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Abstract: Accurate and timely knowledge of crop phenology assists in planning and/or triggering 
appropriate farming activities. The multiple Polarimetric Synthetic Aperture Radar (PolSAR) tech-
nique shows great potential in crop phenology retrieval for its characterizations, such as short revisit 
time, all-weather monitoring and sensitivity to vegetation structure. This study aims to explore the 
potential of averaged Stokes-related parameters derived from multiple PolSAR data in oilseed rape 
phenology identification. In this study, the averaged Stokes-related parameters were first computed 
by two different wave polarimetric states. Then, the two groups of averaged Stokes-related param-
eters were generated and applied for analyzing averaged Stokes-related parameter sensitivity to 
oilseed rape phenology changes. At last, decision tree (DT) algorithms trained using 60% of the data 
were used for oilseed rape phenological stage classification. Four Stokes parameters ( 0g , 1g , 2g and

3g ) and eight sub parameters (degree of polarizationm , entropyH , ellipticity angle χ , orientation 
angleϕ, degree of linear polarization D o lp , degree of circular polarization Docp , linear polariza-
tion ratio Lpr  and circular polarization ratio Cpr ) were extracted from a multi-temporal RA-
DARSAT-2 dataset acquired during the whole oilseed rape growth cycle in 2013. Their sensitivities 
to oilseed rape phenology were analyzed versus five main rape phenology stages. In two groups 
(two different wave polarimetric states) of this study, 0g , 1g , 2g , 3g ,m , H , D o lp  and Lpr  showed 
high sensitivity to oilseed rape growth stages while χ ,ϕ, Docp  and Cpr showed good performance 
for phenology classification in previous studies, which were quite noisy during the whole oilseed 
rape growth circle and showed unobvious sensitivity to the crop’s phenology change. The DT algo-
rithms performed well in oilseed rape phenological stage identification. The results were verified 
at the parcel level with left 40% of the point dataset. Five phenology intervals of oilseed rape were 
identified with no more than three parameters by simple but robust decision tree algorithm groups. 
The identified phenology stages agree well with the ground measurements; the overall identifica-
tion accuracies were 71.18% and 79.71%, respectively. For each growth stage, the best performance 
occurred at stage S1 with the accuracy of 95.65% for Group 1 and 94.23% for Group 2, and the worst 
performance occurred at stage S3 and S5 with the values around 60%. Most of the classification 
errors may resulted from the indistinguishability of S3 and S5 using Stokes-related parameters. 
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1. Introduction 
Knowledge of crop phenology is significant to precision farming for planning or trig-

gering cultivation practice such as irrigation, fertilization and so on. Timely and accurate 
knowledge of crop phenology is crucial for government organizations giving precise crop 
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productivity forecasts and making correct agriculture policy decisions [1–3]. Remote sens-
ing data, with the capability to monitor crop growth conditions by spatial-temporal image 
acquiring, have been used for large-scale crop phenology estimation for decades. This def-
initely requires the frequent acquisition of images over the entire crop growth cycle or at 
least at key growth stages. Optical sensors have the ability to identify several crop growth 
stages but are limited in data coverage at some key growth stages due to haze, cloud and 
rain impeding its effective data acquisition [4,5]. Synthetic aperture radar (SAR) sensors, 
with the capability of all-weather data acquiring, penetrating deeper into vegetation than 
optical sensors, are sensitive to the shape, structure and dielectric constant of vegetation 
scatterers, have the capability to provide a better temporal data coverage and crop struc-
ture interpretation than optical sensors. Polarimetric synthetic aperture radar (PolSAR) 
sensors, given not only their day/night and all-weather monitoring capabilities but also 
their capabilities to detect target shape/scattering orientation changes, seem sensitive to 
vegetation structure and show great potentiality in crop phenology retrieval and attract 
lots of interest [3,4,6]. 

Many studies have exploited the capabilities of polarimetric parameters in crop phe-
nology estimation [1–5,7–9]. The potential of polarimetric SAR data for crop phenology 
monitoring has been well demonstrated in these studies. For example, a large polarimetric 
SAR feature sets were generated for crop phenology estimation, including backscattering 
coefficients and their ratios [1,2,8], coherence between different polarimetric channels 
[1,2,7,8], phase difference between polarimetric channels [1,2,7,8] and decomposition pa-
rameters and developed parameters from different polarimetric decomposition algo-
rithms [3–5,9]. Since SAR sensors, especially polarimetric SAR sensors have a relatively 
low temporal resolution than optical sensors, in several previous studies, crop phenology 
estimations using SAR data had been approached as a classification problem. Then, the 
questions such as how many stages can be identified and how should the optimal bound-
aries of the stages been determined were discussed [8,9]. In addition, dynamic filtering 
algorithms including Kalman filtering and Particle filtering approaches were developed 
to estimate crop phenology. These algorithms determined crop phenology along a numer-
ical scale rather than phenology intervals in classification methods. Transition matrix con-
struction is the key of using dynamic filtering algorithms for phenology estimation [5,7]. 
As the revisit time intervals of the polarimetric SAR sensors decrease, machine learning 
algorithms such as random forest (RF)[3], K-Nearest Neighbor (KNN)[10], Support Vector 
Machine (SVM)[8], Complex Wishart Classifier[11] and the Multi-class relevant vector 
machine (mRVM) [9] are applied in crop phenology estimation. 

Although previous studies indicate that crop phenology could be retrieved from po-
larimetric parameters, most of the extracted polarimetric parameters focus on the target 
scattering mechanism but ignore the characterizations of the scattering waves, which also 
show better performance in crop monitoring [12–14]. Moreover, parameters extracted ac-
cording to scattering wave characterizations could not only be used for fully polarimetric 
data but also for dual-polarimetric data, especially in the period when we can utilize freely 
accessible dual-pol SAR datasets from the Sentinel-1 mission and more compact polari-
metric datasets from RADARSAT Constellation Mission (RCM) and Advanced Land Ob-
serving Satellite 2 and Phased Array type L-band Synthetic Aperture Rader 2 (ALOS-2 
PALSAR-2). Moreover, these datasets are also effective complement datasets for the low 
temporal resolution of present quad-polarimetric SAR data acquisition. 

Stokes parameters and their developed parameters, which describe the scattering 
powers directly, are more powerful for dealing with the depolarization information than 
the decomposition parameters extracted from coherence/covariance （ G / T ） matrix 
since they can describe the partially polarized scatter based on Born–Wolf wave decom-
position theory [15]. Several recent studies on compact polarimetric application utilized 
these parameters for crop biophysical parameter estimation, and satisfactory results have 
been achieved for rice, rape oilseed growth monitoring and rice phenology estimation 
[2,16–18]. Since each Stokes vector is related to a polarization state of the incident wave, 
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the averaged Stokes parameters with different assumed incident wave states can provide 
more information for crop monitoring. Previous studies focused more on compact polar-
ization, which also uses the Stokes-related parameters, but it only has one mode polariza-
tion state. Other polarization states, which can also be described using averaged Stokes 
parameters, were not fully explored, especially for crop phenological stage identification 
[17,18]. In this study, the concept of averaged Stokes parameters developed based both on 
compact polarimetric SAR parameter extraction theorem and Poincare sphere were pro-
posed and exploited to estimate rape oilseed phenological stages. We assess the perfor-
mance of the averaged Stokes-related parameters in oilseed phenological stages over the 
joint experiment for the crop monitoring test site in Hailar of Inner Mongolia, China. The 
averaged Stokes-related theory was interpreted and analyzed in this study. Phenological 
stage estimation was thought as a classification problem in this study and decision tree 
(DT) methods were selected as the classifiers. 

2. Materials and Method 
2.1. Study Area and Ground Campaign 

The study was carried out over the parts of Shangkuli farmland located in Hailar of 
Inner Mongolia, Northeast China (Figure 1). The land is relatively flat with slopes less 
than 3°. Oilseed rape and wheat constituted the major crops while other minor crops such 
as soybean was also planted in a few fields. Rape is cultivated once a year during the May 
to August season. The cultivation period lasts about 115–140 days; among the 85 samples 
data used in this paper, the earliest sowing date of the oilseed rape was on 8 May 2013, 
and the latest sowing date was on 31 May 2013. Readers are referred to our previous work 
[16] for further description of the terrain and climate details of the study area. 

 
Figure 1. The location of study site and the oilseed rape parcels distribution in it. 

A complete description of the ground measurement methodologies was provided in 
[16]. We measured several crop biophysical parameters including leaf area index (LAI), 
plant height, surface soil moisture, above-ground biomass (fresh and dry weight per 
square meter) and plant water content. These parameters were collected synchronous 
with satellite overpass within a lag of no more than one day of the date that each RADAR-
SAT-2 data acquired. In each campaign, 11–14 representative oilseed rape fields were sur-
veyed. For each field, the sowing date was recorded and its phenology was described 
according to the BBCH-scale developed by Weber and Bleholder [19]. The field states were 
recorded by GPS tagged photos. 

2.2. SAR Data Set 
During the oilseed rape cultivation period in 2013, five full polarization RADARSAT-

2 data were acquired from May 23 to August 27, imaging the entire oilseed rape pheno-
logical cycle. Five RADARSAT-2 SLC (Single Look Complex) images taken on May 23, 
June 16, July 10, August 3 and August 27, respectively, were used in this study. All of the 
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images were collected with the same mode, beam, incident angle and orbit pass to reduce 
the influence of sensor parameters. Precipitation and temperature were recorded by the 
in- situ weather station to provide meteorological conditions for image collections as well 
as for field campaigns. The detailed information of image acquisition parameters, precip-
itation and temperature information can be found in [16,17]. 

2.3. Definition of Phenological Stages 
In this study, oilseed rape phenology estimation is thought of as a classification prob-

lem. Each phenological stage is considered as an individual class. Each class of oilseed 
rape phenology is defined on the base of the crop appearance inside its life cycle and also 
the SAR data available to date. The appearance of oilseed rape results from its morpho-
logical and physiological development. By considering the appearance within one stage 
does not change much but differs strongly between two different stages, the phenology of 
oilseed rape in this study is divided into 5 stages. The BBCH-scale developed by Weber 
and Bleiholder (1990) is used to code the plant’s appearance at each phenological stage. 
However, BBCH code, which is defined by a small set of integer values specific for each 
crop group, is unsuitable for use as the state variable in crop growth stage estimation [5]. 
Thanks to the relationship between day after sowing (DAS), growing degree days (GDD) 
and crop phenological stages [5,9], DAS is selected as the proxy variable of oilseed rape 
phenology to describe the temporal profile of polarimetric SAR information during the 
oilseed rape entire growing season. The phenological stages, their corresponding BBCH-
codes, DAS and plant images taken from Weber and Bleiholder (1990) and taken at each 
field campaign time are illustrated in Figure 2.  

 
Figure 2. Oilseed rape phenological stages, their corresponding BBCH-codes, DAS, plant images taken from Weber and 
Bleiholder (1990) and field photos taken during field campaign. 

2.4. Analysis of Phenological Stages 
In this study, five main phenological stages were defined for the entire growth cycle 

of oilseed rape. At each stage of them, oilseed rape has particular features and aspects of 
the plant development as the change of DAS. At the phase of Stage 1, when the first RA-
DARSAT-2 image was acquired, most oilseed rape fields had just been sown or were at 
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the beginning of crop emergence. This stage is characterized by development from dry 
seed to hypocotyl with cotyledons growing towards soil surface. The next main stage 
(Stage 2) starts from plant emergence and ends with fully developed plants. At first, cot-
yledons are completely unfolded; then the first leaf is clearly visible and additional leaves 
are unfolded up. Following side shoots begin to develop and 9 or more side shoots are 
developed and detectable at the end of this stage. The phase of Stage 3 comprises a wide 
range of plant conditions including stem elongation with extended internodes, flower 
buds presented from being enclosed by leaves to first petals being visible, first flowers 
opening to the end of flowering. At stage 4, oilseed rape begins to pod and it is character-
ized by increasing pod size and number. Finally, Stage 5, including ripening and senes-
cence, also constitutes a period with many changes in the plants. Oilseeds appear green 
and pod cavities become filling. Then, 10% oilseeds appear dark and hard, pods become 
ripe until nearly all pods ripe, seeds dark and hard. At the end of this stage, on the moment 
of harvest, water content of the plants changes up and down, the plants become dead and 
dry, their structure is mostly random and number of leaves decrease. 

2.5. Extraction of Averaged Stokes-Related Parameters 
2.5.1. Rationale 

The objective of selecting Stokes-related parameters is to generate a group of unbi-
ased polarimetric characterizations of the observed scene. Radar generates the transmitted 
wave and backscattered wave is a quasi-monochromatic partially polarized electromag-
netic wave which is backscattered from the radar irradiation scene. This kind electromag-
netic wave could be represented by four members from the Stokes vector containing all of 
the available polarimetric and un-polarimetric information. We also call these four mem-
bers Stokes parameters [20–22]. The names of the Stokes parameters vary depending on 
the specific discipline preferred by their user. In this study, their forms are shown as 
( )0 1 2 3g g g g  in equation (1), where iiJ  means the member of Jones vectors. For the 
detail information about the equation, readers are referred to the literature [15,22]. 

( )

0

1

2

3

+
-
+
-

HH VV

HH VV

HV VH

HV VH

J Jg
J Jg
J Jg
j J Jg

  
  
  = =   
  
    

G  (1)

The four members were determined from information conveyed in the observed 
filed. Each of the Stokes parameters is an averaged quantity. The first Stokes parameter 

0g  is directly proportional to the power density being carried by the backscattered wave. 
It includes the polarized and depolarized backscattered signals. The other three parame-
ters represent the polarized portion of the backscattered wave. The second parameter in-
dicates the tendency of the polarization to be more horizontal or vertical, while the third 
and fourth indicate the ellipticity of the wave’s polarization. The four Stokes parameters 
for a pixel show a polarization state of the backscattered wave and they could be located 
on/in a unit sphere named Poincare sphere geometrically. Since the Stokes parameters are 
based on a wave polarimetry framework, they allow for analyzing the average polariza-
tion state of the backscattered wave. It has the following characters: (1) Stokes parameters 
could be used for extracting depolarization information of a partially polarized wave; (2) 
Stokes parameters could be extracted directly from the 2 × 2 Jones matrix without any 
assumptions; (3) The decomposition expressed by three physical components of the aver-
aged Stokes parameters, i.e., the total scattered intensity 0g , the degree of polarization m  
and the completely polarized wave components ( 1 2 3g g g+ + ) obey the general physical 
laws and avoid the conflict among the physical meaning, uniqueness and completeness. 
Meanwhile, the completely polarized wave components can also be described by several 
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parameters coming from the Poincare sphere, which make the parameters visible to the 
readers. 

The key theory for averaged Stokes-related parameters proposed in this study is the 
“polarization synthesis” based on the four Stokes parameters (Woodhouse, 2006). As we 
know, if a target has a preferred shape or orientation, then differently polarized incident 
waves will result in backscattered echoes, whose polarization state is, in principle, related 
to the target’s shape or orientation. Using four Stokes parameters and polarization syn-
thesis technique, we can simulate the response for any arbitrary combination of transmit 
and receive polarization. Then we can collect the target response at each polarimetric 
states. The polarimetric synthesis procedure is often achieved by multiplication of K  by 
the Stokes vectors g for the transmitted and receive polarizations. K  is the Kennaugh 
matrix, in which the scattered wave is described in the receiving antenna reference frame 
so that both the incident wave and the scattered wave are described from the point of view 
of the antenna. Here, it is given by (2) [23]: 

( ) ( ) ( )

( ) ( ) ( )

( ) ( ) ( )

( ) ( ) ( )

11 22 21
12 13 23

11 22 32
12 23 13

1 2 32
13 23 12

11 22 32
23 13 12

Re Re
2

Re Re
2

Re Re Im
2

Im
2

T T T T T Im T

T T TT T Im T

T T TT T T

T T TIm T Im T T

+ + 
 
 

+ − 
 

=  − + − 
 − + + −
  

K  (2)

In Equation (2), T  is a 3×3 Hermitian matrix; it is also called coherence matrix. The 
backscatter power ( )P  of the target for a given combination of transmitted and received 
ellipticity and orientation angles is given by 

( , , , )r r t t r tP χ φ χ φ g g= K  (3)

where χ and φ are ellipticity angle and orientation angle for the polarimetric ellipse, re-
spectively, the subscript r and t  describe the received and transmitted polarization, re-
spectively. Since the range of 2χ and 2φ  are polar coordinates within a Poincare sphere, 
the synthesized polarization response P , for any given 

rg and 
tg , can be considered as 

an intensity pattern of the target across the sphere. 

2.5.2. Stokes-Related Parameter Calculation from the Four-Member Stokes Parameters 
According Equation (3), the different values of four Stokes parameters and their sub 

parameters such asm , χ  and φ mentioned above describe different polarization states 
of the backscattering wave of the observed target. The averaged Stokes-related parameters 
of several polarization states give more information of the observed target than only one 
polarization state. Among the synthesized polarization, three special polarization states 
were often used. The three polarization states are transmitting with a H linearly polarized 
field and receiving the resulting H and V backscatter components coherently, transmitting 
with right a circular polarized field and receiving the resulting H and V backscatters com-
ponents coherently, and transmitting with a linearly polarized field at 45° and receiving 
the resulting H and V backscatters components coherently. The last two polarization 
states are commonly used as 4π  and HCP  compact polarization [15,22]. HCP  is the 
most effective compact polarization proposed in recent two decades, and many research 
studies confirmed its effectiveness in crop phenology identification [2,18]. Classification 
accuracy acquired by HCP  compact polarization data was proven to be very nearly as 
good as fully polarized data and the difference between them is negligible [22]. However, 
the linear polarization with H or V transmitting but receiving with H and V, the dual 
polarization of which is usually used in classical dual-pol modes, has not been fully ex-
plored with a Stokes-related theorem so far. 
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In this paper, two sets of averaged Stokes-related parameters based on linear polari-
zation were calculated to analyze their potentiality in crop phenology identification. One 
set of averaged Stokes-related parameters was calculated from the linear polarization with 
H transmitting but H and V receiving (Group1), and the other was from the linear polar-
ization with V transmitting but H and V receiving (Group2). The performance of the two 
group-averaged Stokes-related parameters on oilseed rape phenology estimation was pre-
sented here. In this paper, the averaged Stokes-related parameters including the four basic 
Stokes members 0 1 2 3 )( g g g g , the degree of polarization (m ), entropy (H ), ellipticity 
angle ( χ ), orientation angle ( ϕ ), degree of linear polarization ( D o lp ), degree of circular 
polarization ( Docp ), linear polarization ratio ( Lpr ) and circular polarization ratio ( Cpr ) 
were calculated as parameter sets of Group 1 and Group 2, respectively. The physical in-
terpretation of each Stokes-related parameter and their equations are shown in Table 1 
[24,25]. 

2.6. Decision Tree (Dt) Algorithm Training and Validation 
Previous studies, which evaluated the classification performance of the different clas-

sifiers, have reported that the DT classifier provides high accuracy and efficiency classifi-
cation results, especially for the case of nonlinear relationships between features and clas-
ses [1,2]. In this study, a univariate DT with the Gini index attribute is used for distin-
guishing the different phenological stages of oilseed rape. The performance of the DT al-
gorithm relies on the representativeness of the training datasets. In this study, Stokes-re-
lated parameters were computed from each pixel of the parcels and then averaged at par-
cel level according to the value of day after sowing. In total, 85 data points were used for 
DT training and validation. Of this total, we randomly selected 60% of them as training 
data, while the left 40% of the datasets were considered for validation. Since the 60% train-
ing data are randomly selected, the DT functions are more flexible and can produce dif-
ferent classification results, the classification procedure for oilseed rape phenological 
stages estimation were repeated 10 times and the averaged result was selected as the clas-
sification results and terminal accuracy. 

2.7. Oilseed Rape Phenological Stages Estimation Scheme 
The current study aims to explore the potential of averaged Stokes-related parame-

ters in oilseed rape phenological stage identification. Figure 3 shows the flowchart of the 
oilseed rape phenology estimation procedure with averaged Stokes-related parameters. 
At the first step, three groups of Stokes parameters were calculated according to [24] and 
then the one with averaged values were chose for analyzing their response to oilseed rape 
during its entire growth season. In the flowchart, Stokes parameters (1) and Sub parame-
ters (1) are the calculated as 12 Stokes-related parameters from Group1, Stokes parameters 
(2) and Sub parameters (2) are calculated as 12 Stokes-related parameters from Group2 in 
section 2.5.2. Then, the sensitivity analysis was centered on the evolution of the Stokes-
related parameters for the monitored parcels over the entire growth cycle. For each parcel, 
we calculated one averaged observation by averaging performance in the whole area of 
the parcel. Next, all of the analyzed Stokes-related parameters had been computed for all 
of the images and have been averaged by DAS. Finally, the Stokes-related parameters had 
been plotted as a function of DAS. At last, the phenology estimation by exploiting the 
temporal behavior of 12 averaged Stokes parameters were classified by decision tree al-
gorithms. 

In this procedure, Full polarimetric data measured objects in each resolution element 
with 2 2×  complex scattering matrix [ ]S ; it was extracted from the original RADARSAT-
2 SLC images using PolSARpro4.2 toolbox, followed by 5 5×  boxcar filter to moderate 
speckle effects. The incident waves were supposed and used to calculate Stokes parame-
ters by a unit Jones vector through Equation (1), respectively. 
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Table 1. The equation and physical interpretation of each Stokes-related parameter. 

Parame-
ter  

Equation Physical interpretation 

m  3
2

10

1
i

i
m g

g =
=   

m  evaluates the degree of polarized wave within the reflect wave in the object 
scattering scene. When =1m  there is no un-polarized component and the reflect 
wave is then completely polarized. When =0m the polarized component is absent 
and the reflect wave is then completely un-polarized. In all other cases with 
0 1m< < , we say that the reflect wave is partially polarized. 

H  2

2
1

logi i
i

H p p
=

= −  ∗  
H  is an alternative way to characterize the randomness in the scattering scene.

0H =  means completely polarized component, and it will increase monotonically 
toward unity as the depolarized component increases. In contrast, 1H =  means 
the signal is noise-like, which we call completely depolarized wave. 

χ  
3

2 2 2
1 2 3

1 arcsin
2

g

g g g
χ

 
 =
 + + 

 
χ  is closely related to the ellipticity of the scattered wave. Encompassing χ  

we can reconstruct scattering components from dielectric dihedral reflections and 
rough surface because the sign of sin 2χ  is an unambiguous indicator to even and 
odd bounce scatterers. Moreover, the sign of χ  also indicates rotation sense even 

when the radiated electromagnetic wave is not perfectly circularly polarized. 

ϕ  
2

1

1 arctan
2

g
g

ϕ
 

=  
 

 
ϕ  describes the orientation of the strongest linear polarization present in the 

backscattered field. It is also an alternative way to characterize the scattering direc-
tion of the target. It is calculated by 1g  and 2g . 

 DolP  2 2
1 2

0
 DoLP=

g g
mg

+
 

DolP  which is known as cos 2χ  from the Poincare sphere, evaluates the degree 

of linear polarization components in the polarized scattering electromagnetic wave. 
It is obtained by division of linear polarized power and the total scattering power. 

 DocP  3

0
DoCP g

mg
=  

 

DocP , which is known as sin 2χ  from Poincare sphere, evaluates the degree of 

circular components in the scattering electromagnetic wave. It is calculated as the 
ratio between 3g  and 0g . It is often used in m χ−  or m α−  decomposition 

method to distinguish single-bounce and double-bounce scattering components. 
α  is defined as scattering angle of target and equal to / 2π χ− . 

Lpr  0 1

0 1
LPR mg g

mg g
−

=
+

 
Lpr  considers the normalized difference between the total polarized intensity of 

the radar’s backscatter field and the intensity after subtracting vertical components 
from horizontal components. 

Cpr  0 3

0 3
CPR mg g

mg g
−

=
+

 
Cpr  considers the normalized difference between the total polarized intensity of 

the radar’s backscatter field and the intensity of circular polarized wave. 
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Figure 3. Flowchart of oilseed rape phenology retrieval from RADARSAT-2 multi-temporal data 
and DT algorithm. 

3. Results and Discussion 
3.1. Stokes and Child Parameter Response to Rape Phenology 

Twelve key Stokes and their sub parameters are analyzed and presented in the fol-
lowing. They are divided into three main categories as follows according to their physical 
interpretations. 

The original Stokes parameters, including 0g , 1g  , 2g  and 3g were divided as the 
first category. The response of the original averaged Stokes parameters to the advance-
ment of oilseed development was measured by DAS at parcel level. The response of each 
parameter was described by each subplot of Figures 4 and 5. A total of 85 samples are 
graphed in each scatter plot in Figures 4 and 5, the trends of original Stokes parameters of 
Group 1 shown in Figure 4 were similar with the trends of Group 2 shown in Figure 5. 
The trends of 0g , 1g  , 2g  and 3g in Figures 4 and 5 during the whole oilseed growth cycle 
were coincident with the evolution of three growth parameters, biomass, crop height and 
Leaf area index (LAI), which we gave in our previous work [16]. Among the three crop 
growth parameters, the biomass evolution trend shows a best fit for these original Stokes 
parameters. At stage 1, all values of the four Stokes parameters showed lowest and kept 
steady during the entire stage 1, then they began a gently increasing slope at stage 2. They 
showed a gently decreasing trend at stage 3 and form a peak with a sharp slope at stage 4 
and rising to a maximum at approximately DAS = 75. The curve of the scatter plots ended 
in an obvious decrease at stage 5. Although all of the four parameters had a similar trend 
during the whole oilseed rape growth cycle, 0g  showed best performance for oilseed 
rape phenological period response. Among them, 0g  had the highest values during the 
whole growth cycle, its dynamic range were from −22 dB to −12 dB for Group1 and from 
−21 dB to −11 dB for Group2. At stage 1, 0g had the lowest value of in two groups, the 
lower scattering value in this stage may result from the dominated soil scattering since 
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the plant was just sown or emerging through the soil surface with plant heights not ex-
ceeding 5 cm. At stage 2, the values of 0g  were gently increased to −19 dB since the in-
creasing of plant scattering increases with the growth of oilseed rape leaves. Group 1 and 
Group 2 kept increasing around 16 dB at the earlier stage of stage 3 with more leaves 
adding and growing up. At the later stage of stage 3, the values were shown to be gently 
decreasing, which may result from the falling of large leaves at the oilseed rape canopy 
and more soil under the canopy showing up. With the main stem emerging at approxi-
mately DAS = 61, 0g increased to −16 dB then decreased to −10 dB at stage 4 since the 
dihedral response from the main stem and ground surface. At stage 5, the ripening and 
senescing of plants resulted in the falling of leaves and decreasing of water content that 
led to the decreasing of 0g  values around −17 dB in two groups. 1g  showed a smaller 
dynamic range from −23 dB to −14 dB during the whole oilseed rape growth cycle com-
pared with , while the trend of 1g  was similar with 0g . Its tendency was quite differ-
ent with our previous study where the distinction between 0g  and 1g  was obvious. In 
the HCP compact mode, the values of  , 2g  and 3g  showed even poorer performance 
varying with the evolution of plant growth. However, during the whole process of rape 
growth, the values of the Group 1 of Stokes parameters were more aggregated than those 
in the Group 2. 

The performances of 0g  and 2g  agreed well with our previous work [16] on com-
pact polarization data applying in crop growth parameters estimation; however, the re-
sults of 1g  and 3g  were quite different. It was probably explained by the fact that our 
previous research assumed right circular polarization as the transmitting channel, which 
may lead to different backscattering from objects. The potentiality of averaged 0g  for 
land-cover classification was also stated by Shang et al. (2015) in [15]; however, the capa-
bilities of 1g , 2g  and 3g  were left unexplored in their study. 

  

  

Figure 4. Evolution of the Group1 Stokes parameters versus oilseed rape phenology. 

0g

1g
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Figure 5. Evolution of the Group2 Stokes parameters versus oilseed rape phenology. 

3.1.1. Sub Parameters from Poincare-Sphere or Decomposition Methods 
Previous studies on compact polarization applications proved that Stokes sub pa-

rameters were useful for crop mapping and monitoring. Figures 6 and 7 presented the 
evolution of the four more useful sub parameters in both of Group 1 and Group 2 as a 
function of DAS. The four Stokes-related parameters were the degree of polarization (m
), entropy ( H ), ellipticity angle ( χ ) and orientation angle (ϕ ). Among them, m and H  
were two different ways to describe the degree of randomness of target scattering, χ  and 
ϕ  derived from Poincare-sphere were robust choices for describing the shape and orien-
tation of polarized ellipticity. The shape and orientation of polarized ellipticity character-
ized the scattering information of objects in the scattering scene. 

In accordance with Figures 4 and 5, the trends of m , H , χ  and ϕ  in Group 1 and 
Group 2 were also similar. Figures 6a and 7a resampled m  with four different ranges 
during the whole oilseed rape growth cycle: 0.7–0.8 during stage 1 and stage 2 while the 
values from Group 1 were slightly higher than those from Group 2; the values for stage 3 
in the group 1 were 0.5–0.7; while the values for stage 3 in the group 2 were 0.4–0.6, and 
in the group 1, 0.4–0.6 was in stage 4, while in the group 2, 0.5–0.6 was in stage 4 and the 
value of stage 5 in both the first and second groups was around 0.6. Note that low degrees 
of polarization were equivalent with high entropies and vice versa. Entropy in Figures 6b 
and 7b was less than 0.5 during stage 1 and 2 before stem elongation, and increased to 0.7 
at stage 3 with stem elongating but large leaves withering and falling. H  reached its peak 
when it increases around 0.9 and then kept a flat line during the whole stage and stage 5. 
The higher H  values of lower m values in stage 4 and stage 5 may result from the crop 
leaves accumulating, bolts and flowers developing, canopy expanding that lead to greater 
scattering randomness. H  tapered to 0.8 at stage 5 with m  ranging from 0.5 to 0.6 meant 
withering leaves and pods decreased some scattering randomness. The combination of 
the two parameters showed their capability of distinguishing the early phenological stage. 
The findings in our study agreed with [2,17], even though the crops were different in these 
studies. However, compared our previous work on compact polarimetric parameters, the 
range of m  values in this study were quietly different. In this study, the values of Group 
1 ranged from 0.82 to 0.43 and in the Group 2 it ranged from 0.85 to 0.45, while in previous 
works they ranged from 0.7 to 0.25 [16]. m  values in the study of Lopez–Sanchez on rice 
ranged from 0.9 to 0.2 [2]. The phenomenon demonstrated that the average procedure of 
Stokes-related parameters reduced the sensitivity of m values to the crop growth stage 
changes. 

χ  and ϕ  were addressed as robust parameters for classification in previous studies, 
especially χ ,which was used for distinguish odd and even scattering mechanism with 
its negative and positive sign. However, they had poor performance in this study. The 
trends of  and  in Group 1 and Group 2 shown in Figures 6 and 7c,d respectively 
presented the contribution of  and  in different phenological stages. Both of them 
showed small dynamic range during the whole crop growth cycle. For χ  ,the value of 

χ ϕ
χ ϕ
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Group 1 was approximately −0.03°and the value of Group 2 was around 0.12°.For ϕ ,the 
value of group 1 was approximately 0.06°and the value of group 2 was around 0.06°. The 
reason for the small dynamic probably because the assumed transmit was linear polariza-
tion or the averaged values without signs decreased their sensitivity to target scattering. 
In converse with this finding in our study, previous studies showed better evolution per-
formance of χ  versus crop phenology. Note that, χ  parameter, used in previous stud-
ies, was assumed the transmit polarization of circular [2,16,17]. 

  

  

Figure 6. The evolution of m , H , χ  and ϕ  in Group 1 versus rapeseed phenology. 
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Figure 7. The evolution of m , H , χ  and ϕ  in Group 2 versus rapeseed phenology. 

3.1.2. Sub Parameters Related to Linear of Circularity Ratio and Degree 
Dolp , Docp , Lpr  and Cpr  were first published by George Gabriel Stokes for opti-

cal field observation and quantitative measuring. They were first applied in SAR infor-
mation extraction in 2006 by Raney for dual-polarized SAR data [24]. Then, several of 
them were used for compact SAR data applications. In this study, Figures 8 and 9 showed 
the evolution of the four averaged parameters versus DAS. Docp  and Cpr , which had 
better performance in compact SAR data for crop classification and phenology retrieval 
in previous studies, were quite noisy in more parts of the phenological cycle and seemed 
difficult to distinguish oilseed rape growth stages. Conversely,  and  showed 
obvious sensitivity to the evolution of oilseed rape growth stages when their range scales 
were stretched with logarithmic function. Dolp  decreased as the oilseed rape grows be-
cause of the increased non-linear polarization components from volume scattering of de-
veloped oilseed rape. Then, it gently increased at stage 4 with the contribution of even 
scattering mechanism caused by elongated stem and falling crop leaves. Lpr  kept in-
creasing during almost all of the crop growth cycle. The dynamic range varied with the 
change of each growth stage. The finding agreed with [6] in which HH/VV were sensitive 
to the rice structure and may be helpful in monitoring crop growth. 

  

Dolp Lpr
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Figure 8. The Group 1 olpD , ocpD , prL  and Cpr  on the evolution of rapeseed phenology. 

  

  

Figure 9. The Group 2 olpD , ocpD , prL  and Cpr  on the evolution of rapeseed phenology. 

3.2. Oilseed Rape Phenology Classification Using DT Method 
After analyzing the sensitivity of averaged Stokes-related parameters to changes in 

oilseed rape phenology, in this section we represented the classified oilseed rape phenol-
ogy stages using DT algorithms. Since the algorithms were trained by randomly selecting 
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60% of the dataset, the constructed DTs were different at each training operation proce-
dure. We repeated DT algorithm 10 times to reduce the classification randomness and also 
improve the objectiveness of the classification results. In each repetition process, 52 sam-
ples were randomly selected from 85 samples for training, and the remaining 34 samples 
were verified for classification results, Table 2 showed the phenological classification re-
sults of Group 1, Table 3 showed the results of Group 2. Since the available ground data 
were expressed at parcel level, the procedures of classification and validation were carried 
out at parcel level too. The comparisons of the ground data against the estimated results 
were performed by computing the number and percentage of parcels assigned to each 
phenological stage correctly and wrongly. In each table, to ease the reading of the tables, 
the correct classified numbers were colored with yellow color while the wrong ones were 
colored with orange color. 

Note the result of repeating DT 10 times given in Tables 2 and 3; the DT algorithm 
combined with Stokes-related features showed different classification performance at dif-
ferent crop phenological stages. In the Group 1, S1 had the highest value of the frequency 
of average overall classification accuracy equaling 95.65%, the second one was stage 4 (S4, 
89.06%), then S2 (72.37%), S3 (58.11%) and the last one was stage 5 (S5, 53.75%). In the 
Group 2, similar as the Group 1, S1 had the highest value of the frequency of average 
overall classification accuracy equaling to 94.23%, but the second one was stage 2(S2, 
93.15%), then S4(90.00%), S5 (67.11%) and the last one was stage 3 (S5, 57.97%). Among 
the five phenological stages, S1 had the highest correct rate, but the classification errors 
showed that S1 was always wrongly classified as S2. For the later growth stage of S1 and 
the early growth stage of S2, the vegetation was small and SAR backscattering was thus 
mainly influenced by soil roughness and moisture which resulted in the difficulty to dis-
tinguish these two stages [17,26]. For the case of S4, the correct rate of S4 of the two groups 
was around 90%, and it revealed the capacity of Stokes-related parameters in identifying 
the oilseed rape growth state at stage 4. At S4, the oilseed rape began to pod, a large vol-
ume of pods created significant multiple scattering and resulted in the obvious difference 
of the value of D o lp , Lpr , m , H , 0g , 1g  and 2g . When these features were input in 
DT algorithms for both training or validation, single feature of them was sufficient to 
identify the stage [3]. Next S4 and S1 was S2, in the Group 2, the correct classification was 
93.15%, 5.48% were misclassified as S3 and 1.37% as S1; in the Group 1, the correct classi-
fication was 72.37%, and S2 was wrongly classified to S1, S3, S4 and S5. The misclassifica-
tion rate of S3 was high; for example, both in Group 1 and Group 2, only about 58% results 
of the classification were correct, while about 30% of the classification results were wrong. 
For S5, S5 was always wrongly classified into S3, 50% of the S5 in Group 1 were misclas-
sified as S3, and 60% of the S5 in Group 2 were misclassified as S3. At the early stage of 
S3, large leaves in the bottom canopy layer kept growth or began to wither and fall, while 
at the middle or later stage of S3, stem elongation began to occurred or got more visibly 
extended internodes. The growth of crop state at S3 resulted in mixed scattering mecha-
nisms at this stage. Meanwhile, at S5, the mixture of scattering mechanisms was still ob-
vious, although the mixture of scattering mechanisms was different from S3, but the fea-
tures extracted from Stokes were inefficient to distinguish them. Even at S5, the crop be-
gan to ripen with decline of plant water content and then resulted in a decrease of scatter-
ing power as shown the variation of 0g , it was difficult to distinguish by the features that 
characterizing the power variation. Several literatures reported the ratio of several polar-
imetric features had an ability to distinguish the variation of scattering power; however, 
the combination of Stokes-related features need to further explored to distinguish the dif-
ference between S3 and S5 [9,17,25]. 

In general, the overall classification accuracy of the Group 1 was 71.18%, and the 
value for Group 2 was 79.71%. Previous research demonstrated good performances on 
phenological estimation with different stage boundaries (different phenological labelling 
cases), which included three major stages, five stages, and seven stages. The highest accu-
racy of these studies for the overall phenological stages estimation was 96%, while the 
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lowest was around 67.0%. For the accuracy of each stage, the highest value was 100%, 
while the lowest value was 48.4% [8–10]. The study combined SAR polarimetric features 
and DT algorithm performed on rice showed highest accuracy of 91.4% and lowest one of 
48.8% [8]. Yang et al. compared the difference of estimation results with different rice phe-
nological labelling cases, including 6 stages, 8 stages and 10 stages. Their results demon-
strated the influence of phenological labelling on the estimation accuracy of crop pheno-
logical stages. They also concluded that 8 stages were best phenological labelling way to 
get the best phenological estimation results, the highest accuracy was got at stage 1 with 
the value of 93.5%, while the lowest value was got at stage 6 with the value of 83.2% [9]. 
Denoting the phenological estimation results obtained by combining Stokes-related fea-
tures and DT algorithms in this study, and the comparison with previous related studies, 
then it could be seen that the Stokes-related SAR features had great potentiality to estimate 
crop phenological stage. 

Table 2. The performance of the Group 1. 

Class Samples 
Pred 

S1 S2 S3 S4 S5 

Real 

S1 Numbers 46 44 2 0 0 0 
Accuracy (%)  95.65% 4.35%    

S2 
Numbers 76 4 55 11 4 2 

Accuracy (%)  5.26% 72.37% 14.47% 5.26% 2.63% 

S3 Numbers 74 0 6 43 4 21 
Accuracy (%)   8.11% 58.11% 5.41% 28.38% 

S4 Numbers 64 0 0 1 57 6 
Accuracy (%)    1.56% 89.06% 9.38% 

S5 
Numbers 80 0 3 34 0 43 

Accuracy (%)   3.75% 42.50%  53.75% 
Total samples: 340, Right classification: 242, 71.18%, Wrong classification: 98, 28.82%. 

Table 3. The performance of Group 2. 

Class Samples 
Pred 

S1 S2 S3 S4 S5 

Real 

S1 Numbers 52 49 3 0 0 0 
Accuracy(%)  94.23% 5.77%    

S2 Numbers 73 1 68 4 0 0 
Accuracy(%)  1.37% 93.15% 5.48%   

S3 
Numbers 69 0 8 40 2 19 

Accuracy(%)   11.59% 57.97% 2.90% 27.54% 

S4 
Numbers 70 0 0 2 63 5 

Accuracy(%)    2.86% 90.00% 7.14% 

S5 Numbers 76 0 0 23 2 51 
Accuracy(%)    30.26% 2.63% 67.11% 

Total samples:340, Right classification:271,79.71%, Wrong classification:69, 20.29%. 

4. Conclusions 
The study aimed to explore the potentiality of averaged Stokes-related parameters 

for the estimation of oilseed rape phenological stages at a parcel level by using decision 
tree algorithms. In this study, four Stokes parameters and several sub parameters calcu-
lated from four original Stokes parameters were computed with the assumption of receiv-
ing orthogonal horizontal and vertical waves but transmitting horizontal and vertical 
waves, respectively. Then the averaged Stokes parameters and their sub parameters de-
rived from the two groups of Stokes parameters were applied for analyzing sensitivity to 
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oilseed rape phenology. Then, five phenology intervals of oilseed rape were identified 
with three parameters by simple but robust decision tree algorithms. Most Stokes-related 
parameters showed high sensitivity to the development of the oilseed rape structure. 
Given the dramatic changes in the structure of oilseed rape during the whole growth cycle 
as it moves from the accumulation of leaves, elongation of stems, formation of flower 
buds, filling and ripening of buds, senescence of plants, Stokes-related parameters includ-
ing 0g  1g , 2g , 3g , m , H , oD lp  and  prL  showed obvious evolution versus the oilseed 
rape growth. A comprehensive analysis of the relationship between these parameters and 
rape growth stages revealed the potential of averaged Stokes-related parameters for 
oilseed rape phenological stage identification. However, other Stokes-parameters, includ-
ing χ , ϕ , ocpD  and prC , which showed good performance for classification in previ-
ous studies, were quite noisy during the whole oilseed rape growth circle and showed 
unobvious sensitivity to the crop’s phenology change. The reason may because of the as-
sumed incident wave’s horizontal and vertical polarization, which have few other polar-
ized powers in the received channel. However, it needs to be studied further in the future. 
With the inputs of Stokes-related parameters, the DT algorithm provided robust phenol-
ogy retrieval results; the overall average estimation accuracy of five oilseed rape pheno-
logical stages in two Groups is 71.18% and 79.71%, respectively. Meanwhile, the best esti-
mation accuracy for each stage was 95.65%. The results revealed the potentiality of Stokes-
related parameters in crop phenological stage estimation, especially for the oilseed rapes 
growing at S1, S2 and S4 stages. The novelty of this study stems from the fact that it is a 
first step towards the retrieval of crop phenology using averaged Stokes parameters and 
their sub parameters. The analytical findings have the potential to serve as a reference for 
further studies that would attempt to relate the crop phenological stages to averaged 
Stokes parameters, which can describe depolarization information better than polarimet-
ric decomposition parameters. An obvious limitation of this study was its application in 
real dual polarization data. In future studies, more dual polarization data should be ex-
plored, moreover, the performance and estimation accuracy of crop phenological stages 
are affected by phenological labelling ways and classification algorithms. In the future, 
the performance of Stokes-related parameters should be explored with different pheno-
logical labelling ways and different classification algorithms. 
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