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Abstract: Estimation of maximum wind speed associated with tropical cyclones (TCs) is crucial to
evaluate potential wind destruction. The Holland B parameter is the key parameter of TC parametric
wind field models. It plays an essential role in describing the radial distribution characteristics of a TC
wind field and has been widely used in TC disaster risk evaluation. In this study, a backpropagation
neural network (BPNN) is developed to estimate the Holland B parameter (Bs) in TC surface wind
field model. The inputs of the BPNN include different combinations of TC minimum center pressure
difference (∆p), latitude, radius of maximum wind speed, translation speed and intensity change
rate from the best-track data of the Joint Typhoon Warning Center (JTWC). We find that the BPNN
exhibits the best performance when only inputting TC central pressure difference. The Bs estimated
from BPNN are compared with those calculated from previous statistical models. Results indicate
that the proposed BPNN can describe well the nonlinear relation between Bs and ∆p. It is also found
that the combination of BPNN and Holland’s wind pressure model can significantly improve the
maximum wind speed underestimation and overestimation of the two existing wind pressure models
(AH77 and KZ07) for super typhoons.

Keywords: tropical cyclone; surface wind field; Holland B parameter; neural network; statistical model

1. Introduction

The Northwest Pacific (NWP) Ocean is one of the most cyclone-prone regions world-
wide. Tropical cyclones (TCs) can cause serious meteorological disasters, such as strong
winds and heavy rainfall and result in severe damage to the coastal provinces of South-
east China, Philippines and Japan, affecting the safety of the lives and properties of their
residents. Therefore, it is crucial to carry out the risk assessment of TC-induced potential
hazards, including intense winds, storm surges and torrential rain.

Due to the lack of high-quality in situ observations of TCs in the coastal areas of
China, it is inappropriate to conduct TC risk evaluation only based on historical data alone.
However, the parametric wind field model of TCs has the advantages of straightforward
form, simple calculation and relatively accurate simulation of the essential characteristics of
the TC structure. TC two-dimensional wind fields can be constructed with the parametric
wind field model by inputting key parameters, such as radial wind profile shape parameter
(Holland Bs), minimum central pressure (MCP), radius of maximum wind speed (RMW),
azimuth angle of maximum wind speed and TC translation speed. TC surface wind fields
have been widely used in evaluating TC disaster risk and forecasting storm surges.

The TC wind pressure model links the minimum central surface pressure and the
maximum wind speed (MWS) near the TC center. It is an important analysis tool to evaluate
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the MWS from various observations and estimates. Basically, all kinds of wind pressure
models are developed in the same equation form (Equation (1), [1]):

Vm = α∆Px (1)

where Vm is the maximum wind speed and ∆P=PnPc is the difference between the envi-
ronmental pressure Pn and the pressure of the TC center Pc. The value of Pn in the NWP is
usually 1010 hPa and α and x are empirical constants. Many scholars have adjusted the
values of these two empirical constants based on this form. Atkinson and Holliday [2]
adopted an empirical method to define the exponents of the wind pressure model for
different cyclone-prone basins (AH77 model):

Vm= 3.4(1010Pc)
0.644 (2)

Vm= 3.92(1015Pc)
0.644 (3)

where Vm is the one min average wind speed at a height of 10 m, 1010 is an assumed
environmental pressure constant for the NWP and 1015 corresponds to the situation in the
North Atlantic.

Knaff and Zehr [3] reclassified the data used in the AH77 model according to different
intensities and, thus, to remove a bias of a large number of weaker intensities existing in
the samples. The new empirical values of the wind pressure model were calculated as
follows (KZ07 model):

Vm = 2.3(1010Pc)
0.76 (4)

The TC pressure field is an essential component of many parametric wind field models.
Schloemer [4] proposed an exponential pressure distribution model as follows:

P(r) = Pc + ∆Pe[−( RMW
r )] (5)

where P(r) is the value of pressure at distance r between the observation point and the TC
center.

On the basis of the pressure field model mentioned above, Holland [5] introduced a
parameter B to exhibit variation of pressure gradient at the RMW which is referred to as
the H80 model hereafter.

P(r) = Pc + (PnPc)e−( r
RMW )B

(6)

where B is the Holland B parameter, which defines the shape of the TC pressure profile.
The wind profile and the MWS are expressed by using the gradient wind equations.

Here, the Coriolis force term was ignored.

Vc = [
B∆P

ρ
(

RMW
r

)Be[−( RMW
r )]

B
]

1
2

(7)

Vm = (
B
ρe

∆P)0.5 (8)

where ρ is the air density, e is the base of the natural logarithm function, r is the dis-
tance from the observation point to the TC center and Vm is the maximum wind speed.
Equations (7) and (8) can describe the TC radial wind profile and MWS at gradient height,
but they need to be converted into ocean surface wind field information through the
boundary layer model and certain errors occur during the transformation process.

The Holland B parameter is considered important to describe the radial distribu-
tion characteristics of the TC wind field, as discussed above. Figure 1 shows the exam-
ples of ocean surface pressure profiles and gradient wind speed profiles estimated from
Equations (6) and (7) (both with the Holland B parameter). As shown in Figure 1a, for
the same TC, that is, when ∆P and RMW are fixed, as B increases, the pressure gradient
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increases significantly and is generally concentrated near the region of 1 RMW. In Figure 1b,
with the increasing B value, the gradient wind speed near 1 time of RMW continues to
increase, whereas the wind speed far away from the RMW continues to decrease.
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Figure 1. Influence of adjusting the Holland B parameter on the radial profiles of (a) sea surface pressure and (b) gradient
wind speed. The values of ambient pressure (Pn), central pressure (Pc) and the RMW of the TC are marked on the figure
and the abscissa indicates the radial distance from the observation point to the center of the TC. Curves of different colors
represent Holland B parameters of different values.

Since Holland introduced the shape parameter of the wind profile in 1980 [5], many
scientists have fitted corresponding Holland B parameter statistical models for different TC-
prone basins. Love et al. [6] conducted an operational analysis of TCs in the northern ocean
region of Australia. They found that the Holland B parameter obtained in this area has a
weak logarithmic relationship with the TC central pressure difference. Hubbert et al. [7],
Harper and Holland [8] focused on TCs in Australia and directly defined B as a linear
function expression related to the TC central pressure. Vickery et al. [9] believed that B is
related to the TC center pressure difference and RMW based on the aircraft reconnaissance
data in the Atlantic Ocean and established a corresponding linear relationship. Willoughby
and Rahn [10] used the same data as Vickery [9] to construct a statistical model of B,
incorporating the flight-level maximum wind speed, latitude and RMW. According to the
gradient balance equation, Jakobsen et al. [11] proposed a B model in the Bay of Bengal as
a function of the TC central pressure difference and maximum wind speed.

In addition, previous studies found that the Holland B parameter is related to RMW
and latitude [12,13]. Holland [14] developed a new correlation method between TC central
pressure and MWS and further proposed a method to determine the value of the Bs
parameter objectively, which is directly related to the sea surface wind field (Holland08
model). The subscript of the parameter Bs indicates that the relationship uses ocean
surface data rather than the gradient wind field used in the original H80 model. The Bs
parameter relates the central pressure difference, intensity change rate, latitude and TC
translation speed.
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For the NWP, Xiao et al. [15] used historical typhoon data provided by the China
Meteorological Administration (CMA) and the State Oceanic Administration to establish
statistical models of B, which are related to the RMW for 11 major cities in the southeast
coastal areas of China. Lin et al. [16] and Li et al. [17] compared the effects of different
Holland B parameter models on the simulation results of the wind field in the NWP and
determined that the model of Vickery [13] is most suitable for TC simulation in the NWP.
Zhao et al. [18] used in situ atmospheric observation data from hundreds of national
meteorological stations along the coast of China to build the expression of the Holland B
parameter before and after typhoon landfall. Among them, B before landfall is related to
the TC central pressure difference and RMW, whereas after landing, B is only related to
the central pressure difference. Fang et al. [19] estimated a statistical model of the Holland
Bs parameter for landing TCs, using near-Earth environmental pressure data of hundreds
of weather stations along the coast of the NWP and incorporating the central pressure
difference and RMW. In addition, Fang et al. [20] adopted the TC position information and
central pressure from the best-track dataset of CMA for the first time to propose a linear
relationship between the Holland Bs parameter and the central pressure difference and
latitude (Fang2020 model).

Table 1 lists the statistical models of Holland B or Bs parameter established by the
scholars mentioned above for different cyclone-prone basins. Among them, ∆P is the
difference between the environmental pressure and the central pressure of the TC in hPa,
Pc is the TC central pressure in hPa, RMW is the RMW in km, VFmax is the flight-level
MWS in m s−1, ∅ is the latitude of the TC center point in degrees, γ2 = 1.05, ρA is the air
density and the value is 1.15 kg m−3, Vmax is the MWS at 500 m above sea level, (∂pc/∂t)
is the intensity change rate in hPa h−1, Vt is the TC moving speed in m s−1, Vmg/Vm is
the surface-to-gradient wind transformation coefficient at RMW and d0, d1 are correlation
coefficients (See Ref. [15] Table 5).

Table 1. Summary of previously established Holland B or Bs statistical models for different basins.

Serial Number Formula Research Area Reference

(1) B = 0.25 + 0.3 ln (∆P) Australia 1985 [6]
(2) B = 1.5 + (980 − Pc)/120 Australia 1991 [7]
(3) B = 2 − (Pc − 900)/160 Australia 1999 [8]
(4) B = 1.38 − 0.00184∆P + 0.00309RMW Atlantic 2000 [9]
(5) B = 1.0036 + 0.0173VFmax + 0.0313 ln (RMW) + 0.0087∅ Atlantic 2004 [10]
(6) B = e

γ2
2

ρA
[100]∆P (Vmax)

2 The bay of Bengal 2004 [11]

(7) B = 1.881 − 0.00557RMW − 0.01097∅ Atlantic 2005 [12]
(8) B = 1.881 − 0.00557RMW − 0.01295∅ Atlantic 2008 [13]

(9)

Bs = −4.4 × 10−5∆P2 + 0.01∆P + 0.03 ∂Pc
∂t − 0.014∅+ 0.15Vx

t + 1.0
x = 0.6(1 − ∆P

215 )

B = Bs(
Vmg
Vm

)
2
v 1.6Bs

Atlantic 2008 [14]

(10) ln B = d0 + d1 ln RMW + ε2 NWP 2011 [15]

(11) B = −2.365 + 0.0573∆P + 0.0035RMW (before landfall)
B = 0.4899 + 0.0178∆P (after landfall) NWP 2013 [18]

(12)
Bs = 4.1025 × 10−5∆P2 + 0.0293 × ∆P + 0.7959 × ln RMW − 4.6010

ln RMW = −38.36∆P0.025 + 46.75 + εln RMW
NWP 2018 [19]

(13) Bs = 1.2858 + 8.6396 × 10−3∆P − 8.7745 × 10−3∅ NWP 2020 [20]

In accordance with previous studies [6–20], Holland B or Bs parameter may be referred
to TC central pressure, RMW, the latitude of the TC center location, TC translation speed
and intensity change rate and it has various characteristics for different cyclone-prone
basins. Almost all of the existing Holland B or Bs parameter statistical models consider
the linear relationship between the B or Bs parameter and impact factors and only a few
models consider the quadratic fitting relationship between Bs and the TC central pressure
difference. However, linear regression or simple quadratic fitting cannot fully explain
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the actual changes in the Holland B parameter. By contrast, backpropagation (BP) neural
networks have a powerful nonlinear mapping ability and can deal with nonlinear processes
flexibly. It can store the complex relationship between input variables and output results in
the network through sample training and is an advantageous tool for building nonlinear
models. In theory, as long as the number of neurons in the hidden layer is set enough, a
BP neural network with three or more layers can approximate a nonlinear function with
arbitrary accuracy. Therefore, a BP neural network can be used to establish a nonlinear
model between the Holland B parameter and other impact factors.

Given the absence of aircraft reconnaissance in situ observation in the NWP, only a
few studies on the Holland B parameter have been conducted in this basin [15,18–20]. The
best-track dataset from the Joint Typhoon Warning Center (JTWC) has provided RMW data
since 2001; such data can provide enough impact factor datasets for the simulation of the
Holland B parameter in the NWP. Therefore, in this study, the JTWC best-track dataset is
used for the first time to establish a BP neural network of the sea surface wind field Holland
B parameter Bs in the NWP and build a corresponding statistical model for comparison.
Our main motivation is to develop an optimal model of the Holland Bs parameter in the
NWP and analyze its application.

Section 2 introduces the data used in this study, mainly including the best-track
dataset of JTWC and the Soil Moisture Active and Passive (SMAP) TC sea surface wind
field data. This section also introduces the quality control standards of the best-track dataset.
Section 3 shows the definition method of sea surface wind field Holland B parameter and
the structural configuration of the BP neural network used in this study. Section 4 describes
the validation, application and comparison with statistical models of the neural network.
Section 5 discusses the main advantages of the neural network applied to the wind pressure
model. Section 6 provides the conclusions.

2. Data
2.1. JTWC Best-Track Data

This study adopts the TC best-track dataset in the NWP from 2001 to 2018 provided
by the JTWC. Each best-track datum includes TC information, such as the basin where the
TC is located; the annual TC number; the year, month, day and hour of TC occurrence; the
longitude and latitude of the TC center location, the maximum one-minute continuous
wind speed; the MCP; the TC intensity level, the RMW. The temporal resolution of the
best-track dataset of JTWC is 6 h, which can be downloaded from the official website of
JTWC (https://www.metoc.navy.mil/jtwc/jtwc.html accessed on 27 April 2020).

To ensure the validity of the final Holland B parameter model, this study first conducts
quality control on the original JTWC best-track dataset. Thus, the quality control criteria
(QCC) are defined as follows: (1) The central position of TCs is in the longitude range of
100◦E–180◦E and the latitude range is 0◦–60◦N. (2) The intensity of TCs is not less than
17.2 m/s. (3) The MCP of TCs is between 870 and 1000 hPa. (4) The RMW of TCs shall not
exceed 150 km. (5) Landing TC data are removed. QCC -1 ensures that the TC best-track
dataset used is located in the NWP. QCC-2 and QCC-3 ensure that the intensity of the TC
best-track dataset reaches at least the tropical storm level because of too weak TCs having
minimal research value. Given that the TCs with large RMW are generally weak and the
peripheral wind field is extremely irregular, the final model results are affected to a certain
extent. Therefore, we select the best-track dataset according to QCC-4, referring to the
relevant literature [13]. Finally, QCC-5 is used to remove the landfall impact of TCs. The TC
translation speed and intensity change rate can be calculated from the best-track dataset.

After quality control, we selected 6091 TC best-track data from the 2001–2018 JTWC
dataset. Through random sampling, 80% of the dataset (4873 TC track data, hereafter
called the training data) are selected to establish the model. The remaining 20% (1218 TC
track data, hereafter called the testing data) are used for model testing. Figure 2 shows
the geographical distribution density of the selected 4873 TC centers for the training data,
indicating that TCs mainly occur in the longitude range of 110◦E–140◦E and the latitude

https://www.metoc.navy.mil/jtwc/jtwc.html
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range of 10◦N–30◦N. The distribution of the remaining 1218 TC centers for the testing data
is also drawn on the Figure 2 with red hollow circles. It is clearly shown in Figure 2 that
there is not much difference in the spatial distribution of the two sets of data.
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Figure 2. Geographic distribution density map of the TC center location that has passed the quality
control standards (for the training data). The darker the color, the more the number of TCs. The
red hollow circles represent the distribution of the TC center location (for the testing data). The
horizontal and vertical coordinates stand for longitude and latitude.

For each selected best-track data, we extract information, such as MWS, MCP, RMW,
latitude of the TC center position, translation speed and intensity change rate. The his-
tograms of the key information contained in the training data samples used for modeling
are shown in Figure 3. Figure 3a shows the intensity range of TC samples from ∼18–87 m/s,
which ensures that the training data cover TCs from tropical storms to super typhoons.
The range of other TC information is also shown in Figure 3b–f.

2.2. SMAP TC Sea Surface Wind Field Data

The NASA SMAP satellite observation station was launched in 31 January 2015 and
began to provide data in April 2015. The L-band passive microwave radiometer mounted
on the SMAP can be used to measure sea surface wind speed, with a spatial resolution
of 40 km and a swath width of 1000 km. In addition, it has been proven that the L-band
microwave radiometer performs well in observing the sea surface wind field of TCs [21–23].
A recent study [21] showed a good relationship between the wind-induced brightness
temperature of the SMAP L-band microwave radiometer and the wind speed of TCs. The
L-band microwave radiometer is not susceptible to rainfall attenuation even in extreme
weather conditions and the brightness temperature consequently does not reach saturation.
Therefore, it can provide an accurate estimate of TC intensity, which arrives at super
typhoon grade. The SMAP wind field data with a spatial resolution of 0.25◦ × 0.25◦ used in
this study are from the remote sensing system website (www.remss.com/missions/SMAP/
accessed on 10 November 2020).

www.remss.com/missions/SMAP/
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Figure 3. Histogram of key parameters of TCs from the JTWC best-track dataset in the training data
for (a) TC intensity (Vmax), (b) TC central pressure difference (∆P = PnPc), (c) RMW, (d) latitude (∅),
(e) TC moving speed (Vstorm) and (f) TC intensity change rate (∂pc/∂t).

To discuss the applicability of the network further (see Section 5), we select 26 TCs
with super typhoon grade in the NWP Ocean from April 2015 to December 2019, totaling
48 SMAP sea surface wind field observation samples. Table 2 summarizes the year, name,
occurrence time of each TC and the corresponding MWS information extracted directly
from the SMAP wind field data.

Table 2. Information on super typhoons observed by SMAP from 2015 to 2019.

Year Name of Super Typhoons
Occurrence Time of Super

Typhoons Observed by
SMAP

MWS of Super Typhoons
Extracted Directly from

SMAP Wind Field Data (m/s)

2015

Noul 9 May 2015-09:50 56.94
Noul 9 May 2015-22:00 73.61

Dolphin 15 May 2015-20:46 54.52
Nangka 9 July 2015-08:00 61.52
Soudelor 3 August 2015-08:35 60.28
Soudelor 3 August 2015-20:44 74.02
Soudelor 7 August 2015-09:27 56.68

Atsani 18 August 2015-20:07 54.26
Dujuan 27 September 2015-09:40 64.50
Dujuan 27 September 2015-21:46 59.36
Champi 22 October 2015-20:44 51.69

In-fa 21 November 2015-21:12 51.44
Melor 13 December 2015-21:36 54.68

2016

Nepartak 5 July 2016-21:22 70.42
Nepartak 6 July 2016-21:58 70.67
Meranti 12 September 2016-09:02 73.45
Malakas 16 September 2016-21:59 61.36
Chaba 2 October 2016-21:58 62.60
Chaba 4 October 2016-09:30 55.96
Songda 12 October 2016-19:51 51.28
Haima 17 October 2016-21:23 59.10
Haima 18 October 2016-22:00 68.87
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Table 2. Cont.

Year Name of Super Typhoons
Occurrence Time of Super

Typhoons Observed by
SMAP

MWS of Super Typhoons
Extracted Directly from

SMAP Wind Field Data (m/s)

2017
Noru 31 July 2017-08:37 53.85
Lan 22 October 2017-08:52 61.05

2018

Maria 7 July 2018-08:23 63.06
Maria 8 July 2018-09:00 66.46
Maria 8 July 2018-21:07 70.16
Jebi 1 September 2018-08:24 70.36
Jebi 2 September 2018-21:06 55.55
Jebi 3 September 2018-21:41 53.65

Mangkhut 13 September 2018-09:10 77.93
Mangkhut 13 September 2018-21:22 69.08
Mangkhut 14 September 2018-09:49 67.43

Trami 24 September 2018-21:33 62.65
Trami 29 September 2018-09:14 52.77

Kong-rey 1 October 2018-08:47 51.80
Yutu 24 October 2018-08:10 68.62
Yutu 24 October 2018-20:20 61.62
Yutu 25 October 2018-20:57 65.94
Yutu 28 October 2018-09:00 67.95
Yutu 29 October 2018-09:37 59.72

2019

Wutip 24 February 2019-08:21 51.59
Wutip 24 February 2019-20:33 53.85
Wutip 25 February 2019-21:09 56.12

Lingling 6 September 2019-09:39 51.02
Bualoi 22 October 2019-08:22 64.81
Bualoi 22 October 2019-20:30 56.63
Bualoi 24 October 2019-08:00 56.73

3. Methodology
3.1. Definition of Holland B Parameter for Sea Surface Wind Field

To develop the model of Holland B parameter, this study considers the TC central
pressure difference (∆P = PnPc), RMW, latitude (∅), motion speed (Vstorm) and intensity
change rate (∂pc/∂t) as alternative independent variables. Among them, the value of
environmental pressure Pn is defined as 1010 hPa (the research basin is considered to be
the NWP). Although Pn is best used as a variable, no corresponding Pn value exists in most
best-track datasets. Thus, using Pn as a fixed value for different basins is also helpful for
the convenience of subsequent model application. In addition, other alternative variables
can be obtained directly or calculated indirectly from the JTWC best-track dataset.

Holland [14] combined Equation (8) with the ideal gas state equation and deduced
the Holland B parameter Bs, which is directly related to the sea surface wind field.

Bs =
Vmax

2PRMWe
∆PRTvs

(9)

where Vmax is the MWS, PRMW is the sea surface pressure at the RMW, e is the base of the
natural logarithm function, ∆P is the difference between environmental pressure Pn and
TC central pressure Pc , R is a general gas constant and Tvs is a virtual temperature at the
height of 10 m in the maximum wind region. The relationship of PRMW can be deduced by
Formula (6).

PRMW = Pc + ∆P/3.7 (10)
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The zonal variation of virtual sea surface temperature (SST) can be approximated by
the following equations:

Tvs =
Ts + 273.15
1 + 0.81qm

(11)

Ts= 28 − 3(ϕ− 10)/20 (12)

qm = 0.9
3.802
Prmw

e17.67Ts/(243.5+Ts) (13)

where Ts is the sea surface air temperature (°C) and qm is the steam pressure when the
relative humidity is assumed to be 90%. Among them, Ts is an approximate relationship
about latitude obtained by analyzing the SST in the hurricane season. However, the error
between the use of this relationship and the use of actual SST observations is small and
thus can be ignored. Moreover, if the actual SST data can be obtained, it can be replaced by
Ts = SST − 1.

In this study, the Bs values calculated by combining the selected 80% JTWC TC best-
track dataset with Equation (9) are first used as the initial observation values of the Holland
B parameter. Then, a sensitivity analysis is conducted between the observed values and
each alternative, independent variable. In accordance with the sensitivity analysis results
and previous research experience, some Holland B parameter models are established.
Lastly, the models are verified and analyzed by the Bs values calculated by the remaining
20% JTWC dataset and the optimal model is obtained by comparison.

3.2. Backpropagation Neural Network

Given that the Holland Bs parameter models established by predecessors are linear,
only a few models consider the quadratic fitting between Bs and central pressure difference.
However, a complicated nonlinear relationship exists between Bs parameter and central
pressure. Figure 4 shows the relationship between central pressure and Bs parameter
calculated by training data and testing data. In addition to three points with Bs values
greater than two in Figure 4a, we also find that the overall distribution of the Bs parameter
of the two groups of data is similar. However, when the central pressure is greater than
940 hPa, the distribution of points with warm colors (representing more data points) is
relatively concentrated and many points with cold colors (representing fewer data points)
remain relatively discrete, as clearly shown in Figure 4a. When the central pressure is less
than 940 hPa, the distribution of Bs values in Figure 4a displays an evident upper and lower
bifurcation phenomenon. Therefore, linear regression alone cannot capture the complex
relationship between Bs and the alternative variables. Compared with the traditional linear
regression method, a BP neural network can deal with nonlinear mapping problems and
simulate approximation for any function to establish the complex nonlinear relationship
between Bs and the alternative independent variables.

Here, we adopt the BP neural network, refer to the sensitivity analysis results in
Section 4.1 and previous research results (see Section 1) and then consider the construction
of the sea surface wind field Holland B parameter Bs model under the following conditions:
(1) only considering the central pressure difference (∆P = Pn − Pc) as input; (2) considering
the central pressure difference and latitude (∅) as input; (3) considering the center pressure
difference and the RMW as input; (4) considering the center pressure difference, latitude
and RMW as input; (5) considering the center pressure difference, latitude, RMW and
translation speed (Vstorm) as input; (6) considering the center pressure difference, latitude,
RMW, translation speed and intensity change rate (∂pc/∂t) as input. The Newff function in
MATLAB is used to customize the network. Figure 5 shows the topology of the BP neural
network, which consists of an input layer, a hidden layer and an output layer. In accordance
with the above six configurations, the number of input parameters is determined. For each
case, we decide the number of hidden layers and the number of each hidden layer neurons
by trial and error to decide the optimal network structure. The Levenberg–Marquardt
method is used to train the network, the tangent Sigmoid function is adopted to transfer
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the nodes and the performance analysis function is the mean square error performance
analysis function. The optimal combination of BP neural networks for each case is given in
Table 3. The result of the network output layer is the Bs value.
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Table 3. Optimal combination of input variables, number of hidden layers and number of neurons in each hidden layer for
each scheme.

Scheme Input Variables Number of Hidden Layers Number of Neurons in Each
Hidden Layer

Network-1 ∆P 2 17, 12
Network-2 ∆P, ∅ 2 12, 19
Network-3 ∆P, RMW 2 19, 11
Network-4 ∆P, RMW, ∅ 3 1, 18, 17
Network-5 ∆P, RMW, ∅,Vstorm 3 1, 20, 13
Network-6 ∆P, RMW, ∅,Vstorm, ∂pc/∂t 3 12, 11, 3
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4. Results
4.1. Parameter Sensitivity Analysis

In accordance with previous studies and discussion [6–20], the Holland B parameter
may be related to the TC central pressure difference (∆P = Pn − Pc), RMW, latitude (∅),
translation speed (Vstorm) and intensity change rate (∂pc/∂t). The sensitivity analysis
results of the Bs values calculated by the training data and the above five parameters are
shown in Figure 6. The data represented in Figure 6a show that the Bs parameter increases
significantly with the increase in ∆P. Moreover, the results in Figure 6b show that the Bs
values decrease with the increase in RMW. In addition, no obvious correlation is found
between the Bs parameter and ∅ , Vstorm and ∂pc/∂t (Figure 6c–e). Although the variance
contribution of the latter three factors is not large, for integrity, we still consider these three
variables in the construction of our models in view of the existing models.
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and run each network 1000 times according to the optimal network structure under each 

Figure 6. Holland Bs parameter versus (a) TC central pressure difference (∆P = PnPc), (b) RMW, (c) latitude of the TC
center (∅), (d) TC translation speed (Vstorm) and (e) TC intensity change rate (∂pc/∂t) for the training data. The formula of
the best fitting line of each independent variable and the square of the correlation coefficient (R2) are marked at the top of
each panel. The color bar represents the probability density estimate of each point.

4.2. Validation of Neural Network Results

For six variable input schemes, this study determines the best network structure for
each scheme by using the trial and error method (see Section 3.2). We use the training
data and run each network 1000 times according to the optimal network structure under
each scheme. Given that the initial weights and thresholds are randomly assigned when
the network runs every time, 1000 networks are obtained for each scheme. Then, the
performance of these networks is evaluated by the deviation, root mean square error
(RMSE) and correlation coefficient to select the network with the best performance under
each scheme. Lastly, for all schemes, a total of six networks are obtained. Figure 7 shows
the comparison between the Bs values obtained by using these six networks and the Bs
values calculated directly from the testing data. Figure 7 shows that the deviations of the
Bs values simulated by six networks are relatively close, among which the deviations of
Network-1 and Network-6 are the smallest and the absolute values are only 0.001. The
RMSE of the Bs values simulated by Network-3, Network-4, Network-5 and Network-6 is
0.11 (Figure 7c–f); that of the Bs values simulated by Network-1 is the smallest at only 0.10
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(Figure 7a); that of the Bs values simulated by Network- 2 is the largest at 0.12 (Figure 7b).
In addition, the correlation coefficients of the Bs values simulated by the six networks are
not significantly different; the correlation coefficient of Network-1 is the largest at 0.92,
which indicates that the model can explain 84.6% of the true Bs observations.
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Although the six networks in each evaluation index have the minimal difference, the
indicators of Network-1 perform best. In other words, scheme 1, which only considers
the TC center pressure difference as input, can simulate the Bs values best. Except for a
few points with colder colors that are relatively discrete, the points with warmer colors in
Figure 7a are mainly concentrated near the diagonal. The scatter diagram distributions of
other schemes are relatively more discrete than that of scheme 1, especially for Network-2,
Network-3 and Network-6. When the Bs value is greater than 1.4, these three scatter
diagram distributions also exhibit a pronounced bifurcation phenomenon. These situations
indicate that the introduction of four other variables in addition to the central pressure
difference cannot improve the final network simulation results and even some schemes
significantly increase the error (Network-2 shown in Figure 7b). Moreover, the distribution
trends of some points with colder colors in Figure 7a are relatively dispersive and are not
well captured by the neural network. The reason for this part of the model error may come
from some factors, such as whether other important influencing variables have not been
considered in the establishment of the model (e.g., the impact of environmental vertical
wind shear [24]), the instantaneous change in TC intensity, or other factors that affect the
MWS but cannot be introduced into the model (e.g., the blocking high pressure [25]).

4.3. Application to Wind Pressure Model

To test whether the constructed Bs neural network can be applied to the existing wind
pressure model, this study combines the above six Bs neural networks with Equation (8)
to obtain the corresponding sea surface MWS data sequence and compares it with the
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MWS data of JTWC. Figure 8 shows the comparison between the MWS simulated by the
six Bs neural networks combined with Equation (8) and the MWS of JTWC. As shown
in Figure 8, the correlation coefficients between the simulated MWS of six networks and
the MWS of JTWC are as high as 0.99, which can explain more than 98.0% of the data
changes of the MWS values of JTWC. Otherwise, their deviations and RMSEs are close and
within a reasonable range. Network-1 has the minimum RMSE, which is only 1.61 m/s
and Network-6 has the minimum deviation, which is only 0.01 m/s. Furthermore, when
the JTWC wind speed is less than 50.9 m/s (below the super typhoon grade), the scatter
distribution of the six networks, whose points are concentrated and distributed near the
diagonal, is basically consistent. Moreover, when the JTWC wind speed is greater than
51 m/s (super typhoon grade), the MWS distributions of Network-2, Network-3 and
Network-6 (Figure 8b,c,f) are discrete compared with the results of Network-1, Network-4
and Network-5 (Figure 8a,d,e).
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Figures 7 and 8 reveal that Network-1 can simulate the value of Bs well and the
ideal simulated MWS value can be obtained by incorporating Equation (8). However, the
influence of latitude (∅), translation speed (Vstorm) and intensity change rate (∂pc/∂t) in-
troduced by referring to previous studies [6–20] does not contribute much to the simulation
results of Bs (Network-2, 4, 5 and 6), which is consistent with the results of the sensitivity
analysis (Figure 6). Although Bs shows a significant decreasing trend with the increase in
RMW, it does not show improvement after introducing RMW into the network (Network-3
shown in Figure 7c). Figure 9 represents the relationship between RMW and the central
pressure difference in the training data. With the increasing RMW especially for 10–80
km, central pressure difference has a marked decreasing trend. Therefore, on the basis of
the introduction of the TC central pressure to the network, the introduction of the RMW
may develop an artificial relationship in the model [20]. Therefore, this study believes that
Network-1 can be chosen to simulate the Bs value when considering the performance and
convenience of the neural network.
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Figure 9. RMW versus TC central pressure difference(∆P = PnPc) in the training data. Red bars stand
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4.4. Comparison with Our Statistical Models

To compare the trained neural network in this study with the statistical model, we
first refer to the six schemes in Section 3.2 and the formula of Holland08 ((9) in Table 1).
Then, in consideration of the quadratic term of the central pressure difference (∆P2),
six corresponding statistical models of Bs are fitted. Table 4 shows the expressions of each
Bs statistical model.

Table 4. Six statistical model expressions of the Bs parameter considering the combination of different independent variables.

Serial Number Fitted Bs Expression

(1) Bs = −0.19155∆P2 + 0.50523∆P + 0.08252
(2) Bs = −0.20777∆P2 + 0.51748∆P − 0.02491∅+ 0.09174
(3) Bs = −0.14507∆P2 + 0.45179∆P − 0.04559RMW + 0.10399
(4) Bs = −0.1624∆P2 + 0.46668∆P − 0.0411RMW − 0.01959∅+ 0.10913

(5) Bs = −0.16394∆P2 + 0.46773∆P − 0.04072RMW − 0.02178∅+
0.01389Vstorm + 0.10699

(6) Bs = −0.16475∆P2 + 0.46818∆P − 0.04068RMW − 0.02261∅+ 0.01372Vstorm + 0.00465 ∂Pc
∂t + 0.10478

To verify the significance of the fitted Bs relationship, this study tests the above
six statistical models through the Bs values calculated by the testing data. Figure 10
displays the comparison between the simulated Bs values based on the equations in Table 4
and the Bs values directly calculated from JTWC. Figure 10 shows that the deviations of Bs
values simulated by the six statistical models are almost the same and the absolute values
range from 0.001 to 0.003. In addition, their RMSE and correlation coefficient (0.13 and
0.87, respectively) are consistent, indicating that the model can explain 75.6% of the real
Bs observations. The results of the statistical models also show that the central pressure
difference is the most important influencing factor and the introduction of other variables
does not significantly improve the model results. Nevertheless, for all the six statistical
models, when the Bs value is greater than 1.2, a bifurcation phenomenon occurs in the
scatter distribution, which corresponds to the actual distribution of Bs in Figure 4; this
finding indicates that the above statistical models cannot solve the divergence situation in
the actual Bs value distribution. By contrast, Figure 7 reveals that, in addition to Network-
2, 3 and 6 (Figure 7b,c,f), the results of the other three networks (Network-1, 4 and 5
shown in Figure 7a,d,e) are good enough to improve the distribution of original data in the
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presence of the bifurcation phenomenon when the Bs value is large; this result indicates
the superiority of the BP neural network in solving nonlinear problems.
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4.5. Comparison with Other Statistical Models

In the first section of this paper, the statistical models of B or Bs parameter proposed
by various scholars for different basins were summarized (Table 1). Lin et al. [16] and
Li et al. [17] considered the model of Vickery [13] the most suitable for the NWP open
water by comparison. In addition, the Bs statistical model proposed by Fang et al. [20] can
be applied to the NWP open water. By contrast, several other B or Bs statistical models of
the NWP are mainly applicable to the coastal areas of China; thus, they are not used for
comparison in this study.

Figure 11 shows the comparison between the Bs values simulated by each model
using the testing data and the Bs values calculated directly from the testing data. Figure 11
shows that except for the Vickery model ((8) in Table 1), the slopes of the scatter plots of
the other three models are consistent with the diagonal. Therefore, although the Vickery
model is more suitable for the NWP than some other models, its error is still larger than
that of the Bs model obtained directly from the NWP data. For the Fang2020 model ((13) in
Table 1), the overall simulated values are significantly large, which may be due to the fact
that the Fang2020 model is fitted by the best-track data of CMA and the TC intensity in
the best-track data of each agency has deviations [26]. However, the overall slope is still
basically consistent with the diagonal; thus, the error can be ignored when comparing. In
addition, when the Bs value is greater than 1.2, the scatter distribution of the Fang2020
model exhibits a bifurcation phenomenon, which is consistent with the statistical model we
obtained above ((1) in Table 4). Therefore, the BP neural network constructed in this study
(Network-1 shown in Figures 7a and 11a) can well improve the nonlinear distribution of Bs
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values that cannot be described by traditional statistical methods and thus can simulate the
values of Bs parameter accurately.
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by (a) the BP neural network (Network-1 shown in Figures 7a and 11a), (b) the statistical model ((1) in Table 4), (c) the
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5. Discussion

Equations (2) (AH77 model) and (4) (KZ07 model) (mentioned in Section 1) are two
wind pressure models suitable for the NWP. To test the applicability of the proposed Bs
neural network, we use the two existing wind pressure models above and the constructed
neural network (Network-1) and statistical model ((1) in Table 4) to simulate the MWS of
TCs and compare the performance of these four models.

Figure 12 compares the MWS simulated by these four models with that of JTWC.
Figure 12a shows that the results of Network-1 have relatively minimum deviation and
RMSE, which are only 0.06 and 1.61 m/s, respectively. When the MWS is greater than
51 m/s, the scatter points on Figure 12a remain closely distributed around the diagonal,
whereas for the other three models, the distribution of the scatter points obtained by the
statistical model shows an up-and-down bifurcation phenomenon (Figure 12b). In addition,
the AH77 model considerably underestimates the simulated wind speed (Figure 12c),
whereas the KZ07 model overestimates it (Figure 12d). When the wind speed is less than
50.9 m/s, the four models’ scatter plot distributions are close. Accordingly, we raise the
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following question: “Is the improvement of the neural network in this study mainly for the
simulation results under high wind speed (super typhoon grade)?”
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Figure 12. Comparison results between the MWS of JTWC in the testing data and the MWS simulated
by (a) the BP neural network (Network-1) combined with Equation (8), (b) the statistical model ((1)
in Table 4) combined with Equation (8), (c) the AH77 model (Equation (2)) and (d) the KZ07 model
(Equation (4)). The abscissa stands for the MWS from JTWC and the ordinate is the simulated MWS.
The number of samples (N), deviation (Bias) and RMSE of each comparison result are marked at the
top of each panel. The color bar represents the probability density estimate of each point.

To explore this problem, the testing data is divided into two groups: one group com-
prising 303 samples with a wind speed greater than 51 m/s and another group comprising
915 samples with an intensity of less than 50.9 m/s. Then, the BP neural network (Network-
1), AH77 model and KZ07 model are used to simulate the MWS of the two groups and the
MWS of JTWC is compared. Figure 13 shows the comparison between the MWS of the
two groups simulated by these three models and that of JTWC. As shown in Figure 13a–c,
when simulating the MWS of TCs with super typhoon grade, the difference between the
three models is evident. The simulation value of the AH77 model is significantly underesti-
mated and the deviation is −4.76 m/s, whereas the simulation value of the KZ07 model is
considerably overestimated (2.53 m/s). Compared with them, the deviation between the
MWS simulated by Network-1 and the real value is minimal (i.e., only 0.14 m/s), showing
good simulation ability. These results suggest that Network-1 can significantly improve
the MWS underestimation and overestimation of the AH77 model and KZ07 model for
super typhoons. For the weak intensity group in Figure 13d–f, the deviations and RMSEs
of the three models are relatively close and the overall scatter distribution is similar. The
bias and RMSE of Network-1 are slightly less than those from the other two models.
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To test the ability of the Bs neural network (Network-1) in simulating TCs with super
typhoon grade, we select a total of 48 SMAP sea surface wind field data, including 26 super
typhoons from 2015 to 2019 (Table 2) and extracted the MWS of each cyclone for comparison
with the simulated wind speed. Figure 14 shows the comparison between the MWS of
super typhoons from SMAP and that simulated by Network-1 and the AH77 and KZ07
models. Figure 14a–c show that the RMSE of the three simulation results are relatively close
(about 6 m/s). Similar to the results in Figure 13, Network-1 has a minimum deviation
(0.89 m/s), whereas the AH77 and KZ07 models underestimate and overestimate the MWS
of super typhoons, respectively. Their deviations are −4.53 and 2.56 m/s, indicating that
Network-1 can well improve the overestimation and underestimation of the previous wind
pressure models when simulating the MWS of super typhoons. However, despite the small
deviation between the neural network results and the SMAP wind speed at this time, the
RMSE is still 6.09 m/s. The reasons for this part of the error may come from the following
aspects: (1) The best-track data itself have uncertainties and its central pressure information
may have errors. (2) The best-track data are recorded once in six hours and the intensity of
TCs may have instantaneous changes. (3) Given the influence of SMAP spatial resolution,
when the TC intensity is strong and the typhoon eye is relatively small, SMAP may not
be able to distinguish the typhoon eye. The MWS of the eyewall may be reduced by the
low-value area of the typhoon center wind speed because of the spatial average of the
SMAP wind speed products.
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6. Conclusions

In this study, a new Holland B parameter Bs model for TC surface wind field is
developed on the basis of the BP neural network and the JTWC best-track dataset of the
NWP from 2001 to 2018. First, 80% of the data are randomly selected and used as the
training data and the optimal networks under different input schemes are constructed in
consideration of the TC central pressure difference, RMW, latitude, TC translation speed
and intensity change rate. Then, the remaining 20% of the data are used to evaluate each
network. The main conclusions are as follows:

• Comparing the simulation results of the network constructed by different input
schemes for the testing data reveals that the neural network only considers inputting
TC center pressure difference has the best performance. The deviation and RMSE
of Bs are only −0.001 and 0.10. The MWS of TCs calculated by the constructed Bs
neural network combined with the wind pressure model is compared with the MWS
of JTWC. The result also shows that the neural network that only considers TC center
pressure difference performs best and the deviation and RMSE of MWS are only 0.06
and 1.61 m/s.

• The results of the statistical models established in this study, also show that the TC
central pressure difference is the most important factor to Bs and the introduction of
other variables does not significantly improve the model results. When the Bs value is
greater than 1.2, the simulation results of these statistical models exhibit significant
underestimation or overestimation. The Fang2020 model also represents a similar
phenomenon when simulating Bs. However, the Bs neural network in this study can
significantly improve the underestimation and overestimation, indicating that the BP
neural network can capture the nonlinear distribution of the Bs values that cannot be
described by traditional statistical methods and obtain a more accurate value of the
Bs parameter.

• To study the details of the model in different typhoon cases, we divide the testing
data into super typhoon group and nonsuper typhoon group according to typhoon
intensity. For the super typhoon group, the MWS simulated by the two existing
wind pressure models, the AH77 model and the KZ07 model is underestimated and
overestimated. The deviations are −4.76 and 2.53 m/s, whereas the deviation of
Bs neural network is appropriate (0.14 m/s). For the nonsuper typhoon group, the
performance gap of the three models is not so remarkable. It shows that our Bs neural
network has more advantages in simulating the MWS of super typhoons.

• The MWS of super typhoons observed by the spaceborne microwave radiometer
SMAP is also used to verify the network in detail. The experimental results show
that the simulated MWS of the AH77 model is significantly underestimated, with a
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deviation of −4.53 m/s and the simulated MWS of the KZ07 model is overestimated,
with a deviation is 2.56 m/s. Our Bs neural network, whose deviation is only 0.89 m/s,
also improves the underestimation and overestimation phenomena.

The Bs neural network established in this study only needs to input the TC central
pressure difference to simulate the sea surface wind field Holland B parameter Bs accurately.
After the wind pressure model has been combined, the Bs neural network can simulate the
MWS of super typhoons better than the existing wind pressure models. However, given that
the data used in this study exclude landing TCs, the model is mainly suitable for open water.
Building a more accurate Bs model for coastal areas is one of our future considerations.
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