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Abstract: Precipitation is an essential driving factor of hydrological models. Its temporal and spatial
resolution and reliability directly affect the accuracy of hydrological modeling. Acquiring accurate
areal precipitation needs substantial ground rainfall stations in space. In many basins, ground rainfall
stations are sparse and uneven, so real-time satellite precipitation products (SPPs) have become an
important supplement to ground-gauged precipitation (GGP). A multi-source precipitation fusion
method suitable for the Soil and Water Assessment Tool (SWAT) model has been proposed in this
paper. First, the multivariate inverse distance similarity method (MIDSM) was proposed to search
for the optimal representative precipitation points of GGP and SPPs in sub-basins. Subsequently,
the correlation-coefficient-based weighted average method (CCBWA) was presented and applied to
calculate the fused multi-source precipitation product (FMSPP), which combined GGP and multiple
satellite precipitation products. The effectiveness of the FMSPP was proven over the Tuojiang River
Basin. In the case study, three SPPs were chosen as the satellite precipitation sources, namely the
Climate Forecast System Reanalysis (CFSR), Tropical Rainfall Measuring Mission Project (TRMM),
and Precipitation Estimation from Remotely Sensed Information using Artificial Neural Network
Climate Data Record (PERSIANN-CDR). The evaluation indicators illustrated that FMSPP could
capture the occurrence of rainfall events very well, with a maximum Probability of Detection (POD)
and Critical Success Index (CSI) of 0.92 and 0.83, respectively. Furthermore, its correlation with GGP,
changing in the range of 0.84–0.96, was higher in most sub-basins on the monthly scale than the other
three SPPs. These results demonstrated that the performance of FMSPP was the best compared with
the original SPPs. Finally, FMSPP was applied in the SWAT model and was found to effectively drive
the SWAT model in contrast with a single precipitation source. The FMSPP manifested the highest
accuracy in hydrological modeling, with the Coefficient of Determination (R2) of 0.84, Nash Sutcliff
(NS) of 0.83, and Percent Bias (PBIAS) of only −1.9%.

Keywords: satellite precipitation products; ground-gauged precipitation; SWAT model; fused multi-
source precipitation product; hydrological modeling

1. Introduction

Accurate runoff prediction is conducive to water management and planning, agri-
cultural irrigation [1], climate and human activity impact study [2–4], and mitigating the
major disasters and losses caused by floods and droughts. At present, the methods of
runoff prediction [5–7] mainly include two categories: data-driven models and physical
models. Data-driven models are comparatively simple to construct, but they cannot explic-
itly reveal the internal mechanisms of hydrological processes. Physical models, such as
semi-distributed hydrological models TOPMODEL [8], variable infiltration capacity [9–11],
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and the Soil and Water Assessment Tool (SWAT) [12] are usually driven by topographic
data (e.g., digital elevation model (DEM)), climate data (e.g., precipitation, temperature,
and humidity), soil data, and other information at the same time, and their hydrological
processes in physical models are more transparent, accurate, and reproducible.

Precipitation is the most important driving factor of physical hydrological models [13].
Its temporal and spatial resolution and reliability directly affect the accuracy of runoff
prediction. Generally, the precipitation record mainly comes from traditional meteorologi-
cal stations, weather radars, and satellite remote sensing [14]. The in-situ precipitation is
usually considered to be the most accurate rainfall information source. However, its distri-
bution is very uneven and sparse, especially in some undeveloped areas and mountain
ranges, owing to the restriction of economic cost and terrain conditions. In these areas, lim-
ited meteorological stations are often used to characterize the areal rainfall of multiple zones
with obviously different precipitation patterns. The sparse ground points cannot control
the spatial features of rainfall, which may affect accuracy in the hydrological modeling.

The precipitation retrieved by weather radar may carry large system errors due to
the block of the electromagnetic beam by the ground. Moreover, its spatial distribution is
inconsecutive (the maximum coverage radius of radar is 300 km) [13,15,16]. With the rapid
development of satellite remote sensing technology, more and more satellite precipitation
products or satellite-based reanalysis precipitation products have been released in recent
years (note that all of these satellite precipitation products and reanalysis precipitation
products are collectively abbreviated as SPPs in this paper). SPPs can provide broad
coverage [17,18] and good spatial continuity. In fact, with the advances of modern remote
sensing technology, multiple SPPs have improved their spatial resolution, such as the
Climate Forecast System Reanalysis (CFSR), Tropical Rainfall Measuring Mission Project
(TRMM), and Precipitation Estimation from Remotely Sensed Information using Artificial
Neural Network Climate Data Record (PERSIANN-CDR). The SPPs with high temporal
and spatial resolution have become important supplements to in-situ precipitation.

Many studies have been conducted to evaluate the reliability of different SPPs. For
example, Liu et al. [19] assessed the streamflow simulation ability of PERSIANN-CDR and
Global Land Data Assimilation System precipitation via a hydro-informatic modeling sys-
tem rainfall-runoff model in the upper Yangtze River basins on the Tibetan Plateau. Their
results showed that the streamflow simulated using these two SPPs was consistent with
the observations. By contrast, the performance modeled by the sparse in-situ precipitation
was not satisfactory in the wet season. Ma et al. [20] evaluated the hydrological simulation
reliability of three SPPs via SWAT model over Lancang Basin and found that TRMM fitted
best with the observations, followed by PERSIANN-CDR, while CFSR showed unaccept-
able results. Zhu et al. [21] compared the hydrological performance of SWAT models
over two humid basins forced by PERSIANN-CDR, TRMM, and CFSR, respectively, and
concluded that the applicability of PERSIANN-CDR and TRMM to streamflow simulation
is satisfactory.

Unfortunately, the conclusions about SPPs vary from basin to basin. Which SPP is
more suitable for a random study area remains enigmatic. In some basins, the hydrological
performance driven by the sparse GGP is sometimes inferior to SPP. Whether SPP is supe-
rior to in-situ precipitation is highly dependent on the density of GGP. We are now faced
with issues of uncertainty resulting from various precipitation sources, especially over un-
gauged basins or sparse-data basins. Multi-source precipitation data fusion has thus been a
research hotspot in recent years [10]. It can make full use of high-precision ground-gauged
precipitation (GGP) and continuously distributed SPPs to form complementary advantages
and have broad application prospects [22]. Many fusion methods of multi-source precipita-
tion data have been developed, including the geographically weighted method [13,23,24],
machine learning algorithm [25], optimal interpolation method [26], and Bayesian average
method [27]. For example, Chao et al. [13] developed eight merging algorithms by com-
bining two geographically weighted regression methods with four weighting functions
to get the satellite-gauge precipitation. The new precipitation merged by the CMORPH
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(CPC MORPHing technique) satellite precipitation and in-situ precipitation performed
better than the original CMORPH. Wu et al. [28] proposed a deep fusion method based on
the combination of convolutional neural network and long-short-term memory network
to merge TRMM and rain gauge data; the method reduced the errors and improved the
accuracy of the original TRMM. The basic idea of these fusion algorithms is to establish
the correlation between grid precipitation and other geographic variables or climate vari-
ables through a linear regression method or non-linear deep learning method to gain the
modeled precipitation and then use GGP to correct its deviation and validate the accuracy.
Several other studies have used the Bayesian-related method to calculate the respective
optimal weights for multiple SPPs and evaluated the simulation capability of the merged
precipitation via different hydrological models. For example, Ma et al. [29] developed a
merged precipitation dataset combining multiple SPPs based on the Dynamic Bayesian
Model Averaging scheme. They evaluated the blended multi-satellite precipitation data in
the headwaters of the Yangtze River using the Coupled Routing and Excess Storage model
and stated that the merged precipitation showed a promising prospect of hydrological
application. Ur Rahman et al. [30] compared the hydrological performance using the SWAT
model forced by in-situ precipitation and two merged precipitation products, respectively.
The two merged precipitation products produced by multiple SPPs were based on the
Dynamic Clustered Bayesian Averaging and Dynamic Bayesian Model Averaging method,
respectively, and obtained streamflow forecasting results close to in-situ precipitation.

However, the fusion precipitation on the basis of these methods undergoes multiple
processes such as downscaling, resampling, regression, and interpolation, potentially
influencing the accuracy of precipitation [25]. Few works investigate fusion precipitation
by considering the characteristics of the hydrological model to simplify the fusion processes
and hence improve the hydrological applicability of the fused precipitation. This paper
proposed a two-step fusion scheme to obtain the fused multi-source precipitation product
(FMSPP). First, the multivariate inverse distance similarity method (MIDSM) has been
proposed and applied to search for the optimal representative precipitation points of GGP
and SPPs. Second, the correlation-coefficient-based weighted average (CCBWA) method
was presented and employed to construct the FMSPP based on multiple SPPs and GGP.
In this study, the satellite precipitation sources included CFSR, TRMM, and PERSIANN-
CDR. The effectiveness of the fusion method was proven through two aspects. First, the
accuracy of FMSPP was evaluated by comparison with the distribution of original SPPs on
different temporal and spatial scales. Secondly, FMSPP, GGP, and every SPP were used to
drive the SWAT model. The corresponding simulated streamflow was compared with the
observations to evaluate their applicability in the hydrological model.

The rest of this paper is organized as follows. Section 2 describes the study basin and
data preparation. Section 3 presents the methodology. The results and discussion are given
in Sections 4 and 5, respectively. Finally, Section 6 summarizes the study.

2. Study Basin and Data Preparation
2.1. Study Basin

The Tuojiang River is a major tributary of the upper reaches of the Yangtze River, with
a length of 502 km and a total basin area of 27,860 km2, spanning between 103◦38′ and
105◦50′ East and 27◦50′ to 31◦41′ North. Figure 1 shows the geographic locations of the
Tuojiang River Basin (TJRB). Twenty-four ground meteorological stations were distributed
within or near the TJRB (Table 1 and Figure 1a). The TJRB is located in the subtropical
humid monsoon climate zone, with the characteristics of a mild climate, abundant rainfall,
and four distinct seasons. It traverses the mountainous areas on the western edge of
Sichuan, Chengdu Plain, and hilly regions of the central Sichuan Basin. The climate
between the north and the south differs due to the complex terrain and the elevational
difference. The temperature gradually rises from the northwest to the southeast. The
annual mean temperature in mountainous areas is 15.7 ◦C and in hilly areas its 17.6 ◦C.
Rainfall is heavier in the mountains compared to the hills. For example, the annual mean
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precipitation is 1200–1500 mm in the Lutou Mountain rainstorm area, 1000–1400 mm in the
Chengdu Plain, and only 900 mm in the hilly area. Precipitation is more concentrated in
the summer, accounting for about 60% of the total annual precipitation, while winter only
accounts for 4%.

Figure 1. Hydrological and meteorological stations (a), DEM (b), land use (c), and soil (d) of the TJRB.
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Table 1. The geographic information of the ground meteorological stations and the gauged average
annual precipitation.

Name Latitude (◦N) Longitude (◦E) Elevation (m)
Annual

Precipitation
(mm)

Maoxian 31.7 103.8 1590.1 633.5
Wenchuan 31.5 103.6 1370.1 632.0
Mianzhu 31.3 104.2 589.0 1181.7

Dujiangyan 31.0 103.7 698.5 1351.2
Pengzhou 31.0 103.9 581.7 1017.9

Shifang 31.1 104.2 535.7 1049.3
Deyang 31.3 104.5 525.7 966.2

Zhongjiang 31.0 104.7 423.5 985.0
Xindu 30.8 104.2 514.5 966.0

Guanghan 30.9 104.3 469.0 913.7
Jianyang 30.4 104.5 448.5 939.7
Jintang 30.8 104.4 493.5 957.0

Renshou 30.0 104.2 436.5 1070.5
Ziyang 30.1 104.6 417.0 1025.2

Zizhong 29.8 104.8 369.4 1161.6
Rongxian 29.4 104.4 384.1 1126.1
Weiyuan 29.5 104.7 351.1 1083.2
Zigong 29.4 104.8 352.6 1162.3
Fushun 29.2 105.0 306.2 1150.4
Lezhi 30.3 105.5 462.6 1108.5

Anyue 30.1 105.3 383.6 1182.3
Dazu 29.7 105.7 394.7 1178.4

Rongchang 29.4 105.6 338.0 1220.5
Longchang 29.3 105.3 385.7 1180.2

2.2. Precipitation Data and Other Data

In this study, the in-situ precipitation data measured by the 24 ground meteorological
stations were acquired from the China Meteorological Data Service Center. Other meteoro-
logical data required for the SWAT model, such as temperature, humidity, and wind speed,
were also collected from ground measurements. Three types of SPPs with daily scale and
spatial resolution of 0.25◦ were selected, namely, CFSR, TRMM-3B42, and PERSIANN-CDR.
The brief information about the aforementioned four precipitation products is shown in
Table 2. Figure 2 displays the spatial distribution of different precipitation products. For
a more detailed introduction to SPPs, please refer to the literature [21,31]. The monthly
streamflow spanning from 1980–2008 measured at the three hydrological stations, namely
Sanhuangmiao, Dengyinyang, and Lijiawan, was collected. These three hydrological sta-
tions, shown in Table 3 and Figure 1a, are located at the upper, middle, and downstream
areas of the TJRB, respectively.

The Harmonized World Soil Database provided by the Food and Agriculture Or-
ganization of the United Nations is used for the soil data and reclassified into 27 types
with a spatial resolution of 1 km (Figure 1d). The land use (Figure 1c) is obtained from
the Resource and Environmental Science and Data Center (RESDC) and divided into
six categories with a spatial resolution of 1 km, of which agricultural land accounts for
80.75%, and forest land accounts for 12.4%. DEM comes from Shuttle Radar Topography
Mission, with a spatial resolution of 90 m (Figure 1b and Table 4). The elevation of the
basin is approximately 4800 m in the northwest while as low as 250 m in the southeast. As
for the catchment shape, the upper part is narrow, and the lower part is wide. The Tuojiang
River flows into the Yangtze River in southern Luzhou City. The standardized difference
vegetation index (NDVI) from 1998 to 2008 provided by the RESDC is adopted for MIDSM,
with a spatial resolution of 1 km.
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Table 2. Satellite and in-situ precipitation products used in this watershed.

Dataset Data Type Spatial
Resolution

Time
Resolution Period Data Source

CFSR Reanalysis 0.25 × 0.25 Daily 1979–2014 https://globalweather.tamu.edu/
(accessed on 3 July 2021)

TRMM Satellite 0.25 × 0.25 Daily 1998–2019

https:
//disc.gsfc.nasa.gov/datasets?
keywords=TMPA&page=1
(accessed on 3 July 2021)

PERSIANN-
CDR Satellite 0.33 × 0.33 Daily 1983–2019 https://chrsdata.eng.uci.edu/

(accessed on 3 July 2021)

GGP in-situ
measurement 24 stations Daily 1978–2019 http://data.cma.cn/

(accessed on 3 July 2021)

Figure 2. Spatial distribution of different precipitation products.

Table 3. Hydrological stations over TJRB and their measured average annual streamflow.

Hydrometric Station Drainage Area (km2)
Annual Average

Streamflow (m3/s)

Sanhuangmiao 6590 230.9
Dengyinyan 14,484 286.7

Lijiawan 23,283 397.8

https://globalweather.tamu.edu/
https://disc.gsfc.nasa.gov/datasets?keywords=TMPA&page=1
https://disc.gsfc.nasa.gov/datasets?keywords=TMPA&page=1
https://disc.gsfc.nasa.gov/datasets?keywords=TMPA&page=1
https://chrsdata.eng.uci.edu/
http://data.cma.cn/
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Table 4. Topographic data required for SWAT model and other related data used in the methodology.

Data Type Spatial
Resolution Period Data Source

Soil 1 km 1997 http://www.fao.org/soils-portal/en/
(accessed on 3 July 2021)

Land Use 1 km 2005 http://www.resdc.cn/Default.aspx
(accessed on 3 July 2021)

DEM 90 m 2000
https:
//portal.opentopography.org/datasets
(accessed on 3 July 2021)

NDVI 1 km 1998–2008 http://www.resdc.cn/Default.aspx
(accessed on 3 July 2021)

3. Methodology
3.1. SWAT Model

SWAT is a physically-based semi-distributed hydrological model developed by the
Agricultural Research Service of the United States Department of Agriculture [32]. The
smallest calculation unit is the HRU, which is grouped by the fields of soil, land use, and
slope together to simplify a run. About 1–10 HRUs gather into a sub-basin, and the flow
generated and converged in each sub-basin flows into the connected river. A sub-basin
is used to represent the precipitation of all internal homogeneous HRUs and distinguish
the precipitation source. SWAT simulates the water cycle process according to the water
balance equations:

SWt = SW0 +
t

∑
i=1

(PREC− SURQ− ET −WSEEP− GWQ) (1)

WYLD = SURQ + GWQ + LATQ− TLOSS (2)

where SW0 and SWt are the initial and final water contents in the soil, respectively; PREC
represents the precipitation; SURQ denotes the surface runoff; ET is the evapotranspiration;
WSEEP means the amount of water that percolates or bypasses from the bottom of the soil
profile; GWQ and LATQ are groundwater flow and lateral flow generated from each HRU,
respectively; TLOSS is the amount of water lost from the reach through bed transmission;
WYLD represents the net water contributed by the HRU to the reach.

In the SWAT model, climate data is read in the format of point records. The nearest
station is selected as the precipitation source of the sub-basin based on the principle of the
smallest distance from the geometric center of each sub-basin to the rainfall point. Each
sub-basin can only be represented by the nearest precipitation point to characterize the
spatial distribution of the entire sub-basin. The area of sub-basins should not be too small;
otherwise, the hydrological calculations are immense.

3.2. The Multi-Source Precipitation Fusing Method

A two-step fusion method has been proposed. First, the multivariate inverse distance
similarity method (MIDSM) is proposed to search for the optimal representative precip-
itation points of the GGP and SPPs. Second, the correlation-coefficient-based weighted
average (CCBWA) method is presented and applied to form the fused multi-source precipi-
tation product (FMSPP). FMSPP is the weighted average of the GGP and multiple satellite
precipitation products. Multiple SPPs and the GGP compose an open database, and the
SPPs involved in the database are not restricted to any particular type. All reliable satellite
precipitation products developed in the future can participate, and unreliable satellite data
can be eliminated. In the case study of this paper, three mainstream SPPs are chosen as the
satellite precipitation sources, namely CFSR, TRMM, and PERSIANN-CDR. Unlike previ-
ous satellite-gauge fusion methods to establish a new grid precipitation field, the proposed

http://www.fao.org/soils-portal/en/
http://www.resdc.cn/Default.aspx
https://portal.opentopography.org/datasets
https://portal.opentopography.org/datasets
http://www.resdc.cn/Default.aspx
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method focuses on the real precipitation point chosen by the SWAT model. Moreover, the
method aims to establish the sub-basin precipitation field and create assumed weather
stations located at the geometric centers of sub-basins, facilitating SWAT to select these
weather stations as the precipitation source automatically. Figure 3 illustrates the two-step
fusing process of FMSPP. The fused precipitation is mathematically expressed as:

P f use
j =

m

∑
iτ=i1

Piτ
j ×Wiτ

j (3)

where Pj
fuse is the fused precipitation for the sub-basin j; Piτ

j is the precipitation at the

representative precipitation point for product iτ , in sub-basin j; Wiτ
j is the weight of the

precipitation product iτ, in sub-basin j.

Figure 3. Schematic diagram of the complete fusing processes for constructing a new precipitation data point.

Note that this is a dynamic fusing process. Wiτ
j is not a fixed value, and it is varying in

the sub-basins. Furthermore, the database can be updated, and FMSPP dynamically fuses
all available in-situ and satellite datasets over the time span (Figure 4).
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Figure 4. Dynamical fusing process of all available datasets.

3.2.1. MIDSM

How to choose the representative precipitation point for the sub-basin? Multivariate
inverse distance similarity method (MIDSM) is proposed. MIDSM is based on inverse
distance weighting (IDW). IDW [33], also known as the reciprocal distance multiplication
method, is a geographic interpolation method based on the principle of similarity. Each
data point has a certain influence on the interpolation point. The smaller the distance
between the estimated and measured points, the greater the weight, and vice versa.

Precipitation is not only influenced by spatial location but also significantly correlates
with elevation and NDVI [34]. Vegetation coverage in the continental area of China reflects
the distribution of annual precipitation. The positive relationship between precipitation and
NDVI was indicated in the Refs. [35,36]. A quantitative analysis about how NDVI responds
to precipitation was made in Yellow-Huai-Hai River Basin [37], and it was concluded that
10% of increased precipitation would obtain 3.35–4.80% increase in NDVI. These findings
indicate that increased precipitation is critical for the growth of most of the vegetation
types. Herein, we take these four variables into consideration and propose the MIDSM
to optimize selecting precipitation points for sub-basins. The precipitation point with the
smallest generalized distance or the most significant similarity between the precipitation
data points and the geometric center is selected as the precipitation source for the sub-basin.
Figure 5 shows a schematic of the MIDSM, and the specific steps to apply this method are
as follows.
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Figure 5. Schematic diagram of the MIDSM model (the height of the red bar represents the NDVI value of the precipitation
product, and the height of the green bar represents the NDVI value at the center point of the sub-basin).

(1) All grid centers of SPPs are extracted as the rainfall points (Figure 2). SPPs and
GGP are distributed within or around each sub-basin, which significantly improves the
alternatives of rainfall points.

(2) The watershed is delineated into 116 sub-basins by the SWAT model. Attributes
including longitude, latitude, elevation, and NDVI are assigned to the precipitation data
points and the geometric center of sub-basins. The generalized distance and the simi-
larity between the geometric center point and the rainfall point can be calculated with
Equations (4) and (5):

Liτkj =
√
(lonj − loniτk)

2 + (latj − latiτk)
2 + (elej − eleiτk)

2 + (NDVIj − NDVIiτk)
2 k = 1, 2, · · · , n (4)

Siτkj =

1
Liτ kj

n
∑

k=1

(
1

Liτ kj

) (5)

where iτ (= i1, i2, . . . , im) represents the precipitation products (GGP, CFSR, TRMM, and
PERSIANN-CDR for the case study in this paper); j is the sub-basin number, and j ∈ [1, 116];
lon, lat, ele, and NDVI are the longitude, latitude, elevation, and NDVI, respectively, and
the four variables have been normalized. Liτkj and Siτkj denote the generalized distance
and the similarity between the k (= 1,2,...,n) rainfall point of precipitation product iτ and
the center point of sub-basin j, n is the number of grid centers of SPPs or observed stations
of GGP in the search area.

The rainfall data point with the most significant similarity (the smallest generalized
distance) is selected as the optimal representative point for each precipitation product, its
precipitation is Piτ

j .
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3.2.2. CCBWA

How to calculate the Wiτ
j for product iτ? The correlation coefficient-based weighted

average (CCBWA) method has been suggested. CCBWA integrates multiple rainfall points
screened by MIDSM into FMSPP and establishes the corresponding assumed station
point located in the geometric center. Because the monthly-scale precipitation is more
consistent and less biased than the daily-scale precipitation [38,39], the monthly scale CC
has been chosen to calculate the weighting factors. The weighting factor is mathematically
expressed as:

Wiτ
j =

CCiτ
j

m
∑

τ=1
CCiτ

j

τ = 1, 2, · · · , m (6)

where CCiτ
j is the correlation coefficient of precipitation product iτ, in sub-basin j, against

GGP; m is the number of precipitation products, here m = 4.

4. Result
4.1. Temporal Evaluation of SPPs and FMSPP

Seven statistical indicators [40] were employed to quantitatively compare the perfor-
mance of the original SPPs and FMSPP relative to GGP on the daily and monthly scales
over the entire watershed. The indicators were the correlation coefficient (CC), root mean
squared error (RMSE), mean error (ME), relative bias (BIAS), probability of detection (POD),
false alarm ratio (FAR), and critical success index (CSI). The CC described the potential
linear correlation between SPP and GGP, ranging from −1 to 1. The closer the CC value
to 1, the more positively the SPP correlated with GGP. The RMSE, ME, and BIAS were
introduced to describe the difference in the precipitation amount between the two rain-
fall products. Smaller absolute values of these three indexes meant minor discrepancies
between SPP and GGP. The POD, FAR, and CSI were detectors for predicting rainfall
occurrence on a daily scale. Higher POD and CSI and lower FAR corresponded to a higher
ability to predict rainfall events.

As shown in Table 5 and Figure 6, the daily precipitation was mainly below 40 mm.
CFSR had the highest CC of 0.72, the minimum RMSE of 4.44 mm, and the maximum
POD of 0.92. However, its ME and BIAS were the largest, and both indexes were positive,
revealing that precipitation was overestimated. The CC of TRMM and PERSIANN-CDR
was 0.37 and 0.36, respectively; meanwhile, the RMSE of TRMM and PERSIANN-CDR was
6.43 and 6.41, respectively. Both the ME and BIAS for these two precipitation products were
negative, indicating the underestimation of rainfall. The POD and CSI of the three original
SPPs were relatively high, distributed in the range of 0.58–0.92 and 0.77–0.85, respectively,
and the FAR was as low as 0.23. The values of CC and RMSE for FMSPP fell within the
range obtained from the original SPPs. What is more, its POD, FAR, and CSI were the same
as CFSR, which was the best. Additionally, the absolute values of ME and BIAS for FMSPP
were the smallest (close to 0). Overall, FMSPP performed relatively well compared with
the original SPPs on a daily scale.

Table 5. Statistical analysis of SPPs and FMSPP over the whole watershed on a daily scale.

Precipitation
Product CC RMSE (mm) ME (mm) BIAS (%) POD FAR CSI

CFSR 0.72 4.44 1.02 35.6 0.92 0.17 0.83
TRMM 0.37 6.43 −0.35 −13.09 0.58 0.15 0.85

PERSIANN-CDR 0.36 6.41 −0.06 −2.9 0.68 0.23 0.77
FMSPP 0.57 4.92 −0.0004 −0.013 0.92 0.17 0.83
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Figure 6. Statistical analysis of SPPs and FMSPP over the whole watershed on a daily scale: (a) CFSR, (b) TRMM,
(c) PERISANN-CDR, and (d) FMSPP.

On the monthly scale (Table 6 and Figure 7), the CC for FMSPP was the highest, and
its RMSE was the smallest. Besides, the absolute values of ME and BIAS for FMSPP were
close to 0. These results demonstrated that the performance of FMSPP was the best. CFSR
presented the largest BIAS and ME. The CC for TRMM reached 0.97, followed by 0.95
of PERSIANN-CDR, and 0.86 of CFSR. Compared to FMSPP, the RMSE for TRMM and
PERSIANN-CDR increased slightly, and that for CFSR almost tripled. FMSPP showed
analogous rainfall probability density distributions to TRMM and PERSIANN-CDR. By
comparison, CFSR allocated more rainfall in the scope of 100–150 mm. Moreover, The ME
and BIAS of CFSR were positive, and those for TRMM, PERSIANN-CDR, and FMSPP were
negative, illustrating that CFSR overestimated rainfall while TRMM and PERSIANN-CDR
underestimated rainfall. This result was consistent with the conclusion on the daily scale.

Table 6. Statistical analysis of SPPs and FMSPP over the whole watershed on a monthly scale.

Precipitation Product CC RMSE (mm) ME (mm) BIAS (%)

CFSR 0.86 53.10 31.47 35.5
TRMM 0.97 21.39 −11.56 −13.09

PERSIANN-CDR 0.95 23.07 −2.46 −2.9
FMSPP 0.97 17.12 −0.011 −0.013
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Figure 7. Statistical analysis of SPPs and FMSPP against GGP on a monthly scale over the whole watershed: (a) CFSR, (b)
TRMM, (c) PERISANN-CDR, and (d) FMSPP (the change in the color of the dots from cyan to red represents the change in
the magnitude of the rainfall from small to large).

Figure 8 displayed the variation law of average monthly rainfall of the five precipi-
tation products from 2000 to 2008. Most of the annual precipitation was allocated during
the wet season from June to September. In contrast, the dry season from November to
February accounted for a mere portion of the annual rainfall. The distribution of FMSPP,
TRMM, and PERSIANN-CDR was consistent with that of the GGP. Outliers of these four
precipitation products were scattered on the maximum side in July and scattered on the
minimum side in August. CFSR had no outliers and significantly overestimated the rainfall
in these two months. TRMM slightly underestimated the rainfall during the dry season.

4.2. Spatial Evaluation of SPPs and FMSPP

Figures 9 and 10 show the spatial variation of the CC for the original SPP and FMSPP
on daily and monthly scales. In terms of the daily-scale CC, CFSR was around 0.5, except
for a small amount of terrain in the northern mountainous area with the CC of 0.3. The
correlation coefficients for PERSIANN-CDR over most subbasins were around 0.3 except
for a minor portion of northern and midwestern regions. That for TRMM varied distinctly
from 0.3 in the north to 0.2 in the south. The CC for FMSPP improved remarkably compared
with TRMM and PERSIANN-CDR, with most of the area within the range of 0.3–0.6. On
the monthly scale, the CC for each precipitation product was improved significantly in all
sub-basins. FMSPP had the highest correlation in contrast with the other three SPPs. Its CC
changed in the range of 0.84–0.96. TRMM and PERSIANN-CDR were slightly inferior to
FMSPP. Their CCs in most areas ranged from 0.80 to 0.9. That for CFSR was below 0.8.
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Figure 8. Average monthly rainfall distribution of the five precipitation products during 2000–2008 over the whole
watershed: (a) GGP, (b) CFSR, (c) TRMM, (d) PERSIANN-CDR, and (e) FMSPP. (f) Compares the average of the five
precipitation products.

Regarding the variation of average monthly and annual rainfall (Figures 11 and 12),
the four precipitation products all captured the spatial features of less water in the north
than in the south. The monthly and annual rainfall of FMSPP in most subbasins was
below 100 and 1200 mm, respectively. This result was close to GGP. In addition, the three
precipitation products other than CFSR showed a gradually increasing trend from north to
south. CFSR was very different in the northern and midwestern regions—precipitation
was slightly underestimated in the north and significantly overestimated in the midwest.
Specifically, the monthly precipitation and annual precipitation of GGP in the north were
about 65 mm and 800 mm, respectively, and those of the CFSR were about 50 mm and
700 mm, respectively. In the central and western regions, the monthly precipitation and
annual precipitation of GGP were 95 mm and 1100 mm, and those of the CFSR were
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200 mm and 2500 mm, respectively. Note that these two areas were the transitional zones
from the mountainous area to the plain. The rainfall was more significantly affected by
topographical factors in these two areas than in the southern plain [41]. The notable
deviation of CFSR from GGP illustrated that the CFSR was prone to more considerable
error in complex terrain than the TRMM and PERSIANN-CDR in this basin.

Figure 9. Spatial distribution of correlation coefficients for SPPs and FMSPP on a daily scale from 2000 to 2008: (a) CFSR,
(b) TRMM, (c) PERISANN-CDR, and (d) FMSPP.



Remote Sens. 2021, 13, 2630 16 of 28

Figure 10. Spatial distribution of correlation coefficients for SPPs and FMSPP on a monthly scale from 2000 to 2008:
(a) CFSR, (b) TRMM, (c) PERISANN-CDR, and (d) FMSPP.

4.3. Evaluation of the Hydrological Performance of Different Precipitation Products

This part mainly evaluated the hydrological applicability of FMSPP and compared
its performance with that of other precipitation products. All precipitation products used
the same set of parameters when driving the SWAT model to reduce the propagation
of uncertainty caused by the model structure. In this paper, we adopted high-precision
GGP to drive the hydrological model; 1980–1992 and 1993–1999 were used as the calibra-
tion period and validation period, respectively. The simulated monthly streamflow was
calibrated and validated by the measurements at the three hydrological stations. After
that, 2000–2008 was selected as the evaluation period to evaluate the accuracy of each
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precipitation product in streamflow prediction. The warm-up period was 1998–1999. The
coefficient of determination (R2), Nash Sutcliff (NS), and Percent Bias (PBIAS) were used to
evaluate the hydrological performance.

The optimal value of R2 and NS is 1. The better simulations receive higher values of
R2 and NS. PBIAS is used to characterize whether the mean magnitude of the modeled
streamflow is higher or lower than the measured one. If it is less than 0, the streamflow is
overestimated, and otherwise, underestimated.

Figure 11. Spatial variation of average monthly rainfall during the period of 2000–2008 obtained
from (a) GGP, (b) CFSR, (c) TRMM, (d) PERSIANN-CDR, and (e) FMSPP.
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Figure 12. Spatial variation of average annual rainfall during the period of 2000–2008 obtained from (a) GGP, (b) CFSR,
(c) TRMM, (d) PERSIANN-CDR, and (e) FMSPP.
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4.3.1. Calibration and Validation

Based on the Sequential Uncertainty Fitting (SUFI) algorithm embedded in the SWAT
Calibration Uncertainty Programs (SWAT-CUP), the Latin hypercube method [42] was
utilized to sample each parameter value within a specific range, and NS was used as
the objective function to find the optimal parameter set. Table 7 shows the range of
each parameter [43], the optimal parameter set, and the global sensitivity analysis results.
The t-value was employed to identify the significance of the parameter, and the p-value
determined whether to reject the null hypothesis (a rejection of the hypothesis meant
that the parameter had a significant impact on the objective function value). The global
sensitivity analysis was relative to one-at-a-time sensitivity analysis, and it signified the
alteration of the objective function value resulting from a parameter change. The more
the objective function value changed, the more sensitive the objective function was to the
parameter, corresponding to a higher t-value and a lower p-value. As shown in Figure 13
and Table 7, the most sensitive parameter was the initial SCS runoff curve for moisture
condition II (CN2), then base flow alpha-factor (ALPHA_BNK), followed by manning’s n
value for the main channel (CH_N2). For the meaning of other parameters involved in the
figure and table, please refer to [44].

Table 7. Global sensitivity analysis of the parameters and the corresponding optimal values.

Parameter
Name Rank t-Value t-Value Fitting Value Min Value Max Value

R__CN2.mgt 1 4.83 0.0005 0.18 −0.2 0.2
V__ALPHA_BNK.rte 2 4.12 0.001 0.33 0 1
V__CH_N2.rte 3 −2 0.05 0.09 0 0.3
V__GWQMN.gw 4 1.79 0.08 0.86 0 2
V__GW_DELAY.gw 5 −1.19 0.24 210.6 30 450
V__CH_K2.rte 6 −0.84 0.41 56.25 5 130
V__ESCO.hru 7 −0.65 0.52 0.85 0.8 1

V__ALPHA_BF.gw 8 0.46 0.65 0.71 0 1
R__SOL_AWC.sol 9 −0.29 0.78 0.14 −0.2 0.4
R__SOL_BD.sol 10 −0.18 0.86 −0.45 −0.5 0.6
R__SOL_K.sol 11 −0.1 0.92 0.3 −0.8 0.8
V__SFTMP.bsn 12 −0.1 0.92 0.7 −5 5
V__GW_REVAP.gw 13 −0.03 0.98 0.01 0 2

Notes: V means that the current parameter value is to be replaced by a given value; R represents that the current parameter value is to be
multiplied by (1 + a given value).

The simulated runoff during the calibration period matched well with the runoff
measured at the three hydrological stations (Table 8 and Figure 14). The evaluation indexes
NS, R2, and PBIAS ranged from 0.73 to 0.93, 0.84 to 0.93, and −2.7% to 12.6%, respectively.
In the validation period of 1993 to 1999, the simulation performance decreased marginally;
NS and R2 reduced slightly (0.1–0.2), and PBIAS almost doubled. Overall, the performance
could be evaluated as “good” according to the SWAT performance rating criteria proposed
in the literature [38].

4.3.2. Performance Comparison of SWAT Model Forced by Different Precipitation Products

During the evaluation period, the monthly streamflow measured and simulated
at the Lijiawan hydrological station was used to compare the performance of different
precipitation products in driving the SWAT model for monthly runoff prediction. Note
that the streamflow measurements from 2005 to 2006 were not collected. The order of
months labeled on the x-axis in Figure 15 was done in a consecutive way. Judging from
the evaluation indicators in Table 9 and Figure 15, one could find that the PBIAS of the
three precipitation products other than TRMM was smaller than 0, suggesting that the
simulated streamflow was larger than the measured values. Specifically, the simulated
discharge of GGP performed well with the indexes R2 of 0.8 and NS of 0.78. R2. The R2 and
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NS for TRMM were very close to those of GGP, with values of 0.8 and 0.70, respectively,
but its PBIAS was positive (10.3%), indicating that the modeled streamflow for TRMM was
smaller than the measurements. The CFSR underestimated the streamflow in July 2002 and
2003 and notably overestimated the streamflow in July after 2004. Besides, CFSR had the
smallest R2 and NS, which were 0.60 and 0.40, respectively. In conclusion, the simulation
result of CFSR was not as good as the other four precipitation products. The R2 and NS for
FMSPP were 0.84 and 0.83, respectively, close to those for GGP and TRMM (identified to
perform well). Moreover, its PBIAS was the smallest among all the precipitation products,
at only −1.9%, demonstrating its best performance. Therefore, FMSPP could drive the
SWAT model successfully and improve monthly runoff prediction.

Figure 13. Global sensitivity analysis results of the parameters used in this study.

Table 8. Results of the evaluation indexes in the calibration and validation periods for
hydrological modeling.

Index Station Calibration Validation

R2
Sanhuangmiao 0.84 0.85

Dengyinyan 0.90 0.91
Lijiawan 0.93 0.91

NS
Sanhuangmiao 073 0.73

Dengyinyan 0.88 0.85
Lijiawan 0.93 0.90

PBIAS
(%)

Sanhuangmiao 12.6 19.1
Dengyinyan 10.3 18.4

Lijiawan −2.7 −5.1
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Figure 14. Monthly streamflow measured at the three hydrological stations and the simulation result from GGP from 1980
to 1999 (1980–1992 for calibration and 1993–1999 for validation): (a) Sanhuangmiao, (b) Dengyinyan, and (c) Lijiawan.
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Figure 15. Comparison of the monthly runoff between the observations and those simulated with
the five precipitation products at Lijiawan hydrological station from 2000 to 2004 (Months 1–60) and
2007 to 2008 (Months 61–84): (a) GGP, (b) CFSR, (c) TRMM, (d)PERSIANN-CDR, and (e) FMSPP.

Table 9. Comparison of monthly streamflow evaluation indexes of the five precipitation products
from 2000 to 2008.

Precipitation
Product

Evaluation Index

R2 NS PBIAS (%)

GGP 0.80 0.78 −2.9
CFSR 0.60 0.40 −29.6

TRMM 0.80 0.70 10.3
PERSIANN-CDR 0.68 0.65 −6.2

FMSPP 0.84 0.83 −1.9

5. Discussion

The rainfall deviations of the three original SPPs and FMSPP from GGP are depicted
in Figures 11 and 12. The spatial distribution of TRMM, PERSIANN-CDR, and FMSPP is
approximate to GGP over the sub-basins, whereas CFSR has the largest deviation from
GGP. Besides, SPPs and FMSPP show a trend of underestimation in the south compared
with GGP, while the spatial feature in the north is more complicated because of partial
underestimation and overestimation. The western edge and midwest are mountainous
areas and transitional zones, over where the rainfall bias is higher than that of the southern
plain, particularly for CFSR. The CC values show the opposite pattern (Figures 9 and 10).
This result is consistent with the previous studies that satellite-based precipitation is more
reliable in plain than in complex mountainous regions [21,45,46]. Note that, in addition to
the reduced performance of SPPs in mountainous regions, the nature of the precipitation is
also important. The study area is dominated by monsoonal rainfall, which tends to occur
in large-scale systems that can be detected easily by relatively coarse-resolution satellite
data. For basins in which, for example, convective rainfall is dominant, the performance of
satellite-based precipitation measurement is likely to be worse.

In our study basin, we have a dense network of in-situ precipitation stations, and GGP
naturally becomes the main accurate source of FMSPP. Just because of this, the analysis
result of satellite precipitation products is hence more reliable. As shown in the spatial-
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temporal analysis and the hydrological modeling results, the performance of TRMM and
PERSIANN-CDR is satisfactory. These good SPPs contribute some accuracy to the FMSPP;
that is why FMSPP performs better than GGP. The results obtained in our study basin can
provide a good reference to the data-sparse basin. If there are no in-situ stations, or the
in-situ stations are too sparse, making the in-situ precipitation an unreliable source for the
data-sparse basin, one can take the ‘most accurate satellite precipitation’ as the benchmark.
This benchmark can be determined by referring to similar basins with rich in-situ stations.
In that scenario, all the other possible precipitation sources, including the sparse in-situ
precipitation, should be compared with the selected precipitation source. Therefore, the
fusion method should be valid for the data-sparse region and can effectively reduce the
uncertainty induced by multiple precipitation sources.

As mentioned in the literature [21], the hydrological performance of different SPPs in
a particular basin may not apply to other basins with different characteristics. Different
satellite products may perform distinctively in diverse regions. It is improper to judge
which precipitation product is absolutely superior to the others based on the performance
of the precipitation in a specific basin [47,48]. MIDSM-CCBWA proposed in this paper can
dynamically integrate multi-source gauge-satellite precipitation at different sub-basins.
This methodology effectively brings down the bias induced by the random application of a
single satellite precipitation source to different regions and also maintains the characteristics
of high-precision in-situ precipitation. Hence, the FMSPP has a more general hydrologic
applicability in the data-sparse region.

Figure 16 shows the probability density distribution of the monthly precipitation of the
five precipitation products. Besides, the correlations and their confidence intervals between
any two precipitation products are displayed in the figure. CFSR is less correlated with
the other four precipitation products. Its Pearson CC with GGP, TRMM, PERSIANN-CDR,
and FMSPP is 0.86, 0.84, 0.85, and 0.89, respectively. The CC for FMSPP against GGP
reaches 0.97, whereas that between FMSPP and CFSR is 0.89, which reveals that the fused
rainfall product can well preserve the characteristics of GGP and its correlation with CFSR
(identified to perform worse) is comparatively weak.

The magnitude and spatial distribution of precipitation directly influence the accuracy
of runoff prediction. Figure 17 exhibits the correlations and confidence intervals between
the measured streamflow and the simulations obtained from the rainfall products. The
probability density distribution of the measured streamflow and that of the simulated
streamflow are also shown in this figure. The simulated runoff significantly correlates with
the measured runoff. The Pearson CC is 0.92 for FMSPP, 0.90 for both GGP and TRMM,
and 0.82 for PERSIANN. The simulation performance of CFSR is relatively poor, but its CC
value still reaches 0.77. Overall, one needs to be cautious if CFSR is selected as the single
rainfall source to simulate monthly runoff in this basin. The FMSPP presents the highest
CC with the measured runoff.

The GGP is used to calibrate the model on the premise that the model parameters
are stationary. During the evaluation period, the hydrological performance forced by
each precipitation product is assessed by comparing the simulated monthly runoff with
the measurements. According to the water balance equation, the amount of river flow
depends on the water yield contributed by each sub-basin (or HRU). Water yield is mainly
composed of three parts: surface flow, lateral flow, and groundwater flow. Figure 18 shows
the CC of the different components of the water balance in the SWAT model simulated by
each rainfall product. It can be deduced that the precipitation is significantly correlated
with water yield, and the CC between precipitation and water yield for all the five rainfall
products, i.e., GGP, CFSR, TRMM, PERSIANN-CDR, and FMSPP, is 0.93, 0.88, 0.91, 0.89,
and 0.84, respectively.



Remote Sens. 2021, 13, 2630 24 of 28

Figure 16. The probability density distribution of the monthly precipitation of the five precipitation products. Their
correlations and confidence intervals are also presented (‘***’ indicates the significance level).

Figure 17. The probability density distribution of the measured streamflow and that of the streamflow simulated from
different precipitation products. Their correlations and confidence intervals are also presented. (‘***’ indicates the
significance level).
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Figure 18. Correlation analysis of water balance components simulated by the five precipitation products. (‘×’ indicates no
significant correlation): (a) GGP, (b) CFSR, (c) TRMM, (d) PERSIANN-CDR, and (e) FMSPP.

However, various water balance components may contribute differently to water
yield in different precipitation products; this may affect the simulated runoff. For example,
surface runoff and lateral runoff are the main constituents of water yield for all the precipi-
tation products, and their correlation with water yield can reach about 0.9. Groundwater
flow does not contribute much to runoff generation in GGP, CFSR, and TRMM, while its
correlation with water yield obtained in PERSIANN-CDR and FMSPP comes up to 0.66
and 0.76, respectively. The different contributions of groundwater flow to water yield mod-
eled by different precipitation products are possibly due to the antecedent soil condition
influenced by extreme flood events [49].



Remote Sens. 2021, 13, 2630 26 of 28

6. Conclusions

We propose the MIDSM-CCBWA fusion method to gain a more accurate areal rainfall
FMSPP. The FMSPP was generated from an open database composed of multiple SPPs and
GGP. In the case study based on the TJRB, the satellite precipitation sources involved in the
database included CFSR, TRMM, and PERSIANN-CDR. Evaluation of each SPP and FMSPP
at different spatio-temporal scales was performed over the TJRB. Then, the simulated
streamflow forced by FMSPP, GGP, and each SPP was compared with the observations
to evaluate their applicability to the hydrological modeling. The correlations and their
confidence intervals between different precipitation products were further discussed, as
well as the correlation of the water balance components in these precipitation products. This
method can enhance the applicability of satellite precipitation products in hydrological
models and improve the accuracy of hydrological forecasts by reducing the deviation
caused by the uncertainty of precipitation sources. The main conclusions are as follows:

1. FMSPP shows the maximum POD and minimum CSI, which proves that FMSPP can
capture the occurrence of rainfall events very well. What is more, the absolute values
of ME and BIAS for FMSPP are the smallest both on the daily and monthly scales
over the watershed. Besides, the CC is significantly higher in most sub-basins on
the monthly scale for FMSPP than the other three SPPs. Its CC changes in the range
of 0.84–0.96. These results demonstrate that the performance of FMSPP is the best
compared with the original SPPs.

2. Among the precipitation products, FMSPP shows the best simulation results, with
R2 and NS both being the largest, which are 0.83 and 0.84, respectively. Moreover,
its PBIAS is the smallest, at only −1.9%. The hydrological performance of GGP and
TRMM is good, followed by PERSIANN-CDR, whereas CFSR is unsatisfactory.

3. The proposed MIDSM-CCBWA fusion method dynamically integrates multi-source
gauge-satellite precipitation over different sub-basins and forms the FMSPP, which can
effectively reduce the bias induced by the random application of a single precipitation
source and improve the general applicability for streamflow simulation in the data-
sparse region.

4. FMSPP can preserve the characteristics of the precipitation source identified to per-
form well (e.g., GGP in the case study). It only has a relatively slight correlation with
the precipitation source identified to perform worse (e.g., CFSR in this study).

5. The rainfall deviation of SPPs from GGP over the mountainous areas on the northwest
is higher than that of the southern plain, and the CC shows the opposite pattern in
these areas. Thus, the satellite-based precipitation is generally more reliable in plain
than in mountainous terrain for the study basin.
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