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Abstract: Visible and near-infrared (VNIR) spectroscopy technology for soil heavy metal (HM)
concentration prediction has been widely studied. However, its spectral response characteristics are
still uncertain. In this study, a near standard soil Cd samples (NSSCd) spectra enhanced modeling
strategy was developed in order to to reveal the soil cadmium (Cd) spectral response characteristics
and predict its concentration. NSSCd were produced by adding the quantitative Cd solution into
background soil. Then, prior spectral bands (i.e., the bands with higher variable importance in
projection (VIP) score in NSSCd spectra) were used for predicting Cd concentration in soil samples
collected from the Hengyang mining area and Baoding agriculture area. The partial least squares
(PLS) and competitive adaptive reweighted sampling-partial least squares (CARS-PLS) were used for
validation. Compared to using entire VNIR spectral ranges, the new modeling strategy performed
very well, with the coefficient of determination (R2) and the ratio of prediction to deviation (RPD)
showing an improvement from 0.63 and 1.72 to 0.71 and 1.95 in Hengyang and from 0.54 and 1.57 to
0.76 and 2.19 in Baoding. These results suggest that NSS prior spectral bands are critical for soil HM
prediction. Our results represent an exciting finding for the future design of remote sensing sensors
for soil HM detection.

Keywords: soil; heavy metal; hyperspectral remote sensing; Cd; partial least squares

1. Introduction

Soil is a fundamental medium for material and energy circulation in terrestrial ecolog-
ical systems. With rapid urbanization and industrialization, soils have been contaminated
by heavy metal (HM) due to various smelting, mining, dust settlement, agricultural, and
industrial producing activities [1–3]. Soil HM not only causes soil health degradation but
also imposes significant harm on organisms by accumulating in the food chain. Therefore,
soil HM contamination has gradually emerged as a serious problem all over the world [4–6],
especially in China where in 2014 it was reported that about 19.4% of farmlands were
polluted by heavy metals [7,8].

Conventional methods for HM investigation based on soil sampling in the field
and subsequent chemical analysis in the laboratory are inefficient and costly [9,10]. In
comparison, visible and near-infrared reflectance spectroscopy (VNIR) remote sensing
technique is non-destructive, rapid, repeatable, and spatially and temporally continuous.
For the VNIR technique, the prediction of soil Cd concentration relies on its relationship
with soil spectral response characteristics. So far, a series of empirical models have been
developed for predicting HM concentrations with VNIR spectra. These models include
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principal component analysis (PCA), partial least squares regression (PLS), random forest
(RF), artificial neural network (ANN), and support vector machine (SVM) [11–16]. In this
process, the subset bands of spectra have been found to be more effective in predicting
soil HM due to the removement of redundant information from the entire VNIR spectral
ranges (350–2500 nm) [17]. Currently reported methods for selecting subset bands of
spectra mainly contain genetic algorithm (GA), uninformative variable elimination (UVE),
competitive adaptive reweighted sampling (CARS), and so on [13,17–21]. Among them,
the CARS-PLS model is recognized as an efficient and competitive way to select the optimal
combination of key subset bands of spectra [17].

To further reveal the spectral response characteristics of soil HM, some researchers
attempted to determine the important spectral bands by using coefficients of Pearson
correlation and variable importance in projection (VIP) in PLS modeling [22–28]. However,
according to the previous findings in mining [3,29–31], sediment [32,33], agricultural [10,34],
and urban areas [24,25], the spectral reflectance of naturally contaminated soil samples
(NCS) can be affected not only by soil HM but also by the heterogeneous constituents of
the soil. For this reason, the reported spectral bands for soil HM prediction so far are still
uncertain and controversial [35].

To exclude the influence of heterogeneous soil and reveal the importance of reflectance
of each spectral band, a control variate technique which can exclude the influence of
complex factors was developed [36]. After that, this control variate technique was widely
validated in predicting soil petroleum hydrocarbons, crops HM contamination, etc. [37,38].
Particularly in the field of soil HM prediction, the effectiveness of the control variate
technique has also been implemented in extracting the spectral response characteristics
of near standard soil samples (NSS) [39,40]. Thus, with the support of the control variate
technique, it is promising to predicting the soil HM concentrations by reasonably using the
prior spectral bands from NSS.

Therefore, taking the cadmium (Cd) as an example, the objectives of this study are:
(1) to reveal the spectral response characteristics and determine important spectral bands
denoting Cd concentration variations in soil based on NSSCd; and (2) to develop a modeling
strategy enhanced by the NSSCd prior spectral bands with the CARS-PLS and PLS models,
and subsequently verify its feasibility of detecting soil Cd concentration. We hope the
proposed strategy could be extended to other soil HMs, and guide the exploitation of
remote sensing products, such as the spectral index or the improvement of sensors, for soil
HM detection.

2. Materials and Methods
2.1. Experiment Framework

Figure 1 shows the entire study framework. As illustrated, the whole experiment
process consists of three steps: (1) soil sampling, producing the NSSCd by adding standard
Cd solution to background soil, and chemical analysis; (2) spectra measurement and
pretreatment; and (3) model construction and validation. In this study, the near stand
soil Cd samples (NSSCd) are proposed and defined as the samples with expected Cd
concentration. The first step aims to collect the field soil samples from two case areas
(i.e., Hengyang, Baoding), produce NSSCd with the background soil (i.e., unpolluted soil),
and measure the Cd concentrations of all these soil samples. The second step, spectra
measurement and pretreatment, involves measuring the hyperspectral signals of soil
samples with a spectrometer and removing the random noise of the measured spectra. The
third step involves the main process of the NSS spectra enhanced modeling strategy: the
NSSCd prior spectral bands are extracted by the VIP method, and these spectral ranges are
used to predict Cd concentration in NCS collected from the two case areas with both the
CARS-PLS and PLS model.
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Figure 1. Flow chart of Cd concentration prediction based on NCS enhanced by prior spectral bands extracted from NSSCd. 
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2.2.1. Field soil Sampling 

Two case areas are, respectively, located in southern Hengyang and northern Bao-
ding in China (Figure 2a). The Hengyang study area is close to the Shuikoushan mining 
area at the upstream of the Xiangjiang river basin. The main soil type of this area is red 
soil, which contains Fe-oxides. The historic mining activities had discharged HM into the 
soil by chimneys exhaust, solid waste accumulation, and sewage [41]. The potential pol-
lution is threatening the surrounding residents’ health. The Baoding study area is an ag-
ricultural land in Hebei province. This area is used as orchard and paddy field. Long-term 
irrigation and fertilization have led to the accumulate of heavy metal. The main soil type 
is loess.  

In the Hengyang area, 57 naturally contaminated samples in topsoil (0–20 cm) were 
collected within the boundary from 112°35′24′′ E to 113°36′37′′ E and from 26°32′37′′ N to 
25°34′12′′ N. These soil sampling sites are near the agricultural land, industrial land, and 
hydrology networks, etc. In the Baoding area, 42 naturally contaminated samples in top-
soil (0–20 cm) within the boundary from 116°3′12′′ E to 116°3′27′′ E and from 38°55′38′′ N 
to 38°36′30′′ N were collected. These sampling sites are mainly located in the orchard and 
paddy field. Detailed spatial distribution of sampling sites are shown in Figure 2b,c. For 
each sample site, 500 g soil was collected and packed into plastic bags with a label, and 
the location was recorded by a global position system (GPS). 

 

Figure 1. Flow chart of Cd concentration prediction based on NCS enhanced by prior spectral bands extracted from NSSCd.

2.2. Soil Sampling, Production and Chemical Analysis
2.2.1. Field soil Sampling

Two case areas are, respectively, located in southern Hengyang and northern Baoding
in China (Figure 2a). The Hengyang study area is close to the Shuikoushan mining area
at the upstream of the Xiangjiang river basin. The main soil type of this area is red soil,
which contains Fe-oxides. The historic mining activities had discharged HM into the soil
by chimneys exhaust, solid waste accumulation, and sewage [41]. The potential pollution
is threatening the surrounding residents’ health. The Baoding study area is an agricultural
land in Hebei province. This area is used as orchard and paddy field. Long-term irrigation
and fertilization have led to the accumulate of heavy metal. The main soil type is loess.
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In the Hengyang area, 57 naturally contaminated samples in topsoil (0–20 cm) were
collected within the boundary from 112◦35′24′′ E to 113◦36′37′′ E and from 26◦32′37′′ N to
25◦34′12′′ N. These soil sampling sites are near the agricultural land, industrial land, and
hydrology networks, etc. In the Baoding area, 42 naturally contaminated samples in topsoil
(0–20 cm) within the boundary from 116◦3′12′′ E to 116◦3′27′′ E and from 38◦55′38′′ N to
38◦36′30′′ N were collected. These sampling sites are mainly located in the orchard and
paddy field. Detailed spatial distribution of sampling sites are shown in Figure 2b,c. For
each sample site, 500 g soil was collected and packed into plastic bags with a label, and the
location was recorded by a global position system (GPS).

2.2.2. Near Standard Soil Cd Samples Production

To produce the NSSCd with Cd concentration ranges from low to high, the background
soil must be unpolluted and homogenized. For this, we selected a high ground site in
the neighbor of the Hengyang mining area, which was hardly polluted by mineral slag,
sewage, etc. We collected about 30 kg of background soil from the same site. Furthermore,
all of the background soil was stirred after plant residues and stones were eliminated.

After the pretreatment, five samples (each sample contains about 100 g) from the
different parts of the whole background were used for chemical analysis in order to acquire
their basic constituent information. The detailed process was the same as the description
in Section 2.2.3. The average pH value of these background soils is 4.17, and the Cd
concentration is 0.38 mg/kg, while the soil organic matter (SOM) is 6.78 g/kg. Detailed
constituents are presented in Appendix A, Table A1. To make the expected concentrations
of NSSCd correspond to a practical situation, it is necessary to consider the statistics of
Cd concentrations in the previous investigations (Appendix A, Table A2). In general,
the Cd concentrations in soil are lower than 2 mg/kg. However, in mining areas, these
concentrations are significantly higher and can even reach 200 mg/kg. Thus, the expected
Cd concentrations of NSSCd were set from 0.5 to 54 mg/kg with the interval at 1 mg/kg.
The interval of expected Cd concentrations was set to 0.1–0.2 mg/kg below 2 mg/kg.
Table 1 shows the final expected Cd concentrations of NSSCd.

Table 1. Cd concentrations expected and measured of near standard soil samples (mg/kg).

Sample No. 1 2 3 4 5 6 7 8 9 10 11 12 13

Expected 0.50 0.60 0.80 1.00 1.10 1.20 1.30 1.40 1.50 1.60 1.70 1.80 2.00
Measured 0.47 0.63 0.80 1.00 1.46 1.58 1.65 1.90 2.0 2.10 2.31 2.31 2.67

Sample No. 14 15 16 17 18 19 20 21 22 23 24 25 26
Expected 3.00 4.00 5.00 6.00 7.00 8.00 9.00 10.00 11.00 12.00 13.00 14.00 15.00
Measured 3.86 5.08 5.76 6.70 8.74 9.65 10.46 12.28 12.98 13.96 15.05 15.34 17.21

Sample No. 27 28 29 30 31 32 33 34 35 36 37 38 39
Expected 16.00 17.00 18.00 19.00 20.00 21.00 22.00 23.00 24.00 25.00 26.00 27.00 28.00
Measured 18.03 18.49 19.46 19.50 22.73 23.83 23.90 25.15 25.80 27.87 28.88 30.25 30.43

Sample No. 40 41 42 43 44 45 46 47 48 49 50 51 52
Expected 29.00 30.00 31.00 32.00 33.00 34.00 35.00 36.00 37.00 38.00 39.00 40.00 41.00
Measured 30.94 32.36 33.22 33.50 35.25 35.46 38.21 38.24 40.36 41.30 42.40 43.58 44.58

Sample No. 53 54 55 56 57 58 59 60 61 62 63 64 65
Expected 42.00 43.00 44.00 45.00 46.00 47.00 48.00 49.00 50.00 51.00 52.00 53.00 54.00
Measured 46.13 47.71 49.43 51.46 52.64 52.95 54.36 54.69 55.89 56.09 56.64 58.69 58.95

Following the expected scheme of Table 1, each sample was individually made up of
the C mL standard Cd solution (GSBG 62040-90(4801). Concentration, 1000 ug/L; Medium,
10% HCl) and 100 g of background soil and mixed thoroughly. The quantity of Cd solution
(C) was calculated by Equation (1) [40]:

C = 10−3 × (A− S)/ρ× D , (1)
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where C represents the volume (mL) of the standard Cd solution adding into background
soils samples; D represents the quantity of air-dried background soil samples without
plant residues and stones (g), D = 100; A represents the expected concentrations of NSSCd
(mg/kg) in Table 1; S represents the Cd concentration of the background soil (which is
presented in Appendix A, Table A1); ρ is the Cd concentration of standard Cd solution
(mg/L), ρ = 1. After that, all the NSSCd were settled for two months until the solution was
naturally dried. Finally, this NSSCd could be used for the subsequent process.

In the NSSCd production process, there were measuring errors of the volume of Cd
solution (C) and quantity of background (D). This was especially the case for D; while the
soil was moved to the container after weighting, the quality was lost easily because of the
residual soul on instruments. So, these factors inevitably lead to a deviation between the
expected and actual Cd concentration of NSSCd. It was still necessary to verify the Cd
concentration of NSSCd by chemical analysis.

2.2.3. Laboratory Chemical Analysis

Before the chemical analysis, all the NCS and NSSCd were pretreated in the following
steps: (1) air-drying in the ventilated and shady place; (2) eliminating the plant residues and
stones from the NCS; and (3) grinding by the agate mortar and sieving by using a 100-mesh
polyethylene sieve. Then, a few soils were taken out from each sample and digested
by the mixed-acid HNO3-HF-HClO4 in a microwave digestion instrument. Finally, Cd
concentrations of soil samples were determined by atomic absorption spectrophotometry
(AAS). The measurement accuracy of the soil Cd concentration is 0.03 mg/kg (GBT23739-
2009), and the lowest detectable limit is at 0.005 mg/kg (GB15618-1995). Meanwhile, soil
pH value was measured with a pH meter after shaking 10 g in a suspension of soil:water
at a ratio of 1:5 for 30 min [42]. The whole process of soil samples chemical analysis was
air-dried at the Soil and Fertilizer Institute in Hunan, China. The Cd concentration of
NSSCd was present in Table 1. Detailed discussion about the difference of the measured
values of Cd concentration of NSSCd were described in Section 2.2.2.

2.3. Spectra Measurement and Pretreatment

The instrument used for measuring spectra of soil samples in this study was the
PSR-3500 spectrometer (Spectral Evolution Inc., Lawrence, MA, USA), covering a spectral
range from 350 to 2500 nm. Spectral resolutions of the PSR-3500 spectrometer are 3.5 nm at
700 nm, 10 nm at 1500, and 7 nm at 2100 nm. The measurement process was carried out
in a darkroom. After the pretreatment in Section 2.2.3, all the samples were placed on a
black cloth in sample number order, while the top was smoothed down by lab spoon before
spectra measurement. A 50 W halogen with a 30◦ zenith angle was used as the unique light
source. The distance between the light source and the soil samples was 60 cm. The spectra
of samples were calibrated by using a standardized white BaSO4 panel before measuring
every three samples. During the measurement process, the fiber optic probe was placed
approximately 3 cm above the target soil sample and had a 45◦ zenith angle. Finally, each
soil sample was scanned five times to measure the spectral reflectance, and the average
spectrum was recorded.

For the measured spectra of soil samples, the spectral bands at intervals of 350–400 nm
and 2400–2500 nm were, for the first, eliminated due to the low signal-to-noise ratio. Then,
Savitzky–Golay smoothing with 15 points and second-order polynomials was adopted
to filter and reduce the random noise of spectra. Additionally, outlier spectra caused by
factors such as operation mistakes were further identified and removed using the spectral
angle method, as these ‘outliers’ are significantly different from the normal soil spectra.
The spectral angle is an index to evaluate the similarity between two spectra and can be
calculated by the equation as follows:

θi = arcos
∑

p
j=1 tjrij√

∑
p
j=1 t2

j

√
∑

p
j=1 r2

ij

, i = 1, 2 · · · n, θ ∈ [0,
π

2
] , (2)
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where tj represents the mean spectral reflectance in the j-th band of a set of samples; rij
represents the spectral reflectance in the j-th band of the i-th sample; and p is the total
number of spectral bands. If the θi is greater, there is a greater difference between the spectra
of the i-th sample and the average spectra. The θ of all samples were analyzed by box plot.
The first, third quartiles (Q1 and Q3), and the interquartile range (IQR = Q3 − Q1) were
calculated. The samples which θ range outside the interval (Q1 − 1.5 IQR, Q3 + 1.5 IQR)
are the outlier, the relevant spectrum can be regarded as error data. These samples were
finally eliminated in this study.

2.4. Model Construction and Validation
2.4.1. Prior Spectral Bands Extraction

For the prior spectral bands, they were extracted with the VIP score of the PLS
modeling [24,43]. The PLS model can be expressed as Equations (3) and (4) [44]:

X = TPt + E (3)

y = Tb + f, (4)

where, X (n × p) represents the spectra reflectance of n samples, p represents the number
of bands, T (n × h) is the scores of h latent variables, P (p × h) is the loading matrix, and
y (n × 1) is the concentration of HM. b (h × 1) is the regression coefficient of T. E (n × p)
and f (n × 1) are the random error matrix. The result of the PLS model is influenced by the
number of latent variables (h). The optimal PLS model was determined through the model
performance, which is in detail described in Section 2.4.2.

VIP score refers to the variable importance in PLS projections. The idea is to accu-
mulate the importance of each variable j being reflected by w from each component. In
general, the variable j should be selected if VIPj > 1 [26]. Thus, in this study, the prior
spectral bands were selected with this criterion. VIP score can be calculated based on the
determined optimal PLS model as Equation (5) [25]:

VIPj =

√√√√p
h

∑
k=1

(SS(bktk)
(

wjk/‖wk‖
)2

)/
h

∑
k=1

SS(bktk) (5)

2.4.2. Model Calibration and Validation

The PLS model is the primary method employed to predict soil HM using VNIR
spectroscopy technology due to its the ability to process the data in which the number of
variables greatly exceeded the number of samples (especially multicollinearity data) [45].
On this basis, as an advanced variable selection technique, CARS can improve the original
PLS model [17]. The process of CARS contains the N times iterative sampling of subset
bands of spectral. In this study, N was set to 100. Each subset bands of spectral sampling
from the NCS based includes the following steps: (1) choosing k subset bands of spectral
samples from the calibration set by Monte Carlo to build PLS model and evaluating the
importance of each spectral band by normalized weight; (2) reducing the number of model
variables (i.e., subset bands of spectral) with the adaptive reweighted sampling method
and finalizing the number with exponentially decreasing function; (3) repeating step 1
and step 2 until the sampling times reached N; and (4) determining the optimal variable
selection while the root mean square error of leave-one-out cross-validation (RMSECV)
is the minimum. Figure 3 presents the process of the CARS variable selection. While the
RMSECV is the minimum, the optimal variable selection is determined and it is marked
with a vertical line in the third-row subfigures. The CARS algorithm was performed in the
libPLS package (download from www.libpls.net, [21], accessed on 26 December 2018). PLS
and CARS-PLS models were carried out in MATLAB 2016a.

www.libpls.net
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The NSS spectra enhanced modeling strategy was proposed in this study. The VIP
scores of NSSCd spectra band were calculated with Equation (5). The NSS prior spectral
bands were selected with the criterion “VIP > 1”, and these bands were used to predict Cd
concentration in NCS. The CARS-PLS and PLS model were carried out the NSS spectra
enhanced modeling strategy (CARS-PLSNSS-VIP-VNIR and PLSNSS-VIP-VNIR). To verify the
effectiveness of the proposed modeling strategy, the conventional method of predicting
Cd concentration using the entire VNIR was the contrast experiment (CARS-PLSVNIR
and PLSVNIR).

To verify the stability of the NSSCd spectra enhanced modeling strategy, the calibration
and validation set of models were selected every one in five samples (i.e., 1/5 of total
samples) while the samples were sorted in ascending Cd concentration. The rest of the
soil samples were used as a calibration (i.e., training) set. This method can ensure that
the concentration of calibration and validation sets distribute similarly [3]. The number
of the validation set can be also set to 1/4, 1/3, and 1/2 of the total samples in the
model validation.

As redundant latent variables will result in overfitting, leave-one-out cross-validation
was used to determine the optimal number of latent variables (LVs) of PLS according to
the following criterion: the later LV will refuse to be added while the improvement of
RMSECV is less than 4% [3].

For the precision evaluation of the CARS-PLSNSS-VIP-VNIR and PLSNSS-VIP-VNIR models,
the determination coefficient (R2), root mean square error of prediction (RMSEP), and the
ratio of prediction to deviation (RPD) was used. A reliable model is supposed to have high
R2, low RMSE, and high RPD. RPD is defined as the ratio of the standard deviation of the
data set to RMSEP:

RPD = SD/RMSEP (6)

3. Results
3.1. Cd Concentration Statistics of Soil Samples

The statistics of soil samples Cd concentrations are presented in Table 2. The minimum
and maximum Cd concentrations are 0.72 mg/kg and 215.83 mg/kg in the Hengyang
soil samples, and 0.27 mg/kg and 0.50 mg/kg in the Baoding soil samples, respectively.
The standard deviation (SD) of samples in Hengyang and Baoding is 45.55 mg/kg and
0.05 mg/kg, respectively. To eliminate the effects of measurement scale and dimension,
the coefficient of variation (CV) values, a non-dimensional quantity, was calculated to
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evaluate the degree of variation of Cd concentration. The Cd concentration CV values
of samples in Hengyang and Baoding are 0.78 and 0.15, respectively. For the NSSCd, the
range of Cd concentration is 0.47–58.95 mg/kg, and the CV value is 0.71. The detailed
values are presented in Table 1. With the factor mentioned in Section 2.2.2, the measured
values are 10% higher than the expected values. However, they are mainly consistent
with the expected values in Table 1, which is acceptable for being used to analyze in
model construction.

Table 2. Statistics of Cd concentrations (mg/kg) of different sample sets.

Samples Set Min Max Mean SD CV

Hengyang (n = 57) 0.72 215.83 25.07 45.55 1.82
Baoding (n = 42) 0.27 0.50 0.35 0.05 0.15
NSSCd (n = 65) 0.47 58.95 25.91 18.31 0.71

pH value is 5.5, 8.5, and 4.17 for Hengyang, Baoding, and NSSCd.

According to the Environmental Quality Standard for Soils (GB 15618-1995) published
by the Ministry of Environmental Protection of China, the tolerable value is 0.3 mg/kg for
soils with pH ≤ 6.5 and 0.6 mg/kg for soils with pH ≥ 6.5. The Cd concentrations of all of
the soil samples in Hengyang exceed the tolerable value. It indicates that there is serious
contamination in Hengyang. In contrast, the Cd concentrations of all of the soil samples
in Baoding were below the tolerable value. The data should be normal distribution for
modeling, and the Kolmogorov–Smirnov method was used to test the distribution. The
Cd concentration of samples in Hengyang is a skewed distribution because of the high
value of Cd concentration in several of the samples. Therefore, in the latter, the box-cox
transform was used to correct for data distribution. The Cd concentration of samples in
Baoding is s normal distribution, which does not require transformation.

3.2. Spectral Response Characteristics of Soil Samples

The spectra of soil samples were presented in Figure 4. According to Figure 4, for all
of the samples, there are four main absorptions around 900 nm, 1400 nm, 1900 nm, and
2200 nm. The absorption around 1400 nm and 1900 nm are caused by hydroxyl functional
groups of free water [46,47], and the absorption around 2200 nm is caused by the clay
lattice Al–OH [48–50]. However, there are obvious differences between the spectra curve
of three sample sets.
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For the NCS in the Hengyang study area, the depth of absorptions is greater than
the NCS in Baoding, which is caused by the abundant ferric and aluminum oxide in red
soil. Additionally, the spectra of samples in Hengyang are various because the samples
were collected from different sites in mine tailing, farmland, factories, etc. The NCS in the
Baoding study area were all collected from agricultural land (according to Appendix A
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Table A1) and all of the degrees of variation of soil constituents are lower than samples in
Hengyang. The soil texture is relatively unitary, so the spectral curves are uniform.

Compared to the NCS, the NSSCd spectra are more uniform in shape because of the
production with the same background soil. All constituents are the same except for the
Cd concentration. The Cd concentration is the only factor which influenced the spectra of
NSSCd, This situation is similar to the samples in Baoding. The increasing trend of spectral
reflectance in the visible range and the depth of absorptions are similar to some of the
samples in the Hengyang study area. It is probably due to the fact that the soil type of
background soil is similar to the NCS in Hengyang.

3.3. Prior Spectral Bands Extraction from NSSCd

For NSSCd, the optimal precision of predicting Cd concentration is presented as
follows: The R2, RMSE with PLS model are 0.78, 9.33, and RPD = 2.05. The model is reliable.
The PLS model regression coefficient and VIP score for each band are presented in Figure 5.
According to the criterion “VIP > 1” mentioned in Section 2.4.1, the prior spectral bands
extracted from NSSCd are mainly in the range of 400–570 nm, 940–990 nm, 1390–1430 nm,
and 1670–2020 nm. In previous studies, several spectral bands with high correlation
to Cd concentration were found, including bands around 540 nm [51], 490–580 nm [31],
1000 nm [29], 1400 nm [52], and 2000 nm [24]. The prior spectral bands of NSSCd covers
the results in previous studies. The variety of NSSCd spectra is almost caused by Cd
concentration. Therefore, these prior spectral bands imply general spectral response
characteristics and are used to enhance the Cd concentration prediction in NCS.
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3.4. Prediction Precision of NSSCd Enhanced Model

The RMSECV against the number of LVs is shown in Figure 6, which determines
the optimal number of LVs (validation set ratio = 1/5). In Figure 6a, the RMSECV is the
local minimum while the number of LVs is 3. With the increase of LVs, the RMSECV is
decreased by less than 4%. According to the criterion in Section 2.4.2, the latter added
LVs is unnecessary. The optimal number of LVs for Hengyang is 3. In Figure 6b, the
RMSECV decreases sharply while the number of LVs increasing to 3 for the CARS-PLSVNIR
model and reached the minimum while LVs is 4 for the CARS-PLSNSS-VIP-VNIR. For the
PLSNSS-VIP-VNIR and PLSVNIR, while the 6th LV was added, the decrease of RMSECV is
less than 4%. The optimal number of LVs is regarded as 5. The optimal number of LVs
can be determined in the same way while the validation ratio changed, and the results are
presented in Table 3.
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Table 3. Prediction precision of PLSNSS-VIP-VNIR, CARS-PLSNSS-VIP-VNIR, PLSVNIR, and CARS-PLSVNIR models.

Sample
Set

The Ratio of the
Validation Set Model LVs RMSEP R2

p RPD Model LVs RMSEP R2
p RPD

Hengyang

1/5 (n = 11)

PLSNSS-VIP-VNIR

3 0.555 0.71 1.95
CARS-

PLSNSS-VIP-VNIR

3 0.610 0.65 1.77
1/4 (n = 14) * 3 0.646 0.60 1.65 3 * 0.656 * 0.59 * 1.62
1/3 (n = 19) 3 0.565 0.67 1.78 4 0.545 0.69 1.84
1/2 (n = 28) 3 0.618 0.57 1.55 3 0.651 0.52 1.47

1/5 (n = 11)

PLSVNIR

3 0.626 0.63 1.72
CARS-

PLSVNIR

3 0.790 0.41 1.37
1/4 (n = 14) 3 0.703 0.53 1.51 3 0.609 0.65 1.75
1/3 (n = 19) 3 0.651 0.56 1.55 3 0.668 0.53 1.50
1/2 (n = 28) 3 0.632 0.55 1.51 6 0.661 0.50 1.45

Baoding

1/5 (n = 8)

PLSNSS-VIP-VNIR

5 0.029 0.68 1.90
CARS-

PLSNSS-VIP-VNIR

4 0.025 0.76 2.19
1/4 (n = 10) 5 0.028 0.65 1.79 5 0.036 0.42 1.39
1/3 (n = 14) 3 0.037 0.38 1.33 5 0.049 0.32 1.27

1/2 (n = 21) * 5 0.030 0.59 1.60 6 * 0.031 * 0.54 * 1.51 *

1/5 (n = 8)

PLSVNIR

5 0.033 0.59 1.66
CARS-

PLSVNIR

3 0.035 0.54 1.57
1/4 (n = 10) 3 0.030 0.60 1.68 5 0.041 0.25 1.23
1/3 (n = 14) 4 0.040 0.30 1.25 3 0.051 0.26 1.21
1/2 (n = 21) 3 0.032 0.53 1.50 4 0.030 0.59 1.60

The cases that the NSSCd enhanced models get higher precision than using entire VNIR were marked with bold font. And the exceptional
cases were marked with *.

The results of the NSSCd enhanced models (PLSNSS-VIP-VNIR and CARS-PLSNSS-VIP-VNIR)
are presented in Table 3. As a comparison, prediction precision that using the entire VNIR
(PLSVNIR and CARS-PLSVNIR model) is also presented. The higher precision is marked
with bold font. Figures 7 and 8 are the scatter plots of the observed against predicted
Cd concentration. The red dots and green dots represent the validation and calibration
set respectively. The 95% confidence interval of regression line is marked with a red
shaded region.

For the Hengyang sample set, while the validation set ratio is set to 1/5, compared
to the PLSVNIR model, the R2

p, RPD of the PLSNSS-VIP-VNIR model are improved from
0.63 and 1.72 to 0.71 and 1.95. A similar improvement is also found in comparing the
CARS-PLSNSS-VIP-VNIR and CARS-PLSVNIR model, the R2

p, RPD are improved from 0.41 and
1.37 to 0.65 and 1.77. For the Baoding sample set, the R2

p, RPD of the PLSNSS-VIP-VNIR model
are improved to from 0.59 and 1.66 to 0.68 and 1.90 compared to the PLSVNIR model.
And the R2

p, RPD of the CARS-PLSNSS-VIP-VNIR model are improved from 0.54 and 1.57 to
0.76 and 2.19 compared to the CARS-PLSVNIR model. With the validation set ratio changed
to 1/4, 1/3, and 1/2, the NSSCd enhanced model still gets higher precision than using the
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entire VNIR in most cases. However, even if for the exceptional cases (which marked with
* in Table 3), the prediction precision is still reliable.

Remote Sens. 2021, 13, x FOR PEER REVIEW 12 of 18 
 

 

 
Figure 7. Scatter plots of the observed against predicted Cd concentration of Hengyang sample set: (a) PLSNSS-VIP-VNIR; (b) 
CARS-PLSNSS-VIP-VNIR; (c) PLSVNIR; and (d) CARS-PLSVNIR (validation ratio = 1/5). 
Figure 7. Scatter plots of the observed against predicted Cd concentration of Hengyang sample set: (a) PLSNSS-VIP-VNIR;
(b) CARS-PLSNSS-VIP-VNIR; (c) PLSVNIR; and (d) CARS-PLSVNIR (validation ratio = 1/5).

In addition, other sample selection method such as Kennard–Stone (KS) is also widely
utilized in soil spectroscopy for selecting calibration [53,54]. The results of the NSS en-
hanced model which validation set is selected by the KS algorithm are presented in
Appendix A, Table A3. Comparing to the results in Table 3, the results which valida-
tion selected by KS is lower (R2

p is ranged in 0.36–0.53). The KS method can ensure that the
distribution of calibration is uniform to the total samples along the spectra. This perhaps
leads to the difference distribution of Cd concentration between calibration and validation
sets since the sample number is not large enough. Unlike the KS method, the method that
selected every one in five samples with the ascending sorted Cd concentration ensure that
the distribution of calibration is uniform to the total samples along the Cd concentration.
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4. Discussion

To eliminate the influence on spectra caused by heterogeneous soil [35], NSSCd were
produced to reveal the soil’s Cd spectral response characteristics. Considering the redun-
dant information of the entire VNIR [17], the NSSCd prior spectral bands were extracted
by VIP scores, which are mainly ranged in 400–570 nm, 940–990 nm, 1390–1430 nm, and
1670–2020 nm. These spectral ranges are the union of spectral response characteristics
of Cd concentration in previous studies [24,31,51,52]. Thus, these spectral ranges are
more universal.

According to the results of soil Cd concentration prediction, the use of NSSCd prior
spectral bands can improve the prediction precision of Cd concentration. In Table 3, the
R2

p, RPD and RMSE were improved 9%, 16%, and 11% on average. The R2
p and RPD were

improved, most significantly from 0.41 and 1.37 to 0.65 and 1.77 for Hengyang sample set,
and improved from 0.54 and 1.57 to 0.76 and 2.19 for the Baoding sample set. The two
exceptional cases marked with * in Table 3. For the CARS-PLSNSS-VIP-VNIR model, the R2

p
were respectively decreased from 0.65 and 0.59 to 0.59 and 0.54 in Hengyang (validation set
ratio = 1/4) and Baoding (validation set ratio = 1/2), respectively. The CARS method can be
influenced by the variety of training sets when the sample number is not large enough. It
perhaps this reason that led to these two exceptional cases. However, the prediction is still
reliable in these cases. It indicates that the NSSCd enhanced model is effective in general.
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Though the band number of NSSCd prior spectral bands is significantly less than the
entire VNIR, these bands perhaps contain the main spectral information for predicting
Cd concentration and have the potential to reveal spectral response characteristics. Some
previous studies have proposed that there is redundant information in the entire VNIR,
and that using subset bands of spectra represents an effective method for improving soil
HM prediction [3].

Additionally, in this study, NSSCd prior spectral bands extracted by VIP scores were
more effective than the band selected by the CARS method. It was noticed that the pre-
cision of the CARS-PLSVNIR is lower than the PLSNSS-VIP-VNIR model both for the NCS
in Hengyang and Baoding. In some cases, the CARS method was useless for improving
precision. For example, the PLSNSS-VIP-VNIR model gets higher precision than the CARS-
PLSNSS-VIP-VNIR model when the validation set ratio is 1/4 and 1/2, respectively. As a
variable selection method, CARS can eliminate uninformative variables based on weight.
However, the results of variable selection are perhaps influenced by the spectra variation
caused by heterogeneous soil. The spectra bands selected by the CARS method are in-
consistent in different areas, which may possibly lead to controversial spectral bands for
predicting soil HM as in previous studies. In contrast, the NSSCd prior spectral bands are
extracted based on the prior knowledge of NSSCd spectra, which are more likely to reveal
the spectral characteristic of soil Cd. This is the main reason that NSSCd prior spectral
bands are more effective in predicting Cd concentration than spectra bands selected by the
CARS method. Therefore, the NSSCd prior spectral bands can be widely applied to predict
Cd concentration in different areas.

Moreover, an NSS enhanced model based on machine learning was also carried
out. Random forest (RF) is popular in spectral reflectance due to the accuracy of its
classifications [55,56]. It is also applicable to regression and used in some cases [57–59].
The result of the RFNSS-VIP-VNIR model is presented in Appendix A, Table A3. However,
the precision of the RFNSS-VIP-VNIR model is lower than the PLSNSS-VIP-VNIR and CARS-
PLSNSS-VIP-VNIR models. Machine learning is suitable for non-linear regression problems
with a large number of samples. However, in this study, due to limitation of the number of
samples, machine learning did not perform well. However, for the large number samples,
it is worth exploring the capability of the NSS enhance model combined with machine
learning for further study.

In this study, although NSSCd prior spectral bands can be applied to these two areas,
it does not mean that it can be applied to all possible study areas. Because soil type is
an important factor which can influence spectra, it is necessary to verify the applicability
of the NSSCd spectra enhanced modeling strategy on more types of soil. In addition,
the mechanism for predicting soil HM concentration using VNIR spectroscopy is based
on HM adsorption on Fe-oxides, clays, and SOM. Therefore, while the other constituent
concentrations (e.g., SOM, clays, etc.) of background soil are varied, it is uncertain whether
the result of prior spectral bands extracted by VIP scores from NSSCd will differ from the
result in this paper. Moreover, considering the high Cd concentration range of NSSCd
(0.47–58.95 mg/kg), it is difficult to ensure NSSCd prior spectral bands’ reliability for NCS
with a low Cd concentration.

For this reason, in further studies, the producing NSS with heterogeneous back-
ground soil should be produced to reveal the spectral response characteristic of HM in
heterogeneous soil (e.g., the NSS produced based on soil with a high SOM and low SOM
concentration). The proposed NSSCd spectra enhanced modeling strategy also should be
used in more study areas with different soil types to verify its’ transferability [60]. For
other types of soil HM, the spectral characteristics also can reveal by this method. These
NSS prior spectral bands are significant for the development of sensors for detecting soil
HM. It is a promising hyperspectral remote sensing technique for rapidly detecting soil
HM concentrations on a large scale.
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5. Conclusions

1. The NSSCd spectra enhanced modeling strategy can effectively predict Cd concentra-
tion in different areas.

2. NSSCd prior spectral bands are important for the selection of spectral response char-
acteristics from VNIR of natural soil samples.

3. The VIP method is more helpful to select the key band for predicting Cd concentration
than the CARS method.
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Appendix A

Table A1. pH value and constituents of NSSCd background soil and NCS.

Samples Set pH SOM (g/kg) Fe (g/kg) Cd (mg/kg) Cu (mg/kg) Pb (mg/kg) As (mg/kg)

NSSCd
background soil 4.17 6.78 21.03 0.38 16.50 26.10 9.77

Hengyang
Mean 5.49 42.22 50.17 28.85 259.73 2584.57 684.40

SD 1.49 53.04 48.93 50.72 506.63 3647.29 1166.93
CV 0.27 1.26 0.98 1.76 1.95 1.41 1.71

Baoding
Mean 8.17 86.42 0.35 123.31 8.85

SD 0.21 26.76 0.06 46.52 2.70
CV 0.03 0.31 0.17 0.38 0.31
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Table A2. Summary of Cd concentration in previous studies.

Sampling Area Number of Sampling Min Max Reference

Suburban area 44 0.32 0.51 [34]
Suburban area 93 0.22 0.64 [23]

Mining area 40 0.17 1.74 [61]
Mining area 70 0.17 34 [30]
Mining area 46 0.72 215.83 [3,29]

River sediments 117 0 18 [32]
Freshwater sediments 169 0.011 2.49 [31]

River sediments 150 0.022 0.08 [62]
Delta area 61 0.22 0.54 [10]
Delta area 122 0.081 1.441 [34]

Archaeological soil 11 0.07 0.11 [63]
Tailings polluted area 214 0.05 14.8 [12]

Table A3. Supplyment result of RF model while the validation set was selected (1) every 1 in 5 samples with the ascending
sorted Cd concentration; (2) Kennard-Stone algorithm (1/5 of sample set).

Sample Set Selected
Validation Set

PLSNSS-VIP-VNIR CARS-PLSNSS-VIP-VNIR RFNSS-VIP-VNIR

RMSEP R2
p RPD RMSEP R2

p RPD RMSEP R2
p RPD

Hengyang (1) 0.555 0.71 1.95 0.610 0.65 1.77 0.661 0.59 1.63
(2) 0.618 0.40 1.36 0.622 0.40 1.35 0.411 0.45 1.42

Baoding (1) 0.029 0.68 1.90 0.025 0.76 2.19 0.034 0.42 1.42
(2) 0.050 0.53 1.58 0.053 0.48 1.50 0.059 0.36 1.35
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