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Abstract: Change detection based on deep learning has made great progress recently, but there are
still some challenges, such as the small data size in open-labeled datasets, the different viewpoints in
image pairs, and the poor similarity measures in feature pairs. To alleviate these problems, this paper
presents a novel change capsule network by taking advantage of a capsule network that can better
deal with the different viewpoints and can achieve satisfactory performance with small training data
for optical remote sensing image change detection. First, two identical non-shared weight capsule
networks are designed to extract the vector-based features of image pairs. Second, the unchanged
region reconstruction module is adopted to keep the feature space of the unchanged region more
consistent. Third, vector cosine and vector difference are utilized to compare the vector-based features
in a capsule network efficiently, which can enlarge the separability between the changed pixels and
the unchanged pixels. Finally, a binary change map can be produced by analyzing both the vector
cosine and vector difference. From the unchanged region reconstruction module and the vector
cosine and vector difference module, the extracted feature pairs in a change capsule network are
more comparable and separable. Moreover, to test the effectiveness of the proposed change capsule
network in dealing with the different viewpoints in multi-temporal images, we collect a new change
detection dataset from a taken-over Al Udeid Air Basee (AUAB) using Google Earth. The results of
the experiments carried out on the AUAB dataset show that a change capsule network can better deal
with the different viewpoints and can improve the comparability and separability of feature pairs.
Furthermore, a comparison of the experimental results carried out on the AUAB dataset and SZTAKI
AirChange Benchmark Set demonstrates the effectiveness and superiority of the proposed method.

Keywords: change detection; capsule network; similarity measure; change vector analysis; deep learning

1. Introduction

Change detection is the process of identifying differences in the state of an object or
phenomenon by observing it at different times [1]. As one of the important technologies
for remote sensing image analysis, change detection has played an important role in the
military and in civilian life, such as military strike effect evaluation [2–4], land use [5–9],
and natural disaster evaluation [10–13].

Recently, deep learning (DL) has been widely applied to the field of change
detection [14–19] thanks to its simple process, strong feature representation ability, and
excellent application performance. However, there are still many challenges in change
detection. First, DL-based methods usually require a large number of labeled samples to
optimize the network. However, the available open-labeled datasets for remote sensing
change detection are extremely scarce and predominantly very small compared to other
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remote sensing image-interpretation fields [20]. For example, The Vaihingen dataset, which
is widely used in remote sensing image classification [21,22], only contains 33 patches, and
each pair of images is about 1900× 2500 pixels. The effective sample size of Vaihingen is
about 1.5× 108. The SZTAKI AirChange Benchmark Set [23,24], which is extensively used
to evaluate the performance of change detection algorithms [14–16,18,25], is composed
of 13 aerial image pairs with size of 952× 640 pixels. Therefore, the effective sample size
of SZTAKI is only about 7.9× 106. In comparison, the data size of change detection is
more than 100 times smaller than that of the remote sensing image-classification dataset.
Second, the image pairs or image sequences used for change detection are often obtained
from different viewpoints [26–29]. In other words, it is difficult to capture a scene from
similar viewpoints every time in remote sensing change detection. As shown in Figure 1,
the buildings were shot at different times. Due to the different viewpoints, buildings have
different shadows even if the image pair has been registered, which makes the comparison
of image pairs more difficult. In order to alleviate the problems caused by different view-
points, Sakurada et al. [26] designed a dense optical flow-based change detection network.
Palazzolo et al. [30] relied on 3D models to identify scene changes by re-projecting images
onto one another. Park et al. [27] presented a novel dual dynamic attention model to
distinguish different viewpoints from semantic changes. Therefore, if the algorithms do not
pay attention to the viewpoints, the result of the change detection is affected. Finally, the
similarity measurement method of existing change detection methods is relatively simple.
The study of similarity measurement in change detection has a long history. Traditional
similarity measurement methods include image difference, image ratio, and change vector
analysis (CVA) [31]. For DL-based methods, similarity measurement also plays an im-
portant role in improving the performance of model, such as the euclidean distance used
in [14], the improved triplet loss function applied in [15], the difference skip connections
adopted in [25], and the feature space loss designed in [32]. Similarity measurement is one
of the important factors affecting the separability of sample pairs in change detection. It is
beneficial to improve the performance of change detection to make sufficient and effective
comparison of the features between sample pairs.

(a) (b)

Figure 1. Image pair obtained from different viewpoints. (a) The image of phase one. (b) The image
of phase two.

To deal with the small training data size in change detection datasets, some scholars
chose unsupervised methods [16,33,34]. These methods did not require labeled training
samples, but the performance of these algorithms could be improved. To cope with this
problem, Xu et al. [18] took advantages of the capsule network [35] and designed the
pseudo-siamese capsule network. Siamese network has two branches in the network that
share exactly the same architecture and the same set of weights. For pseudo-siamese, it
has two identical branches but the weights of two branches are not shared. The capsule
network used vectors for feature extraction and dynamic routing technology for features
aggregation. As shown in much existing literature [35–37], the capsule network could use
less training samples to reach the comparable performance than traditional convolutional
neural networks (CNN). Moreover, the pseudo-siamese capsule network achieved satis-
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factory results on small open-labeled remote sensing change detection datasets, which
confirmed that a capsule network was very suitable for change detection.

Unfortunately, the pseudo-siamese network still has some shortcomings. First, the
pseudo-siamese capsule network [18] did not analyze the experimental results of the
image pairs that were obtained from different viewpoints. Vector-based features and the
dynamic routing technology in a capsule network are beneficial to the capsule network
when dealing with the pose information (e.g., translation, rotation, viewpoint, and scale).
In other words, the pseudo-siamese capsule network may alleviate the problem caused by
different viewpoints in image pairs to some degree. It may be limited by the open dataset in
which the problem of different viewpoints is not obvious and for which the pseudo-siamese
capsule network did not investigate thoroughly in the experiments. Second, the weights
of the two branches in the pseudo-siamese network were not shared in order to maintain
the flexibility of the model [38], which may cause feature space offset. Therefore, the
features that were extracted by the pseudo-siamese network were uncomparable. Finally,
the extracted features were directly concatenated in the pseudo-siamese capsule network,
which led to insufficient features comparison.

In order to alleviate the problems mentioned above, we carried out the following
works. First, the AUAB dataset in which the sequence images are different in terms of illu-
mination, season, weather, and viewpoint was collected from the Google Earth. Second, the
reconstruction module on an unchanged region was designed. As a regularization method,
this module drives the network to maintain the feature consistency on an unchanged
region, which keeps the comparability between feature pairs. Finally, in order to make
similarity measuring more efficient, the vector-based features output by the capsule net-
work were compared for both direction and length in the forms of vector cosine and vector
difference, which can alleviate the insufficient feature comparison in the pseudo-siamese
capsule network.

The main contributions of this paper are summarized as follows:

• This paper proposes a novel change capsule network for optical remote sensing image
change detection. Compared with other DL-based change detection methods, the
proposed change capsule network has good performance and robustness.

• In order to make the extracted feature pairs in a change capsule network more compa-
rable and separable, this paper designs an unchanged region reconstruction module
and a vector cosine and vector difference module, respectively.

• The AUAB dataset, which simulates practical applications, is collected to further
analyze the viewpoints in change detection. Moreover, experiments on the AUAB
dataset and the SZTAKI dataset show the effectiveness and robustness of the pro-
posed method.

The rest of this paper is organized as follows. The background of the proposed
method is introduced in Section 2, and Section 3 introduces the proposed method in detail.
In Section 4, the dataset and present experimental results are described to validate the
effectiveness of the proposed method. In Section 5, we discuss the results of the proposed
method. Finally, the conclusion of this paper are drawn in Section 6.

2. Background
2.1. Capsule Network

Sabour et al. [35] introduced the idea of a capsule network. Different from the scalar-
based feature in CNN, the feature extracted by the capsule network is a vector. The length
of the vector represents the probability that the entity exists, and its orientation represents
the instantiation parameters. Furthermore, the capsule network replaced the pooling layer
used in convolutional networks with dynamic routing technology because the pooling
layer may lose some information. As shown in much existing literature [18,35–37], a
capsule network could use less training samples to reach comparable performance to that
of a traditional CNN. Furthermore, a capsule network could better deal with the pose
information (e.g., translation, rotation, viewpoint, and scale). It is worth noting that the
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image pairs or image sequences used for change detection are often obtained from different
viewpoints. Therefore, a capsule network may alleviate the problem caused by different
viewpoints in the field of remote sensing change detection.

Let the input of the capsule layer be a vector ui, and use the matrix wi,j to perform
affine transformation on the input vector:

ûi,j = wi,jui (1)

Then, perform a weighted summation on the output of the affine transformation:

sj = ∑
i

ci,jûi,j (2)

where ci,j is updated using the dynamic routing algorithm. The output vectors in capsule
network are computed using a nonlinear squashing function:

vj =

∥∥sj
∥∥2

1 +
∥∥sj
∥∥2

sj∥∥sj
∥∥ (3)

It can be seen from Equation (3) that the output of the capsule network is a vec-
tor for which the length is between [0, 1). Figure 2 shows the forward propagation of
capsule network.
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Figure 2. The schematic diagram of forward propagation of capsule network.

The capsule network uses dynamic routing technology to implement the aggregation
of shallow-layer capsules to higher-level capsules by calculating the intermediate value ci,j.
As shown in Table 1, dynamic routing technology consists of seven steps. In step 1, affine
transformation is applied to the input ui to obtain ûi,j; in step 2, variable bi,j is initialized;
in step 3, the intermediate value ci,j is computed as the softmax of bi,j; in step 4, a weighted
summation on ûi,j is performed using the intermediate value ci,j; in step 5, the output of
capsule layer vj is obtained by applying the non-linear squashing function to the output of
the weighted summation; in step 6, bi,j is updated using the dot product of ûi,j and vj; and
in step 7, whether the number of iterations meets the requirement is checked and, if it does,
the algorithm and output vj are terminated; otherwise, skip back to step 3.
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Table 1. Algorithm of dynamic routing in capsule layer.

Input: the capsule ui, iterations r.
Output: the capsule vj.

1. The affine transformation: ûi,j = wi,jui.
2. Initialization: bi,j ← 0.

3. Update ci,j ← ebi,j

∑i ebi,j
.

4. Update sj = ∑i ci,jûi,j.

5. Update vj =
‖sj‖2

1+‖sj‖2
sj

‖sj‖ .

6. Update bi,j ← bi,j + ûi,j · vj, where ûi,j · vj is the dot product of ûi,j and vj.
7. Compute r = r− 1. If r > 0: jump to step 3, else: end.

Nowadays, the capsule network has been widely used in image classification [37,39,40],
video processing [41,42], image generation [43,44], and change detection [18,33], etc. It is
reasonable to explore the characteristics of the capsule network to make it more suitable for
change detection.

2.2. Change Vector Analysis

The output of the capsule network is vector-based features. Change vector analysis
(CVA) [31] is the most widely used method in the field of change detection to analyze
vector-based features. The similarity measurement method proposed in this paper is
inspired by the CVA. Therefore, we introduce the CVA in this section.

CVA generally includes the following steps. First, some basic preliminary data pro-
cessings are needed in CVA, suhc as geometric registration and radiometric normalization.
Second, some algorithms are applied to image pairs to extract effective features of the
images. Third, change vector is obtained by calculating the difference of the feature pair.
Finally, binary change detection is performed based on the length of the change vector, and
the direction of the change vector is used to distinguish different kinds of change. In the
past few decades, a series of CVA techniques have been developed and explored, including
selecting suitable thresholds [45–47] and feature domains [48]. A flow diagram of CVA is
shown in Figure 3.

Figure 3. Flow diagram of CVA.

The framework of CVA is very effective for low-/medium-resolution multitemporal
images. For very high spatial resolution (VHR) images, it is necessary to consider the
spatial contextual information [49]. Therefore, Saha et al. [34] designed deep change
vector analysis (DCVA). DCVA used a pretrained multi-layer CNN [50] to obtaining deep
features. To make sure that only change-relevant features are retained, a layer-wise feature
comparison and selection mechanism was applied to the extracted features. The deep
change vector was obtained by concatenating the selected features from different layers of
CNN. The length of the deep change vector represented whether the corresponding pixel
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changed. The different kinds of change could be obtained by identifying the direction of
the deep change vector.

It can be seen from the above introduction that the vector-based change detection
method mainly considers length and direction. The length and direction are also two
important attributes of the capsule in the capsule network. Therefore, fully considering
a comparison of the length and direction in the capsule network may be beneficial to
improving the performance of change detection.

3. Proposed Method

In this section, the proposed change detection algorithm based on change capsule
network is detailed. The framework is illustrated in Figure 4. First, the features of image
pairs are extracted using two identical non-shared weight capsule networks to maintain
the flexibility of the model. The shape of vector-based features output by the backbone is
W × H × 1× 16. Each capsule represents the feature of a pixel. Second, the unchanged
region reconstruction module is adopted to make the feature space of the unchanged
region more consistent. This module takes the features (the shape is W × H × 1× 16) of
image 1 as input to reconstruct the unchanged region in image 2. Third, the vector-based
features output by capsule network are compared for both direction and length in the
forms of vector cosine and vector difference. The outputs of vector cosine and vector
difference are both change probability maps that can be optimized using the ground truth.
Finally, a binary change map can be produced by analyzing the result of vector cosine and
vector difference.

K
e

y:

Vector-based features
W × H × 1 × 16

Vector-based features
W × H × 1 × 16

Encoder Decoder

Skip connections

Encoder Decoder

Skip connections

Input 1  W × H

Input 2  W × H

5×5 Conv
1×1 Conv Capsule,Routing 3
Threshold Segmentation (0.5)
MSE Loss

Final output

Change probability map 
of vector difference 

similarity comparison

The binary result of 
vector difference 

similarity comparison

Change probability 
map of cosine 

similarity comparison

The binary result 
of cosine similarity 

comparison

Ground truth

Margin-focal Loss 

Unchanged region 
reconstruction module

Unchanged Region map

two identical non-shared weights 
convolutional capsule networks

Figure 4. Framework of the proposed change capsule network for change detection.

3.1. Capsule Network as Backbone

The backbone used in the change capsule network is modified from SegCaps [51].
SegCaps improved the traditional capsule network by implementing a convolutional
capsule layer and a deconvolutional capsule layer. Unlike the original capsule network [35]
that only outputs the category of the entire image, SegCaps implements the classification of
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each pixel of the input image. The structure of SegCaps is similar to U-net [52], including
the encoder–decoder and skip connections structure. SegCaps and its improved version
have been applied to the fields of image segmentation [51], image generation [43], and
change detection [18]. Change capsule network uses SegCaps as the backbone to make
full use of semantic and contextual information. The detailed parameter setting of the
backbone is illustrated in Figure 5. Let the size of the input image be W × H; then, the
shape of the output vector-based features is W × H × 1× 16.

Figure 5. The backbone of a change capsule network.

3.2. Unchanged Region Reconstruction Module

A change capsule network was designed based on the pseudo-siamese network [18].
The pseudo-siamese network provides more flexibility than a restricted siamese network
does because the weights of pseudo-siamese network are not shared [38]. However, the
weights of two unshared branches may cause feature spaces to be inconsistent, which
leads to a lack of comparability in the features extracted by the network. Therefore, the
reconstruction module on the unchanged region was designed. As a regularization method,
this module drives the network to maintain feature consistency on the unchanged region,
which improves the comparability between feature pairs.

As shown in Figure 6, vector-based features (the shape is W × H × 1× 16) output
by the backbone are reshaped to scalar-based features (the shape is W × H × 16). Then,
two convolutional layers for which the convolution kernel size is 1× 1 are applied to the
scalar-based features to obtain the global feature map (W × H × 3). In order to obtain the
unchanged region map and unchanged region features, a merge mechanism is designed.

Figure 6. The structure of unchanged region reconstruction module.
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Let F = { f (i, j)|1 ≤ i ≤W, 1 ≤ j ≤ H} be the global feature map and
G = {g(i, j)|1 ≤ i ≤W, 1 ≤ j ≤ H} represent the ground truth, where gij = 0 means
the corresponding pixel pair unchanged and gij = 1 means changed. The unchanged
region features P = {p(i, j)|1 ≤ i ≤W, 1 ≤ j ≤ H} can be obtained as follows:

p(i, j) = (1− g(i, j)) f (i, j) (4)

Let I = {x(i, j)|1 ≤ i ≤W, 1 ≤ j ≤ H} represent input image 2. The unchanged
region map Y = {y(i, j)|1 ≤ i ≤W, 1 ≤ j ≤ H} can be obtained as follows:

y(i, j) = (1− g(i, j))x(i, j) (5)

In Figure 6, a black mask is used to cover the change region, so the unchanged region
map is the input image 2 without the black mask.

The unchanged region reconstruction module uses the mean squared error (MSE) loss
to optimize, and the function is shown as follows:

Lmse(p, y) =
1

WH

WH

∑
ij
‖p(i, j)− y(i, j)‖2 (6)

It can be seen from Equation (6) that the unchanged region features is more and more
similar to the unchanged region map.

3.3. Comparison of Vector-Based Features

It is known that the output of the backbone is a vector for which the length is between
[0, 1). Let the output vectors of the two branches be ai,j and bi,j, respectively, where (i,j)
represents coordinates.

0 ≤
∥∥ai,j

∥∥ < 1 (7)

0 ≤
∥∥bi,j

∥∥ < 1 (8)

The vector difference between ai,j and bi,j is as follows:

di,j = ai,j − bi,j (9)

Therefore, the length of difference vector di,j is as follows:∥∥di,j
∥∥ =

∥∥ai,j − bi,j
∥∥

=
√∥∥ai,j

∥∥2
+
∥∥bi,j

∥∥2 − 2
∥∥ai,j

∥∥∥∥bi,j
∥∥ cos θ

≤
√∥∥ai,j

∥∥2
+
∥∥bi,j

∥∥2
+ 2
∥∥ai,j

∥∥∥∥bi,j
∥∥

<
√

2 + 2

= 2

(10)

where θ is the angle between two vectors.

0 ≤
∥∥di,j

∥∥ < 2 (11)

Then, linear function f is applied to scale
∥∥di,j

∥∥ to between [0, 1). The linear function
f is as follows:

f (
∥∥di,j

∥∥) = 1
2

∥∥di,j
∥∥ (12)

Therefore, the output of vector difference similarity comparison is f (
∥∥di,j

∥∥), where
the value range is as follows:

0 ≤ f (
∥∥di,j

∥∥) < 1 (13)
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The larger f (
∥∥di,j

∥∥), the more likely the corresponding pixel pair changes. There-
fore, the output of the vector difference similarity comparison can be used to optimize
network parameters.

To analyze the direction of the output vector in a capsule network, we used the
vector cosine. For any two vectors, their cosine value is between [−1, 1]. Therefore,
−1 ≤ cos θ ≤ 1, where θ is the angle between ai,j and bi,j. We also utilize a linear function
g to scale cos θ to between [0, 1]. The expression is as follows:

g(cos θ) = 1− 1
2
(cos θ + 1) (14)

Therefore the output of vector cosine similarity comparison is g(cos θ), for which the
value range is as follows:

0 ≤ g(cos θ) ≤ 1 (15)

The larger θ, the larger g(cos θ). In other words, the larger the angle between the two
vectors, the more likely the corresponding pixel point changes. Therefore, the output of
vector cosine similarity comparison can be used to optimize network parameters.

There are four situations when we use vector cosine and vector difference to optimize
network parameters: (1) The angle between two vectors is large and the length of the
difference vector is large. (2) The angle between two vectors is small but the length of the
difference vector is large. (3) The angle between two vectors is large but the length of the
difference vector is small. (4) The angle between two vectors is small and the length of
the difference vector is small. Figure 7 shows the four situations, where the unit circle can
represent the feature space because the length of the output vectors in capsule network is
range of [0, 1). It can be seen from the above that vector cosine and vector difference is not
contradictory during network optimization.

K
e

y:

Situation one:
The angle between two 
vectors is large and the 
length of the difference 

vector is large

Situation two:
The angle between two 
vectors is small and the 
length of the difference 

vector is large

Situation three:
The angle between two 
vectors is large and the 
length of the difference 

vector is small

Situation four:
The angle between two 
vectors is small and the 
length of the difference 

vector is small

Vector one

Vector two

Difference vector

Figure 7. State graph of vector cosine and vector difference.

During the test time, only a simple threshold (0.5) is needed to obtain the binary results
of the vector cosine similarity comparison and the vector difference similarity comparison.
Let Ocos = {ocos(i, j)|1 ≤ i ≤W, 1 ≤ j ≤ H} be the binary change map of vector cosine sim-
ilarity comparison, Odi f f =

{
odi f f (i, j)|1 ≤ i ≤W, 1 ≤ j ≤ H

}
be the binary change map of

vector difference similarity comparison, and O f inally =
{

o f inally(i, j)|1 ≤ i ≤W, 1 ≤ j ≤ H
}

be the final change map. There are four methods of fusion for a change capsule network
inference: First, we only use the result of the vector cosine similarity comparison:

o f inally(i, j) = ocos(i, j) (16)



Remote Sens. 2021, 13, 2646 10 of 22

Second, we only use the result of the vector difference similarity comparison:

o f inally(i, j) = odi f f (i, j) (17)

Third, the result of the OR gate operation on the vector cosine similarity comparison
and the vector difference similarity comparison is regarded as the final binary change
map. In other words, either the output of vector cosine or the output of vector difference is
changed; the final result is changed. The expression is as follows:

o f inally(i, j) = ocos(i, j) ∨ odi f f (i, j) (18)

Finally, we use the result of the AND gate operation on the vector cosine similarity
comparison and the vector difference similarity comparison as the final binary change
map. That is, both the results of vector cosine and vector difference are changed; the
corresponding pixel is changed.

o f inally(i, j) = ocos(i, j) ∧ odi f f (i, j) (19)

In this paper, these four fusion ways all can obtain satisfactory, but we used the AND
gate operation. We analyze the reason in the experimental part.

3.4. Loss Function

The loss function of a change capsule network consists of two parts. MSE loss is used
in the unchanged region reconstruction module, and Margin-focal loss [18] is applied to
the similarity comparison. Margin-focal loss takes the advantages of focal loss [53] and
margin loss [35], which can effectively alleviate samples imbalance in capsule network.
The margin-focal loss is defined as follows:

MFL(pij, yij) =
1

WH

WH

∑
ij
−αyij(max

{
0, m+ − pij

}
)

γ log pij

− (1− α)(1− yij)(max
{

0, pij −m−
}
)γlog (1− pij)

(20)

where pij is the output of the vector difference similarity comparison or the vector cosine
similarity comparison at spatial location (i, j) and yij is the label. γ is a focusing parameter,
and α is a balance parameter. m+ and m− are the margin.

The final loss function is defined as follows:

L(p f , pcos, pdi f f , y f , yl) = MFL(pcos, yl) + MFL(pdi f f , yl) + βLmse(p f , y f ), (21)

where pcos is the output of the vector cosine similarity comparison, pdi f f is the output of
the vector difference similarity comparison, yl is the binary label, p f is the unchanged
region features, y f is the unchanged region map, and β is a balance parameter.

3.5. Detailed Change Detection Scheme

The change detection scheme in this paper is composed of two stages: training
and inference.

• Training: First, we use two identical non-shared weights capsule networks to extract
the vector-based features of image pairs. Second, the features of image one are sent
to the unchanged region reconstruction module to reconstruct the unchanged region
of image two to make the feature space more consistent. Third, the vector-based
features output by capsule network are compared for both direction and length in the
forms of vector cosine and vector difference. Finally, we use Equation (21) to optimize
network parameters.

• Inference: First, the vector-based features of image pairs are extracted using two
identical non-shared weights capsule networks. Second, the extracted vector-based
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features are compared for both direction and length in the forms of vector cosine and
vector difference. The binary result of the vector difference similarity comparison
and the binary result of the vector cosine similarity comparison can be produced by a
simple threshold (0.5). Finally, the binary change map can be produced by analyzing
the result of vector cosine and vector difference. Only when the result of the vector
cosine comparison and the result of teh vector difference comparison are both changed
can the corresponding pixel be considered changed.

4. Experiments
4.1. Dataset Description

The experiments were carried out on the AUAB dataset and the SZTAKI dataset.
Both AUAB and SZTAKI are optical RGB remote sensing image datasets. It is worth
noting that the AUAB dataset is used to perform ablation. An ablation study studies
the performance of an AI system by removing certain components to understand the
contribution of the component to the overall system. The term originated from an analogy
with biology (removal of components of an organism), and continuing the analogy, they
are used particularly in the analysis of artificial neural nets, analogous with ablative brain
surgery. Source: Wikipedia (accessed on 1 July 2021). Comparative experiments with other
methods were carried out on both two datasets.

4.1.1. AUAB Dataset

The AUAB dataset was collected from the Google Earth. The dataset contains four
registered optical images taken over Al Udeid Air Basee in years of 2002, 2006, 2009, and
2011. The size of each image in the dataset is 1280× 1280 pixels with 0.6-m/pixel resolution.
The sequence images that are co-registrated are illustrated in Figure 8. The change maps
that are manual labeled by outsourced annotators and verified by domain experts are
shown in Figure 9.

(a) (b) (c) (d)

Figure 8. The time series images in the AUAB dataset. Remote sensing images taken in (a) 2002, (b) 2006, (c) 2009, and
(d) 2011.

(a) (b) (c)

Figure 9. The ground truth of the AUAB dataset. (a) Ground truth of 2002 and 2006. (b) Ground
truth of 2006 and 2009. (c) Ground truth of 2009 and 2011.

https://en.wikipedia.org/wiki/Ablation_(artificial_intelligence)
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In practical applications, we usually collect a large number of historical images to
train the model and use the trained model to predict the latest image pairs. The AUAB
dataset is a time series dataset, so it can simulate real life more suitably. We paired three
historical images from 2002, 2006, and 2009 to obtain three pairs of images (the image pair
of 2002 and 2006, the image pair of 2006 and 2009, and the image pair of 2002 and 2009)
as the training data. Historical images of 2011 can be combined with any of the historical
images of 2002, 2006, and 2009 to form the test image pair. In this paper, the image pair of
2009 and 2011 is used as the test data to evaluate the performance of the model. It can be
known by calculation that the effective training sample size of AUAB is about 4.9× 106,
which is at the same level as the data size of the STZAKI. Though the AUAB dataset was
collected from multiple time series in the same region, the sequence images are different in
terms of illumination, season, weather, and viewpoint, especially the viewpoint. Therefore,
it is convincing to use this dataset to evaluate the performance of the model.

4.1.2. SZTAKI Dataset

The SZTAKI AirChange Benchmark Set [23,24] is widely used in change
detection [14–16,18,25]. This dataset contains three sets of labeled images pairs named
SZADA, TISZADOB, and ARCHIEVE, containing 7, 5, and 1 image pairs, respectively. The
size of each image in the dataset is 952× 640 pixels with 1.5-m/pixel resolution. Following
the literature in [14–16,18,25], the top left 784× 448 rectangle of the image pairs are cropped
for testing and the rest of the region is used for training data construction. For convenience
of comparison, Szada and Tiszadob are treated completely separately as two different
datasets to train and test the model in this paper (ARCHIEVE is ignored), and the first pair
of the SZADA testing dataset and the third pair of the TISZADOB testing dataset are used
to evaluate the proposed method. SZADA/1 and TISZADOB/3 are illustrated in Figure 10.

(a) (b) (c)

(d) (e) (f)

Figure 10. The test image pairs of SZTAKI dataset. (a) Image 1 of SZADA/1. (b) Image 2 of SZADA/1. (c) Ground truth of
SZADA/1. (d) Image 1 of TISZADOB/3. (e) Image 2 of TISZADOB/3. (f) Ground truth of TISZADOB/3.

The number of changed and unchanged pixels on the AUAB dataset and the SZTAKI
dataset (Szada and Tiszadob) is shown in Table 2. Since the datasets are collected in
different regions, the ratios of changed-to-unchanged pixels in the training and testing are
quite different.
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4.2. Implementation Details
4.2.1. Data Augmentation

As in the literature [14,15,18,25], data augmentation was applied to avoid model overfitting.
We introduced the operations on the AUAB dataset and the SZTAKI dataset separately.

• SZTAKI dataset: Sliding windows of different scales ( 56× 56, 112× 112, and 168× 168)
were used to crop the training data overlappingly. The stride of sliding window is 56.
Then, various rotations and flips were applied to the cropped images. Finally, bilinear
interpolation was used to scale the image pair to 112× 112 and nearest-neighbor
interpolation was applied to the ground truth. Through the above operations, the
SZADA dataset has 7056 pairs of training data and TISZADOB has 5040 pairs.

• AUAB dataset: Sliding windows of different scales (128× 128, 256× 256, and 384× 384)
were used to crop the training data overlappingly. The stride of sliding window
is 56, too. Then various rotations and flips were applied to the cropped images.
Finally, bilinear interpolation was used to scale the image pair to 256 × 256 and
nearest-neighbor interpolation was applied to the ground truth. Through the above
operations, there are 5145 pairs of training data in the AUAB dataset.

Table 2. The number of changed and unchanged pixels on the AUAB dataset and the SZTAKI dataset.

Changed Pixels Unchanged Pixels Changed Pixels:
Unchanged Pixels

AUAB
Train 906,302 4,008,898 1 : 4.42

Test 75,665 1562,735 1 : 20.65

SZADA
Train 69,832 1,736,504 1 : 24.87

Test 20,494 351,232 1 : 17.14

TISZADOB
Train 77,328 1,212,912 1 : 15.69

Test 60,094 291,138 1 : 4.84

4.2.2. Parameter Setting

the change capsule network was trained from scratch using Keras [54] and with an
Nvidia GTX1060 GPU with 6 GB memory. We used adam [55] with an initial learning rate
of 0.00001 to optimize network parameters. In Equation (20), m+ = 0.9 and m− = 0.1,
γ = 1.0, and α is set around 0.85 in the SZTAKI dataset. For AUAB dataset α is set around
1.5, where α can be adjusted with the dataset. In Rquation 21, we set β = 0.5. Kaiming
initialization [56] was applied to initialize the convolutional layer parameters. The batch
size was set to 1 due to the memory limitation of the GPU. For the number of training sam-
ples in one forward/backward pass, the higher the batch size, the more memory space you
need. The code is available at https://github.com/xuquanfu/capsule−change−detection
(accessed on 1 July 2021).

4.2.3. Evaluation Criterion

To evaluate the performance of the proposed method, we calculated the precision,
the recall, the F-measure rate (F-rate), and the Kappa [57] with respect to the changed
class, where precision refers to positive predictive value, recall refers to true positive rate,
F-measure is the harmonic mean of precision and recall, and Kappa is used to evaluate
the extent to which the classification results outperform random classification results. The
expressions are as follows.

Precision =
TP

TP + FP
(22)

Recall =
TP

TP + FN
(23)

F− rate =
2× Precision× Recall

Precision + Recall
(24)

https://github.com/xuquanfu/capsule_change_detection
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Kappa =
po − pe

1− pe
(25)

po =
TP + TN

TP + TN + FP + FN
(26)

pe =
(TP + FP)(TP + FN) + (FN + TN)(FP + TN)

(TP + TN + FP + FN)2
(27)

where TP is the number of pixels detected by the model and included in the ground-truth
images, FP is the number of pixels detected by the model but not included in the ground-
truth images, and FN is the number of pixels not detected by the model but included in
the ground-truth images [58]. po represents the percentage of correct classifications. pe
denotes the proportion of expected agreement between the ground-truth and predictions
with given class distributions [59].

4.3. Results

Ablation experiments and comparison experiments are designed to evaluate the
effectiveness of the model.

• Ablation experiments: Three experiments are designed on the AUAB dataset. First,
the unchanged region reconstruction module is applied to the pseudo-siamese capsule
network. Second, we train the pseudo-siamese capsule network with both the vector
cosine similarity comparison and the vector difference similarity comparison. Finally,
we analyze how to obtain a better binary map from the results of vector cosine and
vector difference.

• Comparison experiments: we carries out the comparison experiments on the AUAB
dataset and the SZTAKI dataset. We compared the proposed algorithm with two
other methods: (1) FC-Siam-diff proposed in [25]; (2) Pseudo-siamese capsule network
presented in [18]. FC-Siam-diff, which is a fully convolutional siamese-based network
for change detection, has achieved satisfied performance. FC-Siam-diff effectively
reduces the amount of parameters by reducing the number of channels in the network,
so this method is suitable for change detection in which open source datasets are
extremely scarce and the amount of the data is small. In contrast to the FC-Siam-
diff, which is a representative method for change detection based on convolutional
network, the pseudo-siamese capsule network is a representative method for change
detection based on capsule network. Moreover, the pseudo-siamese capsule network
is the baseline, which can be used to evaluate whether the improvements in this paper
are effective.

4.3.1. Ablation Experiments

The effectiveness of the unchanged region reconstruction module. We apply the
unchanged region reconstruction module to the pseudo-siamese capsule network [18].
According to the results listed in Table 3, the unchanged region reconstruction module can
effectively improve the performance of the model in terms of recall, F-measure, and Kappa.
The result of our improvement is 2.5% higher in both F-measure and Kappa than the
baseline (the pseudo-siamese capsule network). For recall, the result of our improvement
is 6.5% higher than the baseline. The improvements of recall, F-measure, and Kappa show
that our improved method can effectively reduce the number of changed samples that are
incorrectly judged as unchanged by the model. The reason may be that the unchanged
region reconstruction module improves the comparability between feature pairs, which
promotes the performance of the model.
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Table 3. The results of the unchanged region reconstruction module.

Methods Baseline +Unchanged Region Reconstruction Module

Precision (%) 77.0 72.6
Recall (%) 54.3 60.8
F-rate (%) 63.7 66.2
Kappa (%) 62.2 64.7

The effectiveness of the designed similarity comparison method. As shown in
Table 4, when we use the vector cosine similarity comparison and vector difference similar-
ity comparison in the pseudo-siamese network, the results have a significant improvement
in terms of recall, F-measure, and Kappa. Especially for recall, the result of our improve-
ment is 7.9% higher than the baseline, which indicates that some change samples that the
baseline cannot distinguish are correctly separated. Therefore, the vector cosine similarity
comparison and the vector difference similarity comparison can effectively increase the
difference of inter-class between sample pairs, which can enlarge the separability between
the changed pixels and the unchanged pixels.

Table 4. The results of the designed similarity comparison module.

Methods Baseline +Vector Cosine and Vector Difference

Precision (%) 77.0 72.8
Recall (%) 54.3 62.2
F-rate (%) 63.7 67.1
Kappa (%) 62.2 65.6

The fusion of vector cosine and vector difference. As shown in Section 3.3, there are
four methods of fusion for a change capsule network in inference. First, only the result
of the vector cosine similarity comparison is used. Second, only the result of the vector
difference similarity comparison is used. Third, the final binary change map is obtained by
the OR gate operation. Finally, the AND gate operation is used to obtain the final binary
change map. The results of the four methods of fusion are listed in Table 5 and Figure 11.

Table 5. Experimental results of the fusion methods.

Methods Vector Cosine Vector Difference OR Gate AND Gate

Precision (%) 71.5 67.7 65.8 73.8
Recall (%) 65.1 68.5 68.7 64.9
F-rate (%) 68.2 68.1 67.3 69.1
Kappa (%) 66.7 66.5 65.6 67.7

It can be seen from Table 5 and Figure 11 that both the result of the vector cosine
similarity comparison and the result of the vector difference similarity comparison are
satisfactory. Precision, F-measure, and Kappa are effectively improved when the AND
gate operation is applied on two similarity comparison results. For the OR gate, the
obtained result is the worst in terms of F-measure and Kappa, although recall is improved.
In fact, both the result of the vector cosine similarity comparison and the result of the
vector difference similarity comparison may misjudge due to noise. When we use the OR
gate operation, more noise may be accumulated. For the AND gate operation, noise can
be partially filtered. Therefore, we use the AND gate operation for fusion to obtain the
final result.

4.3.2. Comparison Experiments

AUAB dataset. As shown in Table 6, the proposed method achieves the best recall,
F-measure, and Kappa. Compared with the FC-Siam-diff, the change capsule network



Remote Sens. 2021, 13, 2646 16 of 22

greatly improved in terms of precision, recall, F-measure, and Kappa. The pseudo-siamese
capsule network obtains the best precision, but its recall is the lowest. This shows that
the pseudo-siamese capsule network cannot distinguish the category of sample pairs well
on the AUAB dataset, so some changed samples are not correctly detected. The change
capsule network has both the vector cosine similarity comparison and the vector difference
similarity comparison to improve the separability of the sample pairs, which can effectively
increase the recall while maintaining high precision.

(a) (b) (c)

(d) (e)

Figure 11. The results of the four methods of fusion. (a) Ground truth. (b) The result of the vector
cosine similarity comparison. (c) The result of the vector difference similarity comparison. (d) The
result of the OR gate operation. (e) The result of the AND gate operation.

As shown in Figure 12, the change map obtained by FC-Siam-diff has a lot of noise,
even though most of the change region was detected. The result obtained by the pseudo-
siamese capsule network is less noise, but some changed samples are not correctly detected.
Therefore, the recall of the pseudo-siamese capsule network is the lowest among the three
methods. For the change capsule network, the change map is smooth with less noise and
missed detection. In Figure 12, the different viewpoints in the image patches with red boxes
are obvious. Figure 13 shows patch-based change maps at a suitable scale. In Figure 13,
FC-Siam-diff obtains some false detections, especially in the region where shadows are
generated due to different viewpoints. The pseudo-siamese capsule network and the
change capsule network can better deal with the different viewpoints and can produce
more reliable change maps. This confirms that the capsule network can better deal with
the pose information and can alleviate the problem caused by different viewpoints in
image pairs. In other words, the proposed method can deal with different viewpoints to
some extent.



Remote Sens. 2021, 13, 2646 17 of 22

Table 6. Experimental results compared with other methods on the AUAB dataset.

Methods FC-Siam-Diff Pseudo-Siamese
Capsule

Change Capsule
Network

Precision (%) 62.2 77.0 73.8
Recall (%) 61.6 54.3 64.9
F-rate (%) 61.9 63.7 69.1
Kappa (%) 60.0 62.2 67.7

SZTAKI dataset. Table 7 lists the results of different methods on the SZTAKI dataset.
Compared with the pseudo-siamese capsule network, the change capsule network obtains
better recall, F-measure, and Kappa on both SZADA/1 and TISZADOB/3, which proves
once again that the pseudo-siamese capsule network for which the extracted features
are concatenated directly cannot effectively improve the separability of sample pairs. In
the change capsule network, the vector-based features output by capsule network are
compared for both direction and length in the forms of vector cosine and vector difference,
which effectively measures the features dissimilarity and improves the separability of
sample pairs. Moreover, the results of the change capsule network are the best in terms of
F-measure and Kappa on both SZADA/1 and TISZADOB/3, which further confirms the
robustness of our method.

(a) (b) (c)

(d) (e) (f)

Figure 12. The results of different methods on the AUAB dataset. (a) Image one taken in 2009.
(b) Image two taken in 2009. (c) Ground truth. (d) Result using FC-Siam-diff. (e) Result using the
pseudo-siamese capsule network. (f) Result using the change capsule network.
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(a) (b) (c)

(d) (e) (f)

Figure 13. Patch-based change maps generated using different methods on the AUAB dataset.
(a) Image patch taken in 2009. (b) Image patch taken in 2009. (c) Ground truth. (d) Result using
FC-Siam-diff. (e) Result using the pseudo-siamese capsule network. (f ) Result using the change
capsule network.

Table 7. Experimental results compared with other methods on the SZTAKI dataset.

Method FC-Siam-Diff Pseudo-Siamese Capsule Change Capsule Network

SZADA/1

Precision (%) 41.4 45.4 44.4

Recall (%) 72.4 65.1 68.9

F-rate (%) 52.7 53.5 54.0

Kappa (%) - 50.1 50.5

TISZADOB/3

Precision (%) 69.5 97.8 96.8

Recall (%) 88.3 93.4 95.3

F-rate (%) 77.8 95.5 96.0

Kappa (%) - 94.7 95.2

Figures 14 and 15 show the results of different methods on SZADA/1 and TISZADOB/3,
respectively. On SZADA/1, the results of all methods are not very good because of the
small and scattered changed regions. Compared with the FC-Siam-diff and the pseudo-
siamese capsule network, the proposed method produces a more smooth change map. For
TISZADOB/3, the change map produced by FC-Siam-diff has many false detections and
missed detections. The pseudo-siamese capsule network produces a satisfied change map,
but there is still some noise compared with the change capsule network, especially in the
region marked by the red box. Figure 16 shows patch-based change maps at a suitable
scale. It can be seen from Figure 16 that the change capsule network is less affected by
noise. Therefore, the method proposed in this paper is effective.

(a) (b) (c)

(d) (e) (f)

Figure 14. The results of different methods on SZADA/1. (a) Image one. (b) Image two. (c) Grounth truth. (d) Result using
FC-Siam-diff. (e) Result using the pseudo-siamese capsule network. (f) Result using the change capsule network.
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(a) (b) (c)

(d) (e) (f)

Figure 15. The results of different methods on TISZADOB/3. (a) Image one. (b) Image two. (c) Grounth truth (d) Result
using FC-Siam-diff. (e) Result using the pseudo-siamese capsule network. (f) Result using the change capsule network.

(a) (b) (c) (d) (e) (f)

Figure 16. Patch-based change maps generated from different methods on TISZADOB/3. (a) Image patch one. (b) Image
patch two. (c) Grounth truth (d) Result using FC-Siam-diff. (e) Result using the pseudo-siamese capsule network. (f) Result
using the change capsule network.

5. Discussion

The experimental results of the ablation experiments and the comparison experiments
prove that the proposed method can effectively improve the performance of a change
detection network. In the ablation experiments, the unchanged region reconstruction
module and the vector cosine and vector difference module were applied to the baseline,
respectively. The vector cosine and vector difference module measures the difference in
the vector-based features for both length and direction, which can effectively filter noise
and enlarge the separability between the changed pixels and the unchanged pixels. For
the unchanged region reconstruction module, it drives the network to maintain feature
consistency in the unchanged region when the image features are extracted. In the compar-
ison experiments, the proposed method obtains better results in terms of recall, F-rate, and
Kappa while maintaining high precision compared with other methods. In other words,
the proposed method is more suitable for the application scenarios in which high recall
is required.

Although the proposed method achieves satisfactory change detection results, the
inference time and the amount of model parameters need to be further improved. Com-
pared with FC-Siam-diff, the change capsule network is time-consuming and has a large
amount of parameters. The trainable parameters of the change capsule network are about
2.8× 106, and it takes about 2 seconds to infer an image pair with size of 784× 448. For
FC-Siam-diff, the trainable parameters are about 1.3× 106 and the inference time is under
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0.1 seconds. Therefore, reducing the amount of model parameters and inference time can
make the proposed change detection method more widely used.

6. Conclusions

This paper presents a novel change capsule network in which the extracted feature
pairs have better comparability and separability for optical remote sensing images change
detection. On one hand, the unchanged region reconstruction module is designed to
improve the comparability between feature pairs extracted by the capsule network. On the
other hand, vector cosine and vector difference are adopted to compare the vector-based
features in the capsule network efficiently and can enlarge the separability between the
changed pixels and the unchanged pixels. Moreover, the change capsule network takes
advantages of the capsule network, which can better deal with the different viewpoints.
We carried out experiments on the AUAB dataset and the SZTAKI dataset. The results of
the ablation experiments and the comparison experiments showed that the change capsule
network can better deal with different viewpoints and can improve the comparability and
separability of feature pairs. Therefore, the method designed in this paper is effective.

Author Contributions: Q.X. proposed the algorithm and performed the experiments. K.C. gave
insightful suggestions for the proposed algorithm. X.S. and G.Z. provided important suggestions for
improving the manuscript. All authors read and agreed to the published version of the manuscript.

Funding: This research received no external funding.

Institutional Review Board Statement: Not applicable.

Informed Consent Statement: Not applicable.

Data Availability Statement: The data presented in this study are available on request from the authors.

Acknowledgments: We are very grateful to MPLab Laboratory for providing the change detection
dataset: SZTAKI AirChange Benchmark set (http://mplab.sztaki.hu/remotesensing/airchange_
benchmark.html (accessed on 1 July 2021)).

Conflicts of Interest: The authors declare no conflicts of interest.

Abbreviations
The following abbreviations are used in this manuscript:

AUAB Al Udeid Air Basee
DL Deep learning
CVA Change vector analysis
CNN Convolutional neural networks
VHR Very high spatial resolution
DCVA Deep change vector analysis
MSE Mean squared error
F-rate F-measure rate

References
1. Singh, A. Review article digital change detection techniques using remotely-sensed data. Int. J. Remote Sens. 1989, 10, 989–1003.

[CrossRef]
2. Mehrotra, A.; Singh, K.K.; Khandelwal, P. An unsupervised change detection technique based on Ant colony Optimization. In

Proceedings of the 2014 International Conference on Computing for Sustainable Global Development (INDIACom), New Delhi,
India, 5–7 March 2014; pp. 408–411.

3. Celik, T.; Ma, K.K. Unsupervised change detection for satellite images using dual-tree complex wavelet transform. IEEE Trans.
Geosci. Remote Sens. 2009, 48, 1199–1210. [CrossRef]

4. Gong, M.; Zhao, J.; Liu, J.; Miao, Q.; Jiao, L. Change detection in synthetic aperture radar images based on deep neural networks.
IEEE Trans. Neural Netw. Learn. Syst. 2015, 27, 125–138. [CrossRef]

5. Mas, J.F.; Lemoine-Rodríguez, R.; González-López, R.; López-Sánchez, J.; Piña-Garduño, A.; Herrera-Flores, E. Land use/land
cover change detection combining automatic processing and visual interpretation. Eur. J. Remote. Sens. 2017, 50, 626–635.
[CrossRef]

http://mplab.sztaki.hu/remotesensing/airchange_benchmark.html
http://mplab.sztaki.hu/remotesensing/airchange_benchmark.html
http://doi.org/10.1080/01431168908903939
http://dx.doi.org/10.1109/TGRS.2009.2029095
http://dx.doi.org/10.1109/TNNLS.2015.2435783
http://dx.doi.org/10.1080/22797254.2017.1387505


Remote Sens. 2021, 13, 2646 21 of 22

6. Das, S.; Angadi, D.P. Land use land cover change detection and monitoring of urban growth using remote sensing and GIS
techniques: A micro-level study. GeoJournal 2021, 656 , 1–23.

7. Mishra, P.K.; Rai, A.; Rai, S.C. Land use and land cover change detection using geospatial techniques in the Sikkim Himalaya,
India. Egypt. J. Remote Sens. Space Sci. 2020, 23, 133–143. [CrossRef]

8. Awrangjeb, M.; Gilani, S.A.N.; Siddiqui, F.U. An effective data-driven method for 3-d building roof reconstruction and robust
change detection. Remote Sens. 2018, 10, 1512. [CrossRef]

9. Awrangjeb, M. Effective generation and update of a building map database through automatic building change detection from
LiDAR point cloud data. Remote Sens. 2015, 7, 14119–14150. [CrossRef]

10. Giustarini, L.; Hostache, R.; Matgen, P.; Schumann, G.J.P.; Bates, P.D.; Mason, D.C. A change detection approach to flood mapping
in urban areas using TerraSAR-X. IEEE Trans. Geosci. Remote Sens. 2012, 51, 2417–2430. [CrossRef]

11. Gueguen, L.; Hamid, R. Toward a generalizable image representation for large-scale change detection: Application to generic
damage analysis. IEEE Trans. Geosci. Remote Sens. 2016, 54, 3378–3387. [CrossRef]

12. Sophiayati Yuhaniz, S.; Vladimirova, T. An onboard automatic change detection system for disaster monitoring. Int. J. Remote Sens.
2009, 30, 6121–6139. [CrossRef]

13. Michel, U.; Thunig, H.; Ehlers, M.; Reinartz, P. Rapid change detection algorithm for disaster management. ISPRS Ann.
Photogramm. Remote Sens. Spat. Inf. Sci. 2012, 1. [CrossRef]

14. Zhan, Y.; Fu, K.; Yan, M.; Sun, X.; Wang, H.; Qiu, X. Change detection based on deep siamese convolutional network for optical
aerial images. IEEE Geosci. Remote Sens. Lett. 2017, 14, 1845–1849. [CrossRef]

15. Zhang, M.; Xu, G.; Chen, K.; Yan, M.; Sun, X. Triplet-based semantic relation learning for aerial remote sensing image change
detection. IEEE Geosci. Remote Sens. Lett. 2018, 16, 266–270. [CrossRef]

16. Liu, J.; Chen, K.; Xu, G.; Sun, X.; Yan, M.; Diao, W.; Han, H. Convolutional Neural Network-Based Transfer Learning for Optical
Aerial Images Change Detection. IEEE Geosci. Remote Sens. Lett. 2019, 17, 127–131. [CrossRef]

17. Peng, D.; Zhang, Y.; Guan, H. End-to-end change detection for high resolution satellite images using improved UNet++.
Remote Sens. 2019, 11, 1382. [CrossRef]

18. Xu, Q.; Chen, K.; Sun, X.; Zhang, Y.; Li, H.; Xu, G. Pseudo-Siamese Capsule Network for Aerial Remote Sensing Images Change
Detection. IEEE Geosci. Remote Sens. Lett. 2020, 1–5. [CrossRef]

19. Wang, M.; Tan, K.; Jia, X.; Wang, X.; Chen, Y. A deep siamese network with hybrid convolutional feature extraction module for
change detection based on multi-sensor remote sensing images. Remote Sens. 2020, 12, 205. [CrossRef]

20. Caye Daudt, R.; Le Saux, B.; Boulch, A.; Gousseau, Y. Guided anisotropic diffusion and iterative learning for weakly supervised
change detection. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition Workshops, Long Beach,
CA, USA, 16–17 June 2019.

21. Rottensteiner, F.; Sohn, G.; Gerke, M.; Wegner, J.D.; Breitkopf, U.; Jung, J. Results of the ISPRS benchmark on urban object
detection and 3D building reconstruction. ISPRS J. Photogramm. Remote Sens. 2014, 93, 256–271. [CrossRef]

22. Chen, G.; Zhang, X.; Wang, Q.; Dai, F.; Gong, Y.; Zhu, K. Symmetrical dense-shortcut deep fully convolutional networks for
semantic segmentation of very-high-resolution remote sensing images. IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens. 2018,
11, 1633–1644. [CrossRef]

23. Benedek, C.; Szirányi, T. Change detection in optical aerial images by a multilayer conditional mixed Markov model. IEEE Trans.
Geosci. Remote Sens. 2009, 47, 3416–3430. [CrossRef]

24. Benedek, C.; Szirányi, T. A mixed Markov model for change detection in aerial photos with large time differences. In Proceedings
of the 2008 19th International Conference on Pattern Recognition, Tampa, FL, USA, 8–11 December 2008; pp. 1–4.

25. Daudt, R.C.; Le Saux, B.; Boulch, A. Fully convolutional siamese networks for change detection. In Proceedings of the 2018 25th
IEEE International Conference on Image Processing (ICIP), Athens, Greece, 7–10 October 2018; pp. 4063–4067.

26. Sakurada, K.; Wang, W.; Kawaguchi, N.; Nakamura, R. Dense optical flow based change detection network robust to difference
of camera viewpoints. arXiv 2017, arXiv:1712.02941.

27. Park, D.H.; Darrell, T.; Rohrbach, A. Robust change captioning. In Proceedings of the IEEE/CVF International Conference on
Computer Vision, Seoul, Korea, 27–28 October 2019; pp. 4624–4633.

28. Qiu, Y.; Satoh, Y.; Suzuki, R.; Iwata, K.; Kataoka, H. 3D-Aware Scene Change Captioning From Multiview Images. IEEE Robot.
Autom. Lett. 2020, 5, 4743–4750. [CrossRef]

29. Sakurada, K.; Shibuya, M.; Wang, W. Weakly supervised silhouette-based semantic scene change detection. In Proceedings of the
2020 IEEE International Conference on Robotics and Automation (ICRA), Paris, France, 31 May–31 August 2020; pp. 6861–6867.

30. Palazzolo, E.; Stachniss, C. Fast image-based geometric change detection given a 3d model. In Proceedings of the 2018 IEEE
International Conference on Robotics and Automation (ICRA), Brisbane, Australia, 21–25 May 2018; pp. 6308–6315.

31. Malila, W.A. Change Vector Analysis: An Approach for Detecting Forest Changes with Landsat; LARS: Central, HK, 1980; p. 385.
32. Shi, N.; Chen, K.; Zhou, G.; Sun, X. A Feature Space Constraint-Based Method for Change Detection in Heterogeneous Images.

Remote Sens. 2020, 12, 3057. [CrossRef]
33. Ma, W.; Xiong, Y.; Wu, Y.; Yang, H.; Zhang, X.; Jiao, L. Change detection in remote sensing images based on image mapping and a

deep capsule network. Remote Sens. 2019, 11, 626. [CrossRef]
34. Saha, S.; Bovolo, F.; Bruzzone, L. Unsupervised deep change vector analysis for multiple-change detection in VHR images. IEEE

Trans. Geosci. Remote Sens. 2019, 57, 3677–3693. [CrossRef]

http://dx.doi.org/10.1016/j.ejrs.2019.02.001
http://dx.doi.org/10.3390/rs10101512
http://dx.doi.org/10.3390/rs71014119
http://dx.doi.org/10.1109/TGRS.2012.2210901
http://dx.doi.org/10.1109/TGRS.2016.2516402
http://dx.doi.org/10.1080/01431160902810638
http://dx.doi.org/10.5194/isprsannals-I-4-107-2012
http://dx.doi.org/10.1109/LGRS.2017.2738149
http://dx.doi.org/10.1109/LGRS.2018.2869608
http://dx.doi.org/10.1109/LGRS.2019.2916601
http://dx.doi.org/10.3390/rs11111382
http://dx.doi.org/10.1109/LGRS.2020.3022512
http://dx.doi.org/10.3390/rs12020205
http://dx.doi.org/10.1016/j.isprsjprs.2013.10.004
http://dx.doi.org/10.1109/JSTARS.2018.2810320
http://dx.doi.org/10.1109/TGRS.2009.2022633
http://dx.doi.org/10.1109/LRA.2020.3003290
http://dx.doi.org/10.3390/rs12183057
http://dx.doi.org/10.3390/rs11060626
http://dx.doi.org/10.1109/TGRS.2018.2886643


Remote Sens. 2021, 13, 2646 22 of 22

35. Sabour, S.; Frosst, N.; Hinton, G.E. Dynamic routing between capsules. In Advances in Neural Information Processing Systems; MIT
Press: Cambridge, MA, USA, 2017; pp. 3856–3866.

36. Neill, J.O. Siamese capsule networks. arXiv 2018, arXiv:1805.07242.
37. Deng, F.; Pu, S.; Chen, X.; Shi, Y.; Yuan, T.; Pu, S. Hyperspectral image classification with capsule network using limited training

samples. Sensors 2018, 18, 3153. [CrossRef]
38. Zagoruyko, S.; Komodakis, N. Learning to compare image patches via convolutional neural networks. In Proceedings of the

IEEE Conference on Computer Vision and Pattern Recognition, Boston, MA, USA, 7–12 June 2015; pp. 4353–4361.
39. Wang, X.; Tan, K.; Du, Q.; Chen, Y.; Du, P. Caps-TripleGAN: GAN-assisted CapsNet for hyperspectral image classification. IEEE

Trans. Geosci. Remote Sens. 2019, 57, 7232–7245. [CrossRef]
40. Singh, M.; Nagpal, S.; Singh, R.; Vatsa, M. Dual directed capsule network for very low resolution image recognition. In

Proceedings of the IEEE/CVF International Conference on Computer Vision, Seoul, Korea, 27–28 October 2019; pp. 340–349.
41. McIntosh, B.; Duarte, K.; Rawat, Y.S.; Shah, M. Multi-modal capsule routing for actor and action video segmentation conditioned

on natural language queries. arXiv 2018, arXiv:1812.00303.
42. Duarte, K.; Rawat, Y.S.; Shah, M. Videocapsulenet: A simplified network for action detection. arXiv 2018, arXiv:1805.08162
43. Upadhyay, Y.; Schrater, P. Generative adversarial network architectures for image synthesis using capsule networks. arXiv 2018,

arXiv:1806.03796.
44. Bass, C.; Dai, T.; Billot, B.; Arulkumaran, K.; Creswell, A.; Clopath, C.; De Paola, V.; Bharath, A.A. Image synthesis with a

convolutional capsule generative adversarial network. In Proceedings of the International Conference on Medical Imaging with
Deep Learning, PMLR, London, UK, 8–10 July 2019; pp. 39–62.

45. Sohl, T.L. Change analysis in the United Arab Emirates: An investigation of techniques. Photogramm. Eng. Remote Sens. 1999,
65, 475–484.

46. Coppin, P.R.; Bauer, M.E. Processing of multitemporal Landsat TM imagery to optimize extraction of forest cover change features.
IEEE Trans. Geosci. Remote Sens. 1994, 32, 918–927. [CrossRef]

47. Smits, P.C.; Annoni, A. Toward specification-driven change detection. IEEE Trans. Geosci. Remote Sens. 2000, 38, 1484–1488.
[CrossRef]

48. Bovolo, F.; Bruzzone, L. A theoretical framework for unsupervised change detection based on change vector analysis in the polar
domain. IEEE Trans. Geosci. Remote Sens. 2006, 45, 218–236. [CrossRef]

49. Chen, G.; Hay, G.J.; Carvalho, L.M.; Wulder, M.A. Object-based change detection. Int. J. Remote Sens. 2012, 33, 4434–4457.
[CrossRef]

50. Volpi, M.; Tuia, D. Dense semantic labeling of subdecimeter resolution images with convolutional neural networks. IEEE Trans.
Geosci. Remote Sens. 2016, 55, 881–893. [CrossRef]

51. LaLonde, R.; Bagci, U. Capsules for object segmentation. arXiv 2018, arXiv:1804.04241.
52. Ronneberger, O.; Fischer, P.; Brox, T. U-net: Convolutional networks for biomedical image segmentation. In Proceedings of the

International Conference on Medical Image Computing and Computer-Assisted Intervention, Munich, Germany, 5–9 October
2015; Springer: Berlin/Heidelberg, Germany, 2015; pp. 234–241.

53. Lin, T.Y.; Goyal, P.; Girshick, R.; He, K.; Dollár, P. Focal loss for dense object detection. In Proceedings of the IEEE International
Conference on Computer Vision, Venice, Italy, 22–29 October 2017; pp. 2980–2988.

54. Ketkar, N. Introduction to keras. In Deep Learning with Python; Springer: Berlin/Heidelberg, Germany, 2017; pp. 97–111.
55. Kingma, D.P.; Ba, J. Adam: A method for stochastic optimization. arXiv 2014, arXiv:1412.6980
56. He, K.; Zhang, X.; Ren, S.; Sun, J. Delving deep into rectifiers: Surpassing human-level performance on imagenet classification.

In Proceedings of the IEEE International Conference on Computer Vision, Santiago, Chile, 7–13 October 2015; pp. 1026–1034.
57. Brennan, R.L.; Prediger, D.J. Coefficient kappa: Some uses, misuses, and alternatives. Educ. Psychol. Meas. 1981, 41, 687–699.

[CrossRef]
58. Li, S.; Tang, H.; Huang, X.; Mao, T.; Niu, X. Automated detection of buildings from heterogeneous VHR satellite images for rapid

response to natural disasters. Remote Sens. 2017, 9, 1177. [CrossRef]
59. El Amin, A.M.; Liu, Q.; Wang, Y. Zoom out CNNs features for optical remote sensing change detection. In Proceedings of the

2017 2nd International Conference on Image, Vision and Computing (ICIVC), Chengdu, China, 2–4 June 2017; pp. 812–817.

http://dx.doi.org/10.3390/s18093153
http://dx.doi.org/10.1109/TGRS.2019.2912468
http://dx.doi.org/10.1109/36.298020
http://dx.doi.org/10.1109/36.843048
http://dx.doi.org/10.1109/TGRS.2006.885408
http://dx.doi.org/10.1080/01431161.2011.648285
http://dx.doi.org/10.1109/TGRS.2016.2616585
http://dx.doi.org/10.1177/001316448104100307
http://dx.doi.org/10.3390/rs9111177

	Introduction
	Background
	Capsule Network
	Change Vector Analysis

	Proposed Method
	Capsule Network as Backbone
	Unchanged Region Reconstruction Module
	Comparison of Vector-Based Features
	Loss Function
	Detailed Change Detection Scheme

	Experiments
	Dataset Description
	AUAB Dataset
	SZTAKI Dataset

	Implementation Details
	Data Augmentation
	Parameter Setting
	Evaluation Criterion

	Results
	Ablation Experiments
	Comparison Experiments


	Discussion
	Conclusions
	References

