.2. Datasets

Six datasets with different terrain characteristics were employed to assess the perfor-
mance of the classical filtering algorithms, where three (plots 1–3) are located in urban sites
and three (plots 4–6) in forest sites (Figure 6). The detailed information for data collection
is shown in Table 1.

Table 1. Plot location and some information for the collection of the point clouds including LiDAR system, flying height,
impulse frequency and scanning angle.

Plot Location LiDAR System Flying Height (m) Impulse Frequency
(kHz) Scanning Angle (◦)

1 Auckland Optech Riegl Q1560-2 1225 320 ±21
2, 3 Wellington Optech Galaxy 1300 500 ±17

4, 5, 6 Palmerston North Optech Orion H300 1050 250 ±15
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Table 2 shows the landscape characteristics of the six datasets including point density,
mean terrain slope and OBJ cover rate. It can be seen that the six datasets have high data
density (>10 points/m2), the mean slope ranges from 8.84◦ to 31.76◦, and the OBJ coverage
rate from 54.45% to 94.51%. All these information indicates the high complexity of the
landscapes, which make them greatly challenging for the classical filtering algorithms. To
produce reference samples for each dataset, the raw point cloud was first automatically
filtered using the software Terrascan, and then the filtered data were manually edited to
assure their accuracy. The number of BE points (#BE) and that of OBJ points (#OBJ) are
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shown in Figure 7. The reference DEMs for the six datasets interpolated on the filtered BE
points are shown in Figure 8, which clearly illustrate the terrain characteristics.

Table 2. Landscape characteristics and some statistical information of the six datasets including data density, mean slope
and OBJ cover.

Plot Landscape Characteristic Data Density
(pts/m2) Mean Slope (◦) OBJ Cover (%)

Urban
1 Flat terrain 14.43 8.84 54.45
2 Terrain discontinuities 20.99 15.69 67.45
3 Buildings of various sizes 20.36 6.28 59.16

Forest
4 Steep slopes 32.59 29.75 85.86
5 Dense vegetation on steep slopes 29.85 21.70 94.18
6 Dense vegetation on steep slopes 36.18 31.76 94.51
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3.3. Accuracy Measures

Four accuracy measures including type I, type II and total errors, and kappa coef-
ficient [11,33,42] were adopted to quantitatively assess the performances of the filtering
algorithms. Type I (T.I) error equals to the number of BE points misclassified as the OBJ
points divided by the true number of BE points. Type II (T.II) error equals to the number
of OBJ points misclassified as the BE points divided by the true number of OBJ points.
Total error (T.E) equals to the sum of all misclassified points divided by the total number of
points. Kappa coefficient (κ) measures the overall agreement between two judges, while
considering the possibility of chance in the observed frequencies. The four measures are
respectively formulated as

T.I =
b

a + b
× 100% (1)

T.II =
c

c + d
× 100% (2)

T.E =
b + c

e
× 100% (3)

κ =
p0 − pc

1 − pc
× 100% (4)

where a is the accurately classified BE points, b is the misclassified BE points, c is the
misclassified OBJ points, d is the accurately classified OBJ points; e = a + b + c + d;
p0 = (a + d)/e; pc = ((a + b)× (a + c) + (c + d)× (b + d))/e2.

4. Results

To give fair comparison between the filtering algorithms, their optimal parameters
were empirically chosen in terms of the minimum total error on each plot.

4.1. Kappa Coefficient

Figure 9 illustrates the kappa coefficients of all the filtering algorithms on the six plots.
Results show that in urban areas, the kappa coefficient ranges from 68.27% on plot 2 to
92.21% on plot 1, while in forest areas, the kappa coefficient varies from 66.66% on plot
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6 to 88.13% on plot 4. This indicates the higher accuracy in urban areas than in forest
areas, which is mainly due to a sparse distribution of BE points in the latter (Figure 7). For
the three urban areas, plot 1 with the flattest terrain (Figure 8a) has the best result, while
plot 2 with the most complex terrain (Figure 8b) has the worst one. In the forest areas,
plot 6 with the largest canopy cover (Table 2) produces the lowest accuracy, and plot 4
with the smallest canopy cover (Table 2) obtains the highest accuracy. In conclusion, both
terrain complexity and canopy cover have a great effect on the performance of the filtering
algorithms. This conclusion is consistent with those of previous studies. For example,
Montealegre et al. [18] showed that most filtering algorithms produced larger errors with
the increase of terrain complexity. Zhao et al. [19] indicated that filtering errors increase
with the increase of canopy cover when the latter is greater than 80%.
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Accuracy comparison between the filtering algorithms demonstrates that in urban
areas, SMRF produces the best results on almost all plots except for plot 1, which is closely
followed by MHF. SegBF is less accurate than MHF. The accuracy of SBF is approximate
to that of PTD. On average, the five methods can be classified into three ranks based on
their filtering accuracy. Specifically, SMRF and MHF with the kappa coefficients greater
than 87% belong to the first rank, SegBF with the value greater than 81% is the second rank,
while SBF and PTD with the values greater than 75% belong to the last rank. Note that the
kappa coefficient difference between the maximum and minimum values is 12.27%, which
demonstrates the significance for filter selection in the urban areas.

In the forest areas, MHF yields the best performance on all plots, while PTD produces
the worst performance. On average, MHF with the kappa coefficient of 82.59% ranks the
first, SMRF with the value of 81.30% ranks the second, SegBF with the value of 79.95%
ranks the third, SBF with the value of 75.04% ranks the fourth, while PTD with the value of
68.52% ranks the last. This shows that kappa coefficient range between the best and worst
methods reaches to 14.07%, indicating that method selection is also important in forest
areas.

Overall, MHF (84.94%) has the highest accuracy, which is closely followed by SMRF
(84.40%), whereas PTD (71.89%) produces the worst performance.

4.2. Type I, II and Total Errors

The type I, II and total errors of all the filtering algorithms are shown in Figure 10. In
the urban areas, SMRF, MHF and SegBF have larger type II errors than type I errors, while
SBF and PTD produce larger type I errors than type II errors. However, the type II errors
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of SMRF and MHF are much less than those of the other methods, which results in their
smaller total errors. In comparison, PTD and SBF produce the largest total errors, with the
mean values of 11.17% and 11.16%, respectively. They are about two times as large as those
of SMRF and MHF.
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In the forest areas, all methods seem to yield much larger type I errors than type II
errors. This result can be expected, since the number of BE points is much less than that of
OBJ points in the three forest areas (Figure 7) and a few misclassified BE points can make
a larger type I error. On average, MHF produces the lowest total error, with the value of
1.98%. It is followed by SMRF with the value of 2.02%. PTD obtains the largest total error,
with the value of 3.68%. In other words, compared to PTD, MHF reduces the total error by
about 46.2%.

Overall, MHF gives the best balance between type I and II errors, with the error
difference of 1.03%, while PTD shows the largest difference between type I and II errors,
with the value of 11.22%. SMRF with the overall total error of 3.86% is comparable to
MHF with the value of 3.88%. PTD with the overall total error of 7.43% shows the worst
performance.

4.3. DEM Comparison

As indicated by Korzeniowska et al. [17], quantitative analysis is insufficient to com-
prehensively and accurately assess the performances of the filtering algorithms. Thus,
DEMs produced by the natural neighbor interpolation on the filtered ground points are
provided.

Figure 11 illustrates the reference DEM and those of the classical filtering algorithms
on plot 2. This plot is characterized by terrain discontinuities (Figure 8b) and the mixture
of various-size buildings and vegetation (Figure 6b), which is a representative urban
landscape. Results show that SBF (Figure 11d) and PTD (Figure 11e) produce coarse
surfaces, which is mainly due to the misclassified OBJ points mixed in the BE points. In
comparison, the DEMs of SMRF (Figure 11b), MHF (Figure 11c) and SegBF (Figure 11f)
have a similar appearance to the reference one (Figure 11a). However, they inevitably
suffer from type I and II errors, such as those denoted by the squares and ellipse.

Figure 12 illustrates the reference DEM and the DEMs of the filtering algorithms
on plot 4, which is characterized by forests on steep slopes. Obviously, the surfaces
of SBF (Figure 12d), PTD (Figure 12e) and SegBF (Figure 12f) are so coarse that terrain
features are difficult to recognize. In comparison, SMRF (Figure 12b) and MHF (Figure 12c)
produce satisfactory surfaces, which are approximate to the reference DEM (Figure 12a).
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Nevertheless, the two surfaces include some flaws, such as those denoted by the ellipses,
and MHF seems better than SMRF.
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5. Discussion

Up to now, numerous research works have been conducted to compare the perfor-
mance of the state-of-the-art filtering algorithms. PTD was highly recommended in some
studies [11,13,20,59], because it uses more context during point cloud filtering. However,
our study shows that PTD has much larger type I errors than type II errors, especially in
the forest areas. Specifically, the overall mean type I error is about 18.03%, while the type II
error is 6.59%, which results in a large total error with the value of 7.96% (Figure 10). In
terms of total error and kappa coefficient, PTD ranks the last on the accuracy list. The poor
performance of PTD is mainly attributed to the simple TIN model, which is difficult to
represent complex terrain surfaces, like plots 2–4. Moreover, due to the large number of
misclassified OBJ points, PTD suffers from coarse surfaces (Figures 11e and 12e).

SBF is significantly influenced by terrain slope, since optimum slope threshold varies
according to terrain characteristics, which is hard to tune in practice. Zhao et al. [19]
indicated that the type I errors of SBF greatly increase with the increase of terrain slope
when it is greater than 25◦. In our tests, we found that SBF has large type I errors on steep
slope areas, such as plot 2. Moreover, it has the tendency to misclassify low vegetation on
complex terrain as BE points, which causes many unnatural bumps in the produced DEMs
(Figures 11d and 12d).

Theoretically, the segmentation-based filters were regarded as a promising method for
handling complex landscapes, since (i) segmentation can better discriminate large OBJs,
(ii) the algorithms can accurately preserve terrain discontinuities, and (iii) outliers can be
easily detected [46,58]. However, all these advantages are based on the assumption that
the raw point clouds could be accurately segmented [60,61]. Unfortunately, no promising
segmentation method exists. Our findings indicate that SegBF is more accurate than PTD
and SBF with respect to total error and kappa coefficient on all the plots, yet the former
performs much worse than SMRF and MHF (Figures 9 and 10). Moreover, the surface of
SegBF (Figure 12f) is full of misclassified OBJ points, which make it much coarse. This is
mainly due to the poor segmentation results on steep slope areas.

In comparison, SMRF and MHF show much more promising results than the other
methods. Compared to SBF, PTD and SegBF, the overall total error of SMRF is reduced by
46.1%, 48.4% and 27.2%, respectively, while that of MHF is reduced by 45.8%, 47.8% and
26.8%, respectively. Moreover, SMRF and MHF rank the first in urban and forest areas,
respectively. In fact, the two methods have a similar performance in terms of accuracy
measures. Specifically, the differences between their average total errors in urban and
forest areas are 0.08% and 0.04%, respectively, while the difference between their kappa
coefficients are 0.19% and 1.29%, respectively. Moreover, the produced surfaces of the two
methods (Figures 11b and 12b for SMRF, Figures 11c and 12c for MHF) are much more
promising than those of the other methods. The high performance of the two methods
mainly lies in the use of advanced interpolation method for surface modeling, i.e. spring-
metaphor inpainting technique for SMRF [33] and thin plate spline for MHF [60].

However, three notifications should be pointed out for SMRF and MHF. Firstly, as
discussed in Section 3, MHF and SMRF include three and five parameters, respectively.
Thus, the former seems more practical than the latter since it is nontrivial to tune the
optimum parameters. Hence, in terms of ease-of-use, MHF is preferentially recommended.
Secondly, SMRF operates on the rasterized point clouds, while MHF works on the raw point
clouds. Thus, the former is much faster than the latter. Hence, in terms of computational
cost, SMRF is suggested. Thirdly, since no filtering algorithm is universal for all landscapes,
the combination of SMRF and MHF is a good choice. More specifically, as suggest by
Podobnikar and Vrečko [62], the study site can be first divided into urban and forest sub-
regions according to scene type, and then each sub-region is filtered using the best filter
(i.e., urban area using SMRF and forest using MHF). Finally, all filtered point clouds are
merged.

In previous studies, the ISPRS datasets with 15 samples [11] were widely adopted
to assess the performance of the filtering algorithms. Thus, the results of the five fil-
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tering algorithms on the ISPRS datasets extracted from the corresponding published
papers [11,42,61,63] are shown in Figure 13. On average, SMRF with the optimized param-
eters (SMRF-O) produced the best results on urban, forest and overall landscapes. MHF
ranked the second, which was followed by SMRF with the single parameter (SMRF-S). This
indicates the importance of parameter optimization for SMRF. However, this is a nontrivial
and time-consuming task for SMRF, since it includes five parameters. Surprisingly, SBF
and SegBF showed much lower accuracy than PTD, which is different from the results in
our test (Figure 10). The poor performance of the former is mainly due to the low sample
density of ISPRS point clouds, which poses great challenges on optimal slope threshold
determination and point cloud segmentation for SBF and SegBF, respectively. This further
validates the different performance of the filtering algorithms on point clouds of different
density.
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6. Conclusions

To find a suitable filtering algorithm for handling high-density LiDAR point clouds
under complex landscapes, this paper conducted a comprehensive performance com-
parison between five representative filtering algorithms on six study sites with different
landscapes. The methods include simple morphological filter (SMRF), multiresolution
hierarchical filter (MHF), slope-based filter (SBF), progressive TIN densification (PTD) and
segmentation-based filter (SegBF). Results showed that all methods suffer from some limi-
tations. Specifically, all methods have obviously larger type I errors than type II errors in
the forest areas, while in the urban areas, SBF and PTD produce larger type I errors, and the
other methods have larger type II errors. In compassion, SMRF with the mean total error
of 5.7% and kappa coefficient of 87.49% performs best in the urban areas, while MHF with
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the mean total error of 1.98% and kappa coefficient of 82.59% ranks the first in the forest
areas. With respect to the produced DEMs, SBF and PTD produce the coarsest surfaces.
SegBF has a good surface in the urban area but obtains a poor surface in the forest area. By
contrast, the surfaces of SMRF and MHF seem more satisfactory than the other methods.
Overall, SMRF is recommended for urban areas, while MHF is more beneficial for forest
areas. With respect to average kappa coefficient, MHF seems slightly more accurate than
SMRF on the six plots. It should be noted that the high performance of the two methods
is mainly attributed to the nonlinear interpolation methods for surface modeling. Thus,
when developing new filtering algorithms for handling complex landscapes, advanced
interpolation methods [64–66] should be adopted in the filtering process.
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