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Abstract: Accurate and timely knowledge of crop phenology assists in planning and/or triggering
appropriate farming activities. The multiple Polarimetric Synthetic Aperture Radar (PolSAR) tech-
nique shows great potential in crop phenology retrieval for its characterizations, such as short revisit
time, all-weather monitoring and sensitivity to vegetation structure. This study aims to explore the
potential of averaged Stokes-related parameters derived from multiple PolSAR data in oilseed rape
phenology identification. In this study, the averaged Stokes-related parameters were first computed
by two different wave polarimetric states. Then, the two groups of averaged Stokes-related param-
eters were generated and applied for analyzing averaged Stokes-related parameter sensitivity to
oilseed rape phenology changes. At last, decision tree (DT) algorithms trained using 60% of the data
were used for oilseed rape phenological stage classification. Four Stokes parameters (g0, g1, g2 and
g3) and eight sub parameters (degree of polarization m, entropy H, ellipticity angle χ, orientation
angle ϕ, degree of linear polarization Dolp, degree of circular polarization Docp, linear polarization
ratio Lpr and circular polarization ratio Cpr) were extracted from a multi-temporal RADARSAT-2
dataset acquired during the whole oilseed rape growth cycle in 2013. Their sensitivities to oilseed
rape phenology were analyzed versus five main rape phenology stages. In two groups (two different
wave polarimetric states) of this study, g0, g1, g2, g3, m, H, Dolp and Lpr showed high sensitivity
to oilseed rape growth stages while χ, ϕ, Docp and Cpr showed good performance for phenology
classification in previous studies, which were quite noisy during the whole oilseed rape growth circle
and showed unobvious sensitivity to the crop’s phenology change. The DT algorithms performed
well in oilseed rape phenological stage identification. The results were verified at the parcel level
with left 40% of the point dataset. Five phenology intervals of oilseed rape were identified with no
more than three parameters by simple but robust decision tree algorithm groups. The identified
phenology stages agree well with the ground measurements; the overall identification accuracies
were 71.18% and 79.71%, respectively. For each growth stage, the best performance occurred at stage
S1 with the accuracy of 95.65% for Group 1 and 94.23% for Group 2, and the worst performance
occurred at stage S3 and S5 with the values around 60%. Most of the classification errors may resulted
from the indistinguishability of S3 and S5 using Stokes-related parameters.

Keywords: oilseed rape; phenology monitoring; Stokes-related parameters

1. Introduction

Knowledge of crop phenology is significant to precision farming for planning or
triggering cultivation practice such as irrigation, fertilization and so on. Timely and
accurate knowledge of crop phenology is crucial for government organizations giving
precise crop productivity forecasts and making correct agriculture policy decisions [1–3].
Remote sensing data, with the capability to monitor crop growth conditions by spatial-
temporal image acquiring, have been used for large-scale crop phenology estimation for
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decades. This definitely requires the frequent acquisition of images over the entire crop
growth cycle or at least at key growth stages. Optical sensors have the ability to identify
several crop growth stages but are limited in data coverage at some key growth stages due
to haze, cloud and rain impeding its effective data acquisition [4,5]. Synthetic aperture radar
(SAR) sensors, with the capability of all-weather data acquiring, penetrating deeper into
vegetation than optical sensors, are sensitive to the shape, structure and dielectric constant
of vegetation scatterers, have the capability to provide a better temporal data coverage and
crop structure interpretation than optical sensors. Polarimetric synthetic aperture radar
(PolSAR) sensors, given not only their day/night and all-weather monitoring capabilities
but also their capabilities to detect target shape/scattering orientation changes, seem
sensitive to vegetation structure and show great potentiality in crop phenology retrieval
and attract lots of interest [3,4,6].

Many studies have exploited the capabilities of polarimetric parameters in crop phe-
nology estimation [1–5,7–9]. The potential of polarimetric SAR data for crop phenology
monitoring has been well demonstrated in these studies. For example, a large polarimetric
SAR feature sets were generated for crop phenology estimation, including backscattering co-
efficients and their ratios [1,2,8], coherence between different polarimetric channels [1,2,7,8],
phase difference between polarimetric channels [1,2,7,8] and decomposition parameters
and developed parameters from different polarimetric decomposition algorithms [3–5,9].
Since SAR sensors, especially polarimetric SAR sensors have a relatively low temporal
resolution than optical sensors, in several previous studies, crop phenology estimations
using SAR data had been approached as a classification problem. Then, the questions
such as how many stages can be identified and how should the optimal boundaries of the
stages been determined were discussed [8,9]. In addition, dynamic filtering algorithms
including Kalman filtering and Particle filtering approaches were developed to estimate
crop phenology. These algorithms determined crop phenology along a numerical scale
rather than phenology intervals in classification methods. Transition matrix construction is
the key of using dynamic filtering algorithms for phenology estimation [5,7]. As the revisit
time intervals of the polarimetric SAR sensors decrease, machine learning algorithms
such as random forest (RF) [3], K-Nearest Neighbor (KNN) [10], Support Vector Machine
(SVM) [8], Complex Wishart Classifier [11] and the Multi-class relevant vector machine
(mRVM) [9] are applied in crop phenology estimation.

Although previous studies indicate that crop phenology could be retrieved from
polarimetric parameters, most of the extracted polarimetric parameters focus on the target
scattering mechanism but ignore the characterizations of the scattering waves, which also
show better performance in crop monitoring [12–14]. Moreover, parameters extracted
according to scattering wave characterizations could not only be used for fully polarimetric
data but also for dual-polarimetric data, especially in the period when we can utilize
freely accessible dual-pol SAR datasets from the Sentinel-1 mission and more compact
polarimetric datasets from RADARSAT Constellation Mission (RCM) and Advanced Land
Observing Satellite 2 and Phased Array type L-band Synthetic Aperture Rader 2 (ALOS-2
PALSAR-2). Moreover, these datasets are also effective complement datasets for the low
temporal resolution of present quad-polarimetric SAR data acquisition.

Stokes parameters and their developed parameters, which describe the scattering
powers directly, are more powerful for dealing with the depolarization information than
the decomposition parameters extracted from coherence/covariance (G/T) matrix since
they can describe the partially polarized scatter based on Born–Wolf wave decomposition
theory [15]. Several recent studies on compact polarimetric application utilized these
parameters for crop biophysical parameter estimation, and satisfactory results have been
achieved for rice, rape oilseed growth monitoring and rice phenology estimation [2,16–18].
Since each Stokes vector is related to a polarization state of the incident wave, the averaged
Stokes parameters with different assumed incident wave states can provide more informa-
tion for crop monitoring. Previous studies focused more on compact polarization, which
also uses the Stokes-related parameters, but it only has one mode polarization state. Other
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polarization states, which can also be described using averaged Stokes parameters, were
not fully explored, especially for crop phenological stage identification [17,18]. In this study,
the concept of averaged Stokes parameters developed based both on compact polarimetric
SAR parameter extraction theorem and Poincare sphere were proposed and exploited to
estimate rape oilseed phenological stages. We assess the performance of the averaged
Stokes-related parameters in oilseed phenological stages over the joint experiment for the
crop monitoring test site in Hailar of Inner Mongolia, China. The averaged Stokes-related
theory was interpreted and analyzed in this study. Phenological stage estimation was
thought as a classification problem in this study and decision tree (DT) methods were
selected as the classifiers.

2. Materials and Method
2.1. Study Area and Ground Campaign

The study was carried out over the parts of Shangkuli farmland located in Hailar of
Inner Mongolia, Northeast China (Figure 1). The land is relatively flat with slopes less than
3◦. Oilseed rape and wheat constituted the major crops while other minor crops such as
soybean was also planted in a few fields. Rape is cultivated once a year during the May
to August season. The cultivation period lasts about 115–140 days; among the 85 samples
data used in this paper, the earliest sowing date of the oilseed rape was on 8 May 2013, and
the latest sowing date was on 31 May 2013. Readers are referred to our previous work [16]
for further description of the terrain and climate details of the study area.
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Figure 1. The location of study site and the oilseed rape parcels distribution in it.

A complete description of the ground measurement methodologies was provided
in [16]. We measured several crop biophysical parameters including leaf area index (LAI),
plant height, surface soil moisture, above-ground biomass (fresh and dry weight per square
meter) and plant water content. These parameters were collected synchronous with satellite
overpass within a lag of no more than one day of the date that each RADARSAT-2 data
acquired. In each campaign, 11–14 representative oilseed rape fields were surveyed. For
each field, the sowing date was recorded and its phenology was described according to
the BBCH-scale developed by Weber and Bleholder [19]. The field states were recorded by
GPS tagged photos.

2.2. SAR Data Set

During the oilseed rape cultivation period in 2013, five full polarization RADARSAT-2
data were acquired from 23 May to 27 August, imaging the entire oilseed rape phenological
cycle. Five RADARSAT-2 SLC (Single Look Complex) images taken on May 23, June 16,
July 10, August 3 and August 27, respectively, were used in this study. All of the images
were collected with the same mode, beam, incident angle and orbit pass to reduce the
influence of sensor parameters. Precipitation and temperature were recorded by the in- situ
weather station to provide meteorological conditions for image collections as well as for
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field campaigns. The detailed information of image acquisition parameters, precipitation
and temperature information can be found in [16,17].

2.3. Definition of Phenological Stages

In this study, oilseed rape phenology estimation is thought of as a classification
problem. Each phenological stage is considered as an individual class. Each class of oilseed
rape phenology is defined on the base of the crop appearance inside its life cycle and also the
SAR data available to date. The appearance of oilseed rape results from its morphological
and physiological development. By considering the appearance within one stage does
not change much but differs strongly between two different stages, the phenology of
oilseed rape in this study is divided into 5 stages. The BBCH-scale developed by Weber
and Bleiholder (1990) is used to code the plant’s appearance at each phenological stage.
However, BBCH code, which is defined by a small set of integer values specific for each
crop group, is unsuitable for use as the state variable in crop growth stage estimation [5].
Thanks to the relationship between day after sowing (DAS), growing degree days (GDD)
and crop phenological stages [5,9], DAS is selected as the proxy variable of oilseed rape
phenology to describe the temporal profile of polarimetric SAR information during the
oilseed rape entire growing season. The phenological stages, their corresponding BBCH-
codes, DAS and plant images taken from Weber and Bleiholder (1990) and taken at each
field campaign time are illustrated in Figure 2.
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2.4. Analysis of Phenological Stages

In this study, five main phenological stages were defined for the entire growth cycle
of oilseed rape. At each stage of them, oilseed rape has particular features and aspects
of the plant development as the change of DAS. At the phase of Stage 1, when the first
RADARSAT-2 image was acquired, most oilseed rape fields had just been sown or were at
the beginning of crop emergence. This stage is characterized by development from dry seed
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to hypocotyl with cotyledons growing towards soil surface. The next main stage (Stage 2)
starts from plant emergence and ends with fully developed plants. At first, cotyledons are
completely unfolded; then the first leaf is clearly visible and additional leaves are unfolded
up. Following side shoots begin to develop and 9 or more side shoots are developed and
detectable at the end of this stage. The phase of Stage 3 comprises a wide range of plant
conditions including stem elongation with extended internodes, flower buds presented
from being enclosed by leaves to first petals being visible, first flowers opening to the end
of flowering. At stage 4, oilseed rape begins to pod and it is characterized by increasing
pod size and number. Finally, Stage 5, including ripening and senescence, also constitutes
a period with many changes in the plants. Oilseeds appear green and pod cavities become
filling. Then, 10% oilseeds appear dark and hard, pods become ripe until nearly all pods
ripe, seeds dark and hard. At the end of this stage, on the moment of harvest, water content
of the plants changes up and down, the plants become dead and dry, their structure is
mostly random and number of leaves decrease.

2.5. Extraction of Averaged Stokes-Related Parameters
2.5.1. Rationale

The objective of selecting Stokes-related parameters is to generate a group of unbiased
polarimetric characterizations of the observed scene. Radar generates the transmitted wave
and backscattered wave is a quasi-monochromatic partially polarized electromagnetic
wave which is backscattered from the radar irradiation scene. This kind electromagnetic
wave could be represented by four members from the Stokes vector containing all of the
available polarimetric and un-polarimetric information. We also call these four mem-
bers Stokes parameters [20–22]. The names of the Stokes parameters vary depending
on the specific discipline preferred by their user. In this study, their forms are shown as(

g0 g1 g2 g3
)

in equation (1), where Jii means the member of Jones vectors. For the
detail information about the equation, readers are referred to the literature [15,22].

G =


g0
g1
g2
g3

 =


JHH + JVV
JHH − JVV
JHV + JVH

j(JHV − JVH)

 (1)

The four members were determined from information conveyed in the observed filed.
Each of the Stokes parameters is an averaged quantity. The first Stokes parameter g0 is
directly proportional to the power density being carried by the backscattered wave. It
includes the polarized and depolarized backscattered signals. The other three parameters
represent the polarized portion of the backscattered wave. The second parameter indicates
the tendency of the polarization to be more horizontal or vertical, while the third and
fourth indicate the ellipticity of the wave’s polarization. The four Stokes parameters for a
pixel show a polarization state of the backscattered wave and they could be located on/in
a unit sphere named Poincare sphere geometrically. Since the Stokes parameters are based
on a wave polarimetry framework, they allow for analyzing the average polarization state
of the backscattered wave. It has the following characters: (1) Stokes parameters could be
used for extracting depolarization information of a partially polarized wave; (2) Stokes
parameters could be extracted directly from the 2 × 2 Jones matrix without any assump-
tions; (3) The decomposition expressed by three physical components of the averaged
Stokes parameters, i.e., the total scattered intensity g0, the degree of polarization m and the
completely polarized wave components (g1 + g2 + g3) obey the general physical laws and
avoid the conflict among the physical meaning, uniqueness and completeness. Meanwhile,
the completely polarized wave components can also be described by several parameters
coming from the Poincare sphere, which make the parameters visible to the readers.

The key theory for averaged Stokes-related parameters proposed in this study is the
“polarization synthesis” based on the four Stokes parameters (Woodhouse, 2006). As we
know, if a target has a preferred shape or orientation, then differently polarized incident
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waves will result in backscattered echoes, whose polarization state is, in principle, related to
the target’s shape or orientation. Using four Stokes parameters and polarization synthesis
technique, we can simulate the response for any arbitrary combination of transmit and
receive polarization. Then we can collect the target response at each polarimetric states.
The polarimetric synthesis procedure is often achieved by multiplication of K by the Stokes
vectors g for the transmitted and receive polarizations. K is the Kennaugh matrix, in which
the scattered wave is described in the receiving antenna reference frame so that both the
incident wave and the scattered wave are described from the point of view of the antenna.
Here, it is given by (2) [23]:

K =


T11+T22+T21

2 Re(T12) Re(T13) Im(T23)

Re(T12)
T11+T22−T32

2 Re(T23) Im(T13)

Re(T13) Re(T23)
T1−T2+T32

2 −Im(T12)

Im(T23) Im(T13) −Im(T12)
−T11+T22+T32

2

 (2)

In Equation (2), T is a 3 × 3 Hermitian matrix; it is also called coherence matrix. The
backscatter power P(· · · ) of the target for a given combination of transmitted and received
ellipticity and orientation angles is given by

P(χr, ϕr, χt, ϕt) = grKgt (3)

where χ and ϕ are ellipticity angle and orientation angle for the polarimetric ellipse,
respectively, the subscript r and t describe the received and transmitted polarization,
respectively. Since the range of 2χ and 2ϕ are polar coordinates within a Poincare sphere,
the synthesized polarization response P, for any given gr and gt, can be considered as an
intensity pattern of the target across the sphere.

2.5.2. Stokes-Related Parameter Calculation from the Four-Member Stokes Parameters

According Equation (3), the different values of four Stokes parameters and their sub
parameters such as m, χ and ϕ mentioned above describe different polarization states of
the backscattering wave of the observed target. The averaged Stokes-related parameters
of several polarization states give more information of the observed target than only
one polarization state. Among the synthesized polarization, three special polarization
states were often used. The three polarization states are transmitting with a H linearly
polarized field and receiving the resulting H and V backscatter components coherently,
transmitting with right a circular polarized field and receiving the resulting H and V
backscatters components coherently, and transmitting with a linearly polarized field at
45◦ and receiving the resulting H and V backscatters components coherently. The last
two polarization states are commonly used as π/4 and HCP compact polarization [15,22].
HCP is the most effective compact polarization proposed in recent two decades, and
many research studies confirmed its effectiveness in crop phenology identification [2,18].
Classification accuracy acquired by HCP compact polarization data was proven to be very
nearly as good as fully polarized data and the difference between them is negligible [22].
However, the linear polarization with H or V transmitting but receiving with H and V, the
dual polarization of which is usually used in classical dual-pol modes, has not been fully
explored with a Stokes-related theorem so far.

In this paper, two sets of averaged Stokes-related parameters based on linear po-
larization were calculated to analyze their potentiality in crop phenology identification.
One set of averaged Stokes-related parameters was calculated from the linear polarization
with H transmitting but H and V receiving (Group1), and the other was from the linear
polarization with V transmitting but H and V receiving (Group2). The performance of
the two group-averaged Stokes-related parameters on oilseed rape phenology estimation
was presented here. In this paper, the averaged Stokes-related parameters including the
four basic Stokes members (g0 g1 g2 g3 ), the degree of polarization (m), entropy
(H), ellipticity angle (χ), orientation angle (ϕ), degree of linear polarization (Dolp), degree
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of circular polarization (Docp), linear polarization ratio (Lpr) and circular polarization
ratio (Cpr) were calculated as parameter sets of Group 1 and Group 2, respectively. The
physical interpretation of each Stokes-related parameter and their equations are shown in
Table 1 [24,25].

Table 1. The equation and physical interpretation of each Stokes-related parameter.

Parameter Equation Physical Interpretation

m m = 1
g0

√
3
∑

i=1
g2

i m evaluates the degree of polarized wave within the reflect wave in the object scattering
scene. When m = 1 there is no un-polarized component and the reflect wave is then
completely polarized. When m = 0 the polarized component is absent and the reflect
wave is then completely un-polarized. In all other cases with 0 < m < 1, we say that the
reflect wave is partially polarized.

H H = −
2
∑

i=1
pi ∗ log2 pi H is an alternative way to characterize the randomness in the scattering scene. H = 0

means completely polarized component, and it will increase monotonically toward
unity as the depolarized component increases. In contrast, H = 1 means the signal is
noise-like, which we call completely depolarized wave.

χ χ =

1
2 arcsin

(
g3√

g2
1+g2

2+g2
3

) χ is closely related to the ellipticity of the scattered wave. Encompassing χ we can
reconstruct scattering components from dielectric dihedral reflections and rough surface
because the sign of sin 2χ is an unambiguous indicator to even and odd bounce
scatterers. Moreover, the sign of χ also indicates rotation sense even when the radiated
electromagnetic wave is not perfectly circularly polarized.

ϕ ϕ = 1
2 arctan

(
g2
g1

)
ϕ describes the orientation of the strongest linear polarization present in the
backscattered field. It is also an alternative way to characterize the scattering direction
of the target. It is calculated by g1 and g2.

DolP DoLP =

√
g2

1+g2
2

mg0
DolP which is known as cos 2χ from the Poincare sphere, evaluates the degree of linear
polarization components in the polarized scattering electromagnetic wave. It is obtained
by division of linear polarized power and the total scattering power.

DocP DoCP =
g3

mg0
DocP, which is known as sin 2χ from Poincare sphere, evaluates the degree of circular
components in the scattering electromagnetic wave. It is calculated as the ratio between
g3 and g0. It is often used in m− χ or m− α decomposition method to distinguish
single-bounce and double-bounce scattering components. α is defined as scattering
angle of target and equal to π/2− χ.

Lpr LPR =
mg0−g1
mg0+g1

Lpr considers the normalized difference between the total polarized intensity of the
radar’s backscatter field and the intensity after subtracting vertical components from
horizontal components.

Cpr CPR =
mg0−g3
mg0+g3

Cpr considers the normalized difference between the total polarized intensity of the
radar’s backscatter field and the intensity of circular polarized wave.

2.6. Decision Tree (Dt) Algorithm Training and Validation

Previous studies, which evaluated the classification performance of the different
classifiers, have reported that the DT classifier provides high accuracy and efficiency
classification results, especially for the case of nonlinear relationships between features
and classes [1,2]. In this study, a univariate DT with the Gini index attribute is used for
distinguishing the different phenological stages of oilseed rape. The performance of the
DT algorithm relies on the representativeness of the training datasets. In this study, Stokes-
related parameters were computed from each pixel of the parcels and then averaged at
parcel level according to the value of day after sowing. In total, 85 data points were used
for DT training and validation. Of this total, we randomly selected 60% of them as training
data, while the left 40% of the datasets were considered for validation. Since the 60%
training data are randomly selected, the DT functions are more flexible and can produce
different classification results, the classification procedure for oilseed rape phenological
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stages estimation were repeated 10 times and the averaged result was selected as the
classification results and terminal accuracy.

2.7. Oilseed Rape Phenological Stages Estimation Scheme

The current study aims to explore the potential of averaged Stokes-related parameters
in oilseed rape phenological stage identification. Figure 3 shows the flowchart of the
oilseed rape phenology estimation procedure with averaged Stokes-related parameters.
At the first step, three groups of Stokes parameters were calculated according to [24] and
then the one with averaged values were chose for analyzing their response to oilseed
rape during its entire growth season. In the flowchart, Stokes parameters (1) and Sub
parameters (1) are the calculated as 12 Stokes-related parameters from Group1, Stokes
parameters (2) and Sub parameters (2) are calculated as 12 Stokes-related parameters from
Group2 in Section 2.5.2. Then, the sensitivity analysis was centered on the evolution of the
Stokes-related parameters for the monitored parcels over the entire growth cycle. For each
parcel, we calculated one averaged observation by averaging performance in the whole
area of the parcel. Next, all of the analyzed Stokes-related parameters had been computed
for all of the images and have been averaged by DAS. Finally, the Stokes-related parameters
had been plotted as a function of DAS. At last, the phenology estimation by exploiting
the temporal behavior of 12 averaged Stokes parameters were classified by decision tree
algorithms.Remote Sens. 2021, 13, x FOR PEER REVIEW 9 of 18 
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In this procedure, Full polarimetric data measured objects in each resolution element
with 2× 2 complex scattering matrix [S]; it was extracted from the original RADARSAT-2
SLC images using PolSARpro4.2 toolbox, followed by 5 × 5 boxcar filter to moderate



Remote Sens. 2021, 13, 2652 9 of 18

speckle effects. The incident waves were supposed and used to calculate Stokes parameters
by a unit Jones vector through Equation (1), respectively.

3. Results and Discussion
3.1. Stokes and Child Parameter Response to Rape Phenology

Twelve key Stokes and their sub parameters are analyzed and presented in the fol-
lowing. They are divided into three main categories as follows according to their physical
interpretations.

The original Stokes parameters, including g0, g1, g2 and g3 were divided as the first
category. The response of the original averaged Stokes parameters to the advancement of
oilseed development was measured by DAS at parcel level. The response of each parameter
was described by each subplot of Figures 4 and 5. A total of 85 samples are graphed in
each scatter plot in Figures 4 and 5, the trends of original Stokes parameters of Group 1
shown in Figure 4 were similar with the trends of Group 2 shown in Figure 5. The trends of
g0, g1, g2 and g3 in Figures 4 and 5 during the whole oilseed growth cycle were coincident
with the evolution of three growth parameters, biomass, crop height and Leaf area index
(LAI), which we gave in our previous work [16]. Among the three crop growth parameters,
the biomass evolution trend shows a best fit for these original Stokes parameters. At stage
1, all values of the four Stokes parameters showed lowest and kept steady during the
entire stage 1, then they began a gently increasing slope at stage 2. They showed a gently
decreasing trend at stage 3 and form a peak with a sharp slope at stage 4 and rising to a
maximum at approximately DAS = 75. The curve of the scatter plots ended in an obvious
decrease at stage 5. Although all of the four parameters had a similar trend during the
whole oilseed rape growth cycle, g0 showed best performance for oilseed rape phenological
period response. Among them, g0 had the highest values during the whole growth cycle,
its dynamic range were from −22 dB to −12 dB for Group1 and from −21 dB to −11 dB for
Group2. At stage 1, g0 had the lowest value of in two groups, the lower scattering value
in this stage may result from the dominated soil scattering since the plant was just sown
or emerging through the soil surface with plant heights not exceeding 5 cm. At stage 2,
the values of g0 were gently increased to −19 dB since the increasing of plant scattering
increases with the growth of oilseed rape leaves. Group 1 and Group 2 kept increasing
around 16 dB at the earlier stage of stage 3 with more leaves adding and growing up. At
the later stage of stage 3, the values were shown to be gently decreasing, which may result
from the falling of large leaves at the oilseed rape canopy and more soil under the canopy
showing up. With the main stem emerging at approximately DAS = 61, g0 increased to −16
dB then decreased to −10 dB at stage 4 since the dihedral response from the main stem
and ground surface. At stage 5, the ripening and senescing of plants resulted in the falling
of leaves and decreasing of water content that led to the decreasing of g0 values around
−17 dB in two groups. g1 showed a smaller dynamic range from −23 dB to −14 dB during
the whole oilseed rape growth cycle compared with g0, while the trend of g1 was similar
with g0. Its tendency was quite different with our previous study where the distinction
between g0 and g1 was obvious. In the HCP compact mode, the values of g1, g2 and g3
showed even poorer performance varying with the evolution of plant growth. However,
during the whole process of rape growth, the values of the Group 1 of Stokes parameters
were more aggregated than those in the Group 2.

The performances of g0 and g2 agreed well with our previous work [16] on compact
polarization data applying in crop growth parameters estimation; however, the results of
g1 and g3 were quite different. It was probably explained by the fact that our previous
research assumed right circular polarization as the transmitting channel, which may lead
to different backscattering from objects. The potentiality of averaged g0 for land-cover
classification was also stated by Shang et al. (2015) in [15]; however, the capabilities of g1,
g2 and g3 were left unexplored in their study.
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3.1.1. Sub Parameters from Poincare-Sphere or Decomposition Methods

Previous studies on compact polarization applications proved that Stokes sub parame-
ters were useful for crop mapping and monitoring. Figures 6 and 7 presented the evolution
of the four more useful sub parameters in both of Group 1 and Group 2 as a function of
DAS. The four Stokes-related parameters were the degree of polarization (m), entropy (H),
ellipticity angle (χ) and orientation angle (ϕ). Among them, m and H were two different
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ways to describe the degree of randomness of target scattering, χ and ϕ derived from
Poincare-sphere were robust choices for describing the shape and orientation of polarized
ellipticity. The shape and orientation of polarized ellipticity characterized the scattering
information of objects in the scattering scene.
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In accordance with Figures 4 and 5, the trends of m, H, χ and ϕ in Group 1 and Group
2 were also similar. Figures 6a and 7a resampled m with four different ranges during
the whole oilseed rape growth cycle: 0.7–0.8 during stage 1 and stage 2 while the values
from Group 1 were slightly higher than those from Group 2; the values for stage 3 in the
group 1 were 0.5–0.7; while the values for stage 3 in the group 2 were 0.4–0.6, and in the
group 1, 0.4–0.6 was in stage 4, while in the group 2, 0.5–0.6 was in stage 4 and the value
of stage 5 in both the first and second groups was around 0.6. Note that low degrees of
polarization were equivalent with high entropies and vice versa. Entropy in Figures 6b
and 7b was less than 0.5 during stage 1 and 2 before stem elongation, and increased to 0.7
at stage 3 with stem elongating but large leaves withering and falling. H reached its peak
when it increases around 0.9 and then kept a flat line during the whole stage and stage
5. The higher H values of lower m values in stage 4 and stage 5 may result from the crop
leaves accumulating, bolts and flowers developing, canopy expanding that lead to greater
scattering randomness. H tapered to 0.8 at stage 5 with m ranging from 0.5 to 0.6 meant
withering leaves and pods decreased some scattering randomness. The combination of
the two parameters showed their capability of distinguishing the early phenological stage.
The findings in our study agreed with [2,17], even though the crops were different in these
studies. However, compared our previous work on compact polarimetric parameters, the
range of m values in this study were quietly different. In this study, the values of Group 1
ranged from 0.82 to 0.43 and in the Group 2 it ranged from 0.85 to 0.45, while in previous
works they ranged from 0.7 to 0.25 [16]. m values in the study of Lopez–Sanchez on rice
ranged from 0.9 to 0.2 [2]. The phenomenon demonstrated that the average procedure of
Stokes-related parameters reduced the sensitivity of m values to the crop growth stage
changes.

χ and ϕ were addressed as robust parameters for classification in previous studies,
especially χ, which was used for distinguish odd and even scattering mechanism with its
negative and positive sign. However, they had poor performance in this study. The trends
of χ and ϕ in Group 1 and Group 2 shown in Figures 6 and 7c,d respectively presented
the contribution of χ and ϕ in different phenological stages. Both of them showed small
dynamic range during the whole crop growth cycle. For χ, the value of Group 1 was
approximately −0.03◦ and the value of Group 2 was around 0.12◦. For ϕ, the value of
group 1 was approximately 0.06◦ and the value of group 2 was around 0.06◦. The reason for
the small dynamic probably because the assumed transmit was linear polarization or the
averaged values without signs decreased their sensitivity to target scattering. In converse
with this finding in our study, previous studies showed better evolution performance of χ
versus crop phenology. Note that, χ parameter, used in previous studies, was assumed the
transmit polarization of circular [2,16,17].

3.1.2. Sub Parameters Related to Linear of Circularity Ratio and Degree

Dolp, Docp, Lpr and Cpr were first published by George Gabriel Stokes for optical
field observation and quantitative measuring. They were first applied in SAR information
extraction in 2006 by Raney for dual-polarized SAR data [24]. Then, several of them were
used for compact SAR data applications. In this study, Figures 8 and 9 showed the evolution
of the four averaged parameters versus DAS. Docp and Cpr, which had better performance
in compact SAR data for crop classification and phenology retrieval in previous studies,
were quite noisy in more parts of the phenological cycle and seemed difficult to distinguish
oilseed rape growth stages. Conversely, Dolp and Lpr showed obvious sensitivity to
the evolution of oilseed rape growth stages when their range scales were stretched with
logarithmic function. Dolp decreased as the oilseed rape grows because of the increased
non-linear polarization components from volume scattering of developed oilseed rape.
Then, it gently increased at stage 4 with the contribution of even scattering mechanism
caused by elongated stem and falling crop leaves. Lpr kept increasing during almost all of
the crop growth cycle. The dynamic range varied with the change of each growth stage.
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The finding agreed with [6] in which HH/VV were sensitive to the rice structure and may
be helpful in monitoring crop growth.
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3.2. Oilseed Rape Phenology Classification Using DT Method

After analyzing the sensitivity of averaged Stokes-related parameters to changes in
oilseed rape phenology, in this section we represented the classified oilseed rape phenology
stages using DT algorithms. Since the algorithms were trained by randomly selecting 60%
of the dataset, the constructed DTs were different at each training operation procedure. We
repeated DT algorithm 10 times to reduce the classification randomness and also improve
the objectiveness of the classification results. In each repetition process, 52 samples were
randomly selected from 85 samples for training, and the remaining 34 samples were
verified for classification results, Table 2 showed the phenological classification results of
Group 1, Table 3 showed the results of Group 2. Since the available ground data were
expressed at parcel level, the procedures of classification and validation were carried out
at parcel level too. The comparisons of the ground data against the estimated results
were performed by computing the number and percentage of parcels assigned to each
phenological stage correctly and wrongly. In each table, to ease the reading of the tables,
the correct classified numbers were colored with yellow color while the wrong ones were
colored with orange color.

Table 2. The performance of the Group 1.

Class Samples
Pred

S1 S2 S3 S4 S5

Real

S1
Numbers 46 44 2 0 0 0

Accuracy (%) 95.65% 4.35%

S2
Numbers 76 4 55 11 4 2

Accuracy (%) 5.26% 72.37% 14.47% 5.26% 2.63%

S3
Numbers 74 0 6 43 4 21

Accuracy (%) 8.11% 58.11% 5.41% 28.38%

S4
Numbers 64 0 0 1 57 6

Accuracy (%) 1.56% 89.06% 9.38%

S5
Numbers 80 0 3 34 0 43

Accuracy (%) 3.75% 42.50% 53.75%

Total samples: 340, Right classification: 242, 71.18%, Wrong classification: 98, 28.82%.

Table 3. The performance of Group 2.

Class Samples
Pred

S1 S2 S3 S4 S5

Real

S1
Numbers 52 49 3 0 0 0

Accuracy(%) 94.23% 5.77%

S2
Numbers 73 1 68 4 0 0

Accuracy(%) 1.37% 93.15% 5.48%

S3
Numbers 69 0 8 40 2 19

Accuracy(%) 11.59% 57.97% 2.90% 27.54%

S4
Numbers 70 0 0 2 63 5

Accuracy(%) 2.86% 90.00% 7.14%

S5
Numbers 76 0 0 23 2 51

Accuracy(%) 30.26% 2.63% 67.11%

Total samples:340, Right classification:271,79.71%, Wrong classification:69, 20.29%.

Note the result of repeating DT 10 times given in Tables 2 and 3; the DT algorithm
combined with Stokes-related features showed different classification performance at
different crop phenological stages. In the Group 1, S1 had the highest value of the frequency
of average overall classification accuracy equaling 95.65%, the second one was stage 4 (S4,
89.06%), then S2 (72.37%), S3 (58.11%) and the last one was stage 5 (S5, 53.75%). In the
Group 2, similar as the Group 1, S1 had the highest value of the frequency of average overall
classification accuracy equaling to 94.23%, but the second one was stage 2(S2, 93.15%),
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then S4(90.00%), S5 (67.11%) and the last one was stage 3 (S5, 57.97%). Among the five
phenological stages, S1 had the highest correct rate, but the classification errors showed
that S1 was always wrongly classified as S2. For the later growth stage of S1 and the early
growth stage of S2, the vegetation was small and SAR backscattering was thus mainly
influenced by soil roughness and moisture which resulted in the difficulty to distinguish
these two stages [17,26]. For the case of S4, the correct rate of S4 of the two groups was
around 90%, and it revealed the capacity of Stokes-related parameters in identifying the
oilseed rape growth state at stage 4. At S4, the oilseed rape began to pod, a large volume of
pods created significant multiple scattering and resulted in the obvious difference of the
value of Dolp, Lpr, m, H, g0, g1 and g2. When these features were input in DT algorithms
for both training or validation, single feature of them was sufficient to identify the stage [3].
Next S4 and S1 was S2, in the Group 2, the correct classification was 93.15%, 5.48% were
misclassified as S3 and 1.37% as S1; in the Group 1, the correct classification was 72.37%,
and S2 was wrongly classified to S1, S3, S4 and S5. The misclassification rate of S3 was high;
for example, both in Group 1 and Group 2, only about 58% results of the classification were
correct, while about 30% of the classification results were wrong. For S5, S5 was always
wrongly classified into S3, 50% of the S5 in Group 1 were misclassified as S3, and 60% of the
S5 in Group 2 were misclassified as S3. At the early stage of S3, large leaves in the bottom
canopy layer kept growth or began to wither and fall, while at the middle or later stage of
S3, stem elongation began to occurred or got more visibly extended internodes. The growth
of crop state at S3 resulted in mixed scattering mechanisms at this stage. Meanwhile, at S5,
the mixture of scattering mechanisms was still obvious, although the mixture of scattering
mechanisms was different from S3, but the features extracted from Stokes were inefficient
to distinguish them. Even at S5, the crop began to ripen with decline of plant water content
and then resulted in a decrease of scattering power as shown the variation of g0, it was
difficult to distinguish by the features that characterizing the power variation. Several
literatures reported the ratio of several polarimetric features had an ability to distinguish
the variation of scattering power; however, the combination of Stokes-related features need
to further explored to distinguish the difference between S3 and S5 [9,17,25].

In general, the overall classification accuracy of the Group 1 was 71.18%, and the
value for Group 2 was 79.71%. Previous research demonstrated good performances on
phenological estimation with different stage boundaries (different phenological labelling
cases), which included three major stages, five stages, and seven stages. The highest
accuracy of these studies for the overall phenological stages estimation was 96%, while the
lowest was around 67.0%. For the accuracy of each stage, the highest value was 100%, while
the lowest value was 48.4% [8–10]. The study combined SAR polarimetric features and DT
algorithm performed on rice showed highest accuracy of 91.4% and lowest one of 48.8% [8].
Yang et al. compared the difference of estimation results with different rice phenological
labelling cases, including 6 stages, 8 stages and 10 stages. Their results demonstrated the
influence of phenological labelling on the estimation accuracy of crop phenological stages.
They also concluded that 8 stages were best phenological labelling way to get the best
phenological estimation results, the highest accuracy was got at stage 1 with the value of
93.5%, while the lowest value was got at stage 6 with the value of 83.2% [9]. Denoting
the phenological estimation results obtained by combining Stokes-related features and
DT algorithms in this study, and the comparison with previous related studies, then it
could be seen that the Stokes-related SAR features had great potentiality to estimate crop
phenological stage.

4. Conclusions

The study aimed to explore the potentiality of averaged Stokes-related parameters for
the estimation of oilseed rape phenological stages at a parcel level by using decision tree
algorithms. In this study, four Stokes parameters and several sub parameters calculated
from four original Stokes parameters were computed with the assumption of receiving
orthogonal horizontal and vertical waves but transmitting horizontal and vertical waves,
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respectively. Then the averaged Stokes parameters and their sub parameters derived from
the two groups of Stokes parameters were applied for analyzing sensitivity to oilseed
rape phenology. Then, five phenology intervals of oilseed rape were identified with three
parameters by simple but robust decision tree algorithms. Most Stokes-related parameters
showed high sensitivity to the development of the oilseed rape structure. Given the
dramatic changes in the structure of oilseed rape during the whole growth cycle as it
moves from the accumulation of leaves, elongation of stems, formation of flower buds,
filling and ripening of buds, senescence of plants, Stokes-related parameters including
g0, g1, g2, g3, m, H, Dolp and Lpr showed obvious evolution versus the oilseed rape
growth. A comprehensive analysis of the relationship between these parameters and rape
growth stages revealed the potential of averaged Stokes-related parameters for oilseed
rape phenological stage identification. However, other Stokes-parameters, including χ,
ϕ, Docp and Cpr, which showed good performance for classification in previous studies,
were quite noisy during the whole oilseed rape growth circle and showed unobvious
sensitivity to the crop’s phenology change. The reason may because of the assumed
incident wave’s horizontal and vertical polarization, which have few other polarized
powers in the received channel. However, it needs to be studied further in the future.
With the inputs of Stokes-related parameters, the DT algorithm provided robust phenology
retrieval results; the overall average estimation accuracy of five oilseed rape phenological
stages in two Groups is 71.18% and 79.71%, respectively. Meanwhile, the best estimation
accuracy for each stage was 95.65%. The results revealed the potentiality of Stokes-related
parameters in crop phenological stage estimation, especially for the oilseed rapes growing
at S1, S2 and S4 stages. The novelty of this study stems from the fact that it is a first
step towards the retrieval of crop phenology using averaged Stokes parameters and their
sub parameters. The analytical findings have the potential to serve as a reference for
further studies that would attempt to relate the crop phenological stages to averaged
Stokes parameters, which can describe depolarization information better than polarimetric
decomposition parameters. An obvious limitation of this study was its application in real
dual polarization data. In future studies, more dual polarization data should be explored,
moreover, the performance and estimation accuracy of crop phenological stages are affected
by phenological labelling ways and classification algorithms. In the future, the performance
of Stokes-related parameters should be explored with different phenological labelling ways
and different classification algorithms.
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