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Abstract: Power consumption in wireless sensor networks is high, and the lifetime of a battery has 
become a bottleneck, restricting network performance. Wireless power transfer with a ground mo-
bile charger is vulnerable to interference from the terrain and other factors, and hence it is difficult 
to deploy in practice. Accordingly, a novel paradigm is adopted where a multi-UAV (unmanned 
aerial vehicle) with batteries can transfer power and information to SDs (sensor devices) in a large-
scale sensor network. However, there are discrete events, continuous process, time delay, and deci-
sions in such a complicated system. From the perspective of a hybrid system, a hybrid colored cyber 
Petri net system is proposed here to depict and analyze this problem. Furthermore, the energy uti-
lization rate and information collection time delay are conflict with each other; therefore, UAV-
aided wireless power and information transfer is formulated as a multi-objective optimization prob-
lem. For this reason, the MAC-NSGA II (multiple ant colony-nondominated sorting genetic algo-
rithm II) is proposed in this work. Firstly, the optimal trajectory of multiple UAVs was obtained, 
and on this basis, the above two objectives were optimized simultaneously. Large-scale simulation 
results show that the proposed algorithm is superior to NSGA II and MOEA/D in terms of energy 
efficiency and information collection delay. 

Keywords: wireless power transfer; Petri net; trajectory optimization; Internet of Things; unmanned 
aerial vehicle 
 

1. Introduction 
Wireless sensor networks collect and exchange data via the interconnection between 

heterogeneous devices, and such networks are widely applied in intelligent logistics, 
smart cities, disasters, and so on [1,2]. The third and fourth generations of mobile com-
munication technology (3G and 4G) are excellent infrastructures for supporting Internet 
of Things (IoT) due to the wide coverage, low deployment cost, and high security. How-
ever, it is difficult to achieve the high data rate, low latency, and low power consumption 
for physical communication. Fortunately, the Internet of Everything has been made pos-
sible by the advent of 5G technology, which provides connected devices with gigabit data 
rates and low-latency communications. The 5G-enabled WSN has consequently attracted 
a lot of attention from the industry and academia [3–7]. 

In fact, wireless sensor networks connect a large number of devices that consume 
huge amounts of power, making the lifetime of the battery a bottleneck for network per-
formance. Energy harvesting (EH) and wireless power transfer (WPT) can be regarded as 
promising technologies that are able to extend a battery’s lifetime. The former absorbs 
energy from wind and solar but is less sustainable. Typical technologies for wireless 
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power transfer include inductively coupled charging and electromagnetic magnetic reso-
nance coupling, both of which can transfer power to distances ranging from centimeters 
to meters but not over longer distances. The wireless power transfer supported by radio 
frequency technology belongs to far field charging, which can transfer energy several kil-
ometers away. Therefore, radio frequency wireless power transfer (RF-WPT) has aroused 
great interest in the research community and industry. Static charger is the main imple-
mentation of RF-WPT, while the disadvantage of this is that it will cause a waste of energy, 
and it is difficult to satisfy the various energy requirements [8–10]. One way to fix it is to 
employ a ground mobile charger to replenish the sensor devices (SDs). However, the 
drawbacks are also obvious. The path planning and communication quality of ground 
mobile chargers are susceptible to the terrain, and therefore it is difficult to replenish en-
ergy efficiently and to do so in a timely way [11–17]. 

Compared with mobile charging vehicles on the ground, UAVs have advantages of 
rapid deployment and high communication quality, which are particularly suitable for 
deployment in rural and harsh environment regions. Not only does the UAV power the 
SDs, but it also enables air-to-ground communication via an onboard wireless transceiver, 
allowing data to be collected from a wider area at a faster rate. Consequently, it is feasible 
to use the UAVs equipped with RF-WPT to improve the performance of wireless network 
[18–20]. Specifically, a UAV is assigned a preset the trajectory to visit SDs distributed 
across the target area. When hovering over a SD, the downlink provides wireless charging 
to the SD, while the uplink provides data transmission services. 

The mobility of the UAV enables easy access to SDs; however, limited capacity makes 
it difficult for a single UAV to perform charging and communication tasks in a large-scale 
network, and hence it is necessary to deploy multiple UAVs at the same time. In addition, 
the generated status information needs to be delivered to the destination as quickly as 
possible for online data analysis and decision making, and outdated information may lead 
to false control or even major disasters. Therefore, on the one hand, information collection 
delay needs to be limited to a short period. On the other hand, the energy efficiency of 
UAVs should be improved as much as possible, that is to say, to replenish more energy 
for SDs. They are two conflicting objectives that need to be considered jointly.  

Based on the above analysis, this paper constructs a multi-objective optimization for 
multi-UAV aided power and information transmission in order to maximize the energy 
utilization of the UAVs and minimize the time delay of information collection. The UAV’s 
energy efficiency is defined as the ratio of the energy received by SDs to the energy con-
sumption of the UAV, which is most affected by the flight trajectory and is independent 
of the hover time. Therefore, the trajectory of each UAV can be assigned first, so as to 
minimize the cost of the UAV’s flight. Moreover, this is a typical multiple traveling sales-
man problem, which is NP-complete and difficult to be solved by traditional optimization 
methods. For this reason, the MAC-NSGA II (multiple ant colony-nondominated sorting 
genetic algorithm II) is proposed here to minimize the total trajectory of the UAVs, while 
minimizing their maximum trajectory to balance the flight load. On this basis, the Pareto 
optimal solution set of energy efficiency and information collection delay is obtained by 
NSGA II. 

The multi-UAV aided wireless power and information transfer is a hybrid dynamic 
system, where the power transfer is continuous, and the information collection can be 
regarded as a discrete event due to its instantaneous completion. As a powerful visual 
mathematical tool, Petri net has the ability to represent concurrent and synchronous be-
havior. Moreover, the dynamic process triggered by the transition is not affected by the 
system parameters and network topology. Consequently, the wireless power and infor-
mation transfer can be modeled and analyzed by Petri net [21,22]. 

The main contributions of the article are concentrated in the following three aspects: 
1. The HCCPNS (hybrid colored cyber Petri net system) is proposed for the first time 

to model the multi-UAV aided wireless power and information transfer system. The place 
represents the status of the UAV or SD, where the continuous part is the energy, and the 
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discrete part is information. The variation of a marking or a token corresponds to the con-
tinuous transition and the discrete transition, respectively. To the best of our knowledge, 
this is the first time that Petri net is employed to express the energy flow, control flow, 
and information flow simultaneously.  

2. The multi-UAV aided wireless power and information transfer is constructed as a 
multi-objective optimization problem. On the one hand, we hoped that the UAV can re-
plenish more energy for SDs, thus improving energy efficiency. Since the wireless charg-
ing power is constant, this inevitably results in a longer hovering time. On the other hand, 
when an SD sends out the request for information transmission, it expects a UAV to arrive 
at the corresponding position to receive data as soon as possible, that is, the time delay of 
information collection should be minimal. It is not difficult to see that the two targets are 
in conflict and a trade-off needs to be found.  

3. Under the premise of one-to-one service, the strategy of trajectory assignment and 
hover of multiple UAVs is designed. The MAC-NSGA II is proposed in order to optimize 
the energy utilization and average delay of information simultaneously based on the op-
timal trajectory of multiple UAVs. Numerical simulation results demonstrate that the pro-
posed algorithm has excellent performance, especially for large scale networks. 

The rest of the paper is organized as follows. Section 2 reviews the work related to 
wireless power transfer and Petri nets. The specification of multi-UAV wireless power 
and information transfer based on HCCPNS is proposed, and the multi-objective optimi-
zation problem is formulated in Section 3. Section 4 presents the MSC-NSGA II. Section 5 
demonstrates and analyzes the simulation results. Section 6 summarizes the paper and 
looks into the future research. 

2. Related Work 
In recent years, as a major paradigm of wireless power transfer, ground mobile charg-

ing has been widely studied. Mo et al. proposed a novel multiple mobile chargers coordi-
nation framework for a wireless rechargeable sensor network, where the scheduling, the 
moving time, and the charging time of the mobile chargers were jointly considered [11]. 
In order to maximize the overall task utility concerning sensor selection and task cooper-
ation for wireless rechargeable sensor networks, Wu et al. proposed a novel energy allo-
cation scheme with a specific theoretical analysis of the submodularity and gap property 
for the surrogate [12]. In a large-scale rechargeable wireless sensor network, Sha et al. as-
signed the sensor nodes into groups according to their remaining lifetime and balanced 
the energy consumption among several mobile wireless chargers (MWCs) to maximize 
the utilization rate of the MWCs and reduce the charging delay [13]. Lan et al. employed 
a mobile sink to charge the sensor nodes and gather data simultaneously so as to maxim-
ize the data gathering performance, and they proposed a distributed speed control and 
routing algorithm to reduce the computing load of the mobile sink [14]. To maintain a 
perpetual network operation, Lyu et al. divided the network into multiple cells and used 
a mobile device to charge several sensor nodes simultaneously; the mobile device period-
ically traversed each cell to charge and collect data with the objective of maximizing the 
amount of data by the unit energy of the mobile device [15]. To enhance the network util-
ity, Zhao et al. optimized the charging vehicle route, the data rate, and the charging time 
together, and they presented multiple period iterative algorithms [16]. Considering that 
the energy consumption rate of nodes is dynamically changed, Yang et al. proposed a real-
time global charging scheme in wireless rechargeable sensor networks based on the actor–
critic reinforcement learning algorithm [17]. Although existing studies have made many 
achievements from the perspectives of charging time, data transmission delay, network 
utility, etc., more work is still needed, as the mobility and communication performance of 
mobile charging vehicles are affected by terrain and other factors, while UAV assisted 
charging is rarely limited. 

Xu et al. employed a UAV-mounted mobile energy transmitter to deliver wireless 
energy to a set of energy receivers (ERs) at known locations on the ground. They optimally 
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exploited the mobility of UAV via trajectory design to maximize the amount of transferred 
power to all ERs during a finite charging period [23]. Du et al. considered a UAV-enabled 
mobile edge computing (MEC) system, where a UAV powered IoT devices (IDs) by uti-
lizing wireless power transfer and collected the data of them. The objective was to mini-
mize the total energy consumption of the UAV by jointly optimizing the SD association, 
computing resources allocation, UAV hovering time, wireless powering duration, and the 
services sequence of the SDs [24]. Hu et al. took into account a simplified UAV-enabled 
wireless power transfer network with a linear topology, in which multiple ground nodes 
were deployed in a straight line. The objective was to maximize the minimum received 
energy among all ground nodes by optimizing the UAV’s one-dimensional trajectory, 
subject to the maximum UAV flying speed constraint [25]. According to the authors in 
[26], the UAV in their work employed RF wireless power transfer to charge the users in 
the downlink and to collect the information from the users in the uplink. Subject to the 
maximum speed constraint and the users’ energy neutrality constraints, the uplink com-
mon throughput among all ground users was maximized. Beak et al. jointly optimized the 
UAV hovering location and duration to maximize the minimum energy of sensors after 
data transmission and energy harvesting under data collection and UAV energy con-
sumption constraints, and a near-optimal UAV route was determined by adjusting the 
initial feasible UAV route iteratively [27]. Su et al. proposed a novel multiple-stage dy-
namic matching to model the charging relationship between energy-constrained devices 
(ECDs) and UAVs. They maximized the total amount of charging energy by a multiple-
period charging process [28]. Wu et al. studied the UAV’s trajectory optimization from 
the viewpoint of UAV’s energy utilization efficiency. For this purpose, they presented a 
polynomial-time randomized approximation scheme (PARS) to obtain the minimal num-
ber of hovering locations [29]. Subsequently, to achieve balanced energy consumption 
among UAVs, they maximized the energy utilization efficiency of UAVs, and they mini-
mized the communication delay by optimizing the trajectory jointly with constraints of 
the energy capacity and the area of the target region [30]. Taking into account the power 
consumption of the UAV, the charging process from a base station to the UAV and the 
conversion loss of the energy harvester, Yan et al. designed two different charging 
schemes to maximize the sum-energy received by all sensors for a one-dimensional and a 
two-dimensional wireless power transfer system [31]. Hu et al. formulated an optimiza-
tion problem to enhance the UAV’s sensing performance and power allocation as well as 
its placement, minimizing the time of transmitting data according to different communi-
cation requirements [32]. Hu et al. formulated an optimization problem to minimize the 
average Age of Information of the data collected from all ground sensor nodes. They used 
Karush–Kuhn–Tucker (KKT) conditions to find the optimal energy transfer and the data 
collection time allocation; through this, a UAV’s trajectory planning was obtained by dy-
namic programming and an ant colony heuristic algorithm [33]. Considering the UAV’s 
hovering inaccuracy on received power at ground deployed sensor nodes, Suman et al. 
proposed a hovering inaccuracy-aware optimal charging system design algorithm to find 
the optimal transmit power, hovering altitude, and antenna exponent [34]. Yuan et al. took 
into account the realistic nonlinear energy harvesting model for the first time in order to 
maximize the minimum harvested energy among ground devices under the constraint of 
a UAV’s maximum flight speed limit [35]. Caillouet et al. made a trade-off between the 
altitude of a drone and its charging coverage to ensure good harvesting capabilities for 
industrial scenarios [36]. For the studies in [37–39], the UAV was used to collect data from 
sensors, and routing protocols were studied to reduce the data loss as well as energy con-
sumption. Although the above work involves energy consumption, UAV flight trajectory, 
computational performance, and other aspects, most of them use a single UAV as the en-
ergy output source, which actually limits the improvement of UAV performance. In this 
paper, several UAVs are used to serve SDs, and factors such as the number of UAVs, flight 
trajectory and communication delay are jointly considered to be applicable to large-scale 
wireless power and information transfer networks.  
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Petri net has unique advantages in the modeling and analysis of a cyber-physical 
system (CPS) and also automated manufacturing systems. Casalino et al. addressed the 
problem of scheduling robotic activities in human–robot collaborative contexts based on 
time Petri nets [40]. Aiming at a kind of CPS containing discrete events, continuous pro-
cesses, stochastic phenomena, time delay, and decision, Cao et al. proposed the modeling 
methods of a CPS based on the modified hybrid stochastic timed Petri net with three-tier 
architecture, and they introduced a decision place to strengthen the decision-making abil-
ity of a CPS [41]. Yang et al. modeled the deadlock problem in large-scale automated man-
ufacturing systems based on Petri nets and developed an innovative distributed approach 
[42]. To address the collision issue of automated guided vehicles, Luo et al. proposed an 
approach to the design of a maximally permissive controller to prevent vehicles from any 
collision using labeled Petri nets [43]. In addition, they focused on using developed timed 
Petri nets to model variable traffic light control systems to analyze the performance of 
urban traffic networks [44]. In our previous work, a generalized synchronizing colored 
cyber Petri net was proposed to establish the fixed chargers’ deployment, and later a hy-
brid cyber Petri net was applied to model and analyze the master–slave charging behavior 
[45,46]. In this paper, a hybrid colored cyber Petri net system is to be proposed to charac-
terize the energy flow, information flow, and control flow relationship in UAVs’ aided 
wireless power and information transmission.  

3. System Model and Problem Formulation 
In this section, the model of wireless power and information transfer is firstly intro-

duced. Then, based on the classical Petri net, a hybrid colored cyber Petri net system is 
proposed, and the dynamic behavior of the system is described from the mathematical 
and graphical perspectives. Finally, the multi-UAV aided wireless power and information 
transfer is formulated as a multi-objective optimization problem. The schematic diagram 
of multi-UAV aided wireless power and information transfer is illustrated in Figure 1. 

β

UAV

IoTD

Depot

Flying 
trajectory

WPT

WIT

 
Figure 1. Illustration of multi-UAV aided wireless power and information transfer. 

3.1. UAV-Aided Wireless Power and Information Transfer Model 
As shown in Figure 1, we consider a multi-UAV aided wireless power and infor-

mation transfer network, where an 𝑀 number of UAVs replenish energy and collect the 
information for an 𝑁 number of SDs within given area. The UAVs are indexed by the set ℳ = 1,2, ⋯ ⋯ , 𝑀 , and the SDs are indexed by the set 𝒩 = 1,2, ⋯ ⋯ , 𝑁 . In a three-di-
mensional Cartesian coordinate system, the coordinate of the 𝑖th UAV can be expressed 
as 𝑥 , 𝑦 , 𝐻 , and the coordinate of the 𝑗-th SD is represented as 𝕨 , 0 . The UAV cruises 
at an economic speed 𝑉  for energy saving. Let 𝕢 𝑡 = [𝑥 𝑡 , 𝑦 𝑡 ] denote the coordi-
nate projected by the 𝑖-th UAV on the plane 𝛽, then the flight distance of the UAV can be 
given. The main parameters are summarized in Table 1. 
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Table 1. Main notations. 

Notation Description 𝑀 number of UAVs 𝑁 number of SDs 𝑃  moving power of the UAV 𝑃  hovering power of the UAV 𝑃  transmitting power of the UAV 𝐸 ,  received energy of the 𝑗th SD from the 𝑖th UAV 𝐸  moving energy of the 𝑖th UAV 𝐸  hovring energy of the 𝑖th UAV 𝐸  transmitting energy of the 𝑖th UAV 
Assuming that a UAV starts from and returns to the depot, it should immediately fly 

back to the depot if the energy is carried below a certain threshold. Let the flight period 
be 𝑇, then 𝑞 0 = 𝑞 𝑇 = 𝑥 , 𝑦 ，𝑖 ∈ ℳ (1)

Assuming that the UAV is flying at a fixed altitude H, H is then the minimum height 
at which obstacles such as buildings, trees, and streetlights can be avoided. Moreover, 
there are three modes of power consumption: flight, hovering, and power transmission. 
The first two are driven by propulsion power and shown as follows, 

𝑃 𝑉 = 𝑃 1 + 3𝑉𝑈 + 𝑃 1 + 𝑉4𝑣 − 𝑉2𝑣 + 12 𝑑 𝜌𝑠𝐴𝑉  (2)

where 𝑃  and 𝑃  are two constants representing the blade profile power and induced 
power in hovering status, respectively; 𝑈  denotes the tip speed of the rotor; 𝑣  is 
known as the mean rotor induced velocity in hover; 𝑑  and 𝑠 are fuselage drag ratio and 
rotor solidity, respectively; and 𝜌 and 𝐴 denote the air density and rotor disc area [28]. 
During the flight of the UAV, if the additional losses caused by acceleration and deceler-
ation are ignored, the moving power is 𝑃 = 𝑃 𝑉 = 𝑉  (3)

and the hovering power is 𝑃 = 𝑃 𝑉 = 0 = 𝑃 + 𝑃  (4)

The channel power gain at time 𝑡 between the 𝑖-th UAV and 𝑗-th SD is ℎ , 𝑡 = 𝛽𝑞 𝑡 − 𝑤 + 𝐻  (5)

where 𝛽  is the channel power gain at a reference distance 1 m, and ‖∙‖ is the Euclidean 
norm. The receiving power of SD at time 𝑡 ∈ 𝑇 is 𝑃 = 𝜂 𝑃 ℎ , 𝑡  (6)

where 𝑃  is the transmitting power of UAV, and 0 ≤ 𝜂 ≤ 1 is the energy efficiency of 
RF-WPT. 

The UAV’s energy utilization rate is denoted as 𝜙, which is the ratio of the total en-
ergy received by the SDs to the total energy consumed by the UAV. Since the UAV energy 
consumption consists of flight, hovering, and power transmission, then the UAV energy 
utilization rate is 𝜙 = ∑ 𝐸 ,𝐸 + 𝐸 + 𝐸  (7)
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Since the amount of data perceived by a SD is not large, it can be considered that the 
moment a UAV arrives directly above a SD is the moment the UAV receives the infor-
mation. Compared with the charging time, this process is considered to be instantaneous, 
and hence the time of wireless information transfer is ignored. In Equation (8), 𝑡  denotes 
the charging time of the 𝑖-th UAV for the 𝑘-th SD. Once the trajectory of the UAV is de-
termined, the time delay of information transfer in SD 𝐼  can be expressed as 

∆𝜏 = 𝑡 + 𝑑 ,𝑉  (8)

Moreover, the average time delay can be given as 

∆𝜏 = 1𝑁 ∆𝜏  (9)

The objective of this paper is to maximize the UAVs’ energy utilization rate while 
minimizing the average time delay of information transfer. The numerator in 𝜙 is related 
to hovering time, and the denominator involves both flight time and hovering time. 
Shorter flight time and longer hovering time can increase 𝜙; however, the average time 
delay is positively correlated with hovering time. Therefore, maximizing the energy utili-
zation rate and minimizing the average time delay are in conflict with each other, which 
is a multi-objective optimization problem. 

3.2. The Specification of Petri Net 
Petri nets are usually applied to characterize asynchronous and concurrent behav-

iors, which depict the logical relationship between events and deduce the state activities 
of the system with an algebraic matrix based on network theory. The classical Petri net 
consists of place, transition, token, and incidence matrix. On this basis, we extended it to 
be suitable for describing wireless power transmission. For more details, please refer to 
our previous work [41,42]. Furthermore, in order to character the state and behavior of 
multi-UAV aided wireless power and information transfer, we propose a hybrid colored 
cyber Petri net system, and the definition is as follows. 

Definition 1. A 11-tuple ∑ = 𝑆, 𝑇; 𝐹, 𝐶, 𝑊, 𝑀; 𝑅𝑑, 𝑊𝑟, 𝐼𝑛ℎ𝑖𝑏𝑖𝑡, 𝑃𝑒𝑟𝑚𝑖𝑡, 𝐾  is said to be a hy-
brid colored cyber Petri net system (HCCPNS), if it satisfied the following conditions: 
(1) 𝑁 = 𝑆, 𝑇; 𝐹  is a directed net, which is named the basic net of ∑  ; 
(2) C is the vector of colors with red and green, 𝐶 = 𝑐 , 𝑐 ; 
(3) The place, transition, and weight function of directed arc all contain two colors; the red one 

represents the continuous part and the green one represents the discrete part, i.e., 𝑀 𝑆 =[𝑀 𝑆 , 𝑀 𝑆 ], 𝑇 = [𝑇 , 𝑇 ], 𝑊 = [𝑊 , 𝑊 ]; 
(4) 𝐹 ⊆ 𝑆 × 𝑇 ∪ 𝑇 × 𝑆 , 𝑅𝑑 ⊆ 𝑆 × 𝑇 , 𝑊𝑟 ⊆ 𝑇 × 𝑆 and 𝐹 ∩ 𝑅𝑑 ∩ 𝑊𝑟 = 𝛷 ; 𝐹 , 𝑅𝑑 , 𝑊𝑟 , 𝐼𝑛ℎ𝑖𝑏𝑖𝑡 

and 𝑃𝑒𝑟𝑚𝑖𝑡 is the flow, read, write, inhibitor, and permission relationship; 
(5) 𝐾 = 𝑘 , 𝑘  is the lower and upper capacity function of 𝑁 , and 𝑘 : 𝑆 → ℝ; 𝑘 : 𝑆 → ℝ, 

where ℝ is a set of real numbers; 
(6) 𝑊: 𝐹 → ℝ ∪ 𝐸𝑥𝑝 𝑆, 𝜏  is the weight function, where 𝐸𝑥𝑝 𝑆, 𝜏  is the set of functional ex-

pressions for 𝜏; 
(7) 𝑀: 𝐹 → ℝ is the marking, and 𝑀  is the initial marking. 

Definition 2. The condition that transition 𝑡 will be fired: ∀𝑠 ∈ 𝑡• : 𝑀 𝑠 − 𝑊 𝑠, 𝑡 ∈ [𝑘 𝑠 , 𝑘 𝑠 ] ∧  ∀𝑠 ∈ 𝑡•: 𝑀 𝑠 + 𝑊 𝑡, 𝑠 ∈ [𝑘 𝑠 , 𝑘 𝑠 ] ∧ ∀𝑠 ∈ 𝑡• : 𝑊 𝑡, 𝑠 ∈ [𝑘 𝑠 , 𝑘 𝑠 ] (10)
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If transition t is fired, it can be recorded as 𝑀[𝑡 >. 

Definition 3. Result of transition firing. After transition t is fired, the original marking 𝑀 will 
be changed to 𝑀′, then 

𝑀 𝑠 ′ = ⎩⎪⎨
⎪⎧ 𝑀 𝑠 − 𝑊 𝑠, 𝑡𝑀 𝑠 + 𝑊 𝑡, 𝑠𝑀 𝑠 − 𝑊 𝑠, 𝑡 + 𝑊 𝑡, 𝑠𝑊 𝑡, 𝑠𝑀 𝑠

𝑠 ∈ 𝑡• − 𝑡•𝑠 ∈ 𝑡• − 𝑡•𝑠 ∈ 𝑡• ∩ 𝑡•𝑠 ∈ 𝑡•        𝑠 ∉ 𝑡• ∩ 𝑡• ∪ 𝑡•
 (11)

The dynamic equation of HCCPNS is: 

𝑀 𝑡 = 𝑀 𝑡𝑀 𝑡 + 𝐴 ∙ 𝑑𝜏𝐴  (12)

where 𝐴  and 𝐴  are the incidence matrix of the continuous and discrete part, respectively. 

A simple HCCPNS model is shown in Figure 2. Figure 2a is the folded specification, 
and Figure 2b is the unfolded specification as well as Figure 2c. They represent the con-
tinuous parts and the discrete part denoted in red and green, respectively, i.e., 𝑀 𝑆 =[𝑀 𝑆 , 𝑀 𝑆 ] , 𝑀 𝑆 = [𝑀 𝑆 , 𝑀 𝑆 ] , 𝑇 = [𝑇 , 𝑇 ] , 𝑊 𝑆 , 𝑇 =[𝑊 𝑆 , 𝑇 , 𝑊 𝑆 , 𝑇 ], 𝑊 𝑇, 𝑆 = [𝑊 𝑇 , 𝑆 , 𝑊 𝑇 , 𝑆 ]. 
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Figure 2. A simple HCCPNS model. (a) Folded model; (b) unfolded model: continuous part; (c) unfolded model: discrete 
part. 

In fact, multi-UAV aided wireless power and information transfer is a dynamic sys-
tem in which the location of the UAV changes over time. It is necessary to monitor the 
UAV’s energy status in real time and pay attention to the event of arrival or departure 
from the hovering point. Therefore, this is a hybrid system with continuous and discrete 
variables, and it is appropriate for HCCPNS to describe its formal specification. 

Figure 3 shows a representative part of the HCCPNS model for a multi-UAV aided 
wireless power and information transfer system. Directed arcs with solid black dots and 
hollow circles at the end of the arrows are the permit arc and the inhibit arc, respectively. 
The arrow of the read arc and the write arc are both in the middle of directed arc. The 
explanation of the main places, transitions, and arcs are given in Tables 2 and 3. 
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Figure 3. HCCPNS model of multi-UAV aided wireless power and information transfer. 

Table 2. Description of representative places and transitions. 

Name Function 𝑈  Place when the 𝑖-th UAV hovers directly over the 𝑗-th SD 𝐼  Place of the 𝑗-th SD 𝑇 𝑖  Transition that the 𝑖-th UAV flies from the 𝑗-th to (𝑗 + 1)th SD 𝑇ℎ  Transition that the 𝑖-th UAV hovers directly over the 𝑗-th SD 𝑇𝑑  Transition that the 𝑖-th UAV collects information from the 𝑗-th SD 𝑇  Transition that the 𝑗-th SD consumes energy 𝑇𝑒𝑚𝑒 𝑖  Transition that the 𝑖-th UAV returns to the depot emergently 

Table 3. Description of representative arcs. 

Arc Weight 𝑊 𝑈 , 𝑇 𝑖  𝑀 𝑈 _𝑡  𝑊 𝑈 , 𝑇 𝑖  𝑀 𝑈 _𝑡  𝑤𝑟𝑖𝑡𝑒 𝑇 𝑖 , 𝑈  𝑀 𝑈 _𝑡  𝑤𝑟𝑖𝑡𝑒 𝑇 𝑖 , 𝑈  𝑀 𝑈 _𝑡 -𝑃 × 𝑡 ,  𝑊 𝑈 , 𝑇ℎ  𝑃  𝑊 𝑈 , 𝑇𝑐  𝑃  𝑊 𝑇𝑐 , 𝐼  𝑃  𝑊 𝐼 , 𝑇  𝑃  𝑊 𝐼 , 𝑇𝑑  1 𝑤𝑟𝑖𝑡𝑒 𝑇𝑑 , 𝑈  1 𝑖𝑛ℎ𝑖𝑏𝑖𝑡 𝐼 , 𝑇𝑐 , 𝑝𝑒𝑟𝑚𝑖𝑡 𝐼 , 𝑇 𝑖 ,  𝑀 𝐼 = 𝑘 𝐼   𝑖𝑛ℎ𝑖𝑏𝑖𝑡 𝑈 , 𝑇𝑐 , 𝑖𝑛ℎ𝑖𝑏𝑖𝑡 𝑈 , 𝑇ℎ , 𝑖𝑛ℎ𝑖𝑏𝑖𝑡 𝑈 , 𝑇 𝑖  
𝑀 𝑈 = 𝑘 𝑈   𝑝𝑒𝑟𝑚𝑖𝑡 𝑈 , 𝑇𝑒𝑚𝑒 𝑖  𝑀 𝑈 = 𝑘 𝑈   

 
When the 𝑖-th UAV arrives right above the 𝑗-th SD, discrete transition 𝑇𝑑  fires im-

mediately, that is, the information sensed by the SD is collected. At this point, continuous 
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transition 𝑇𝑐  and 𝑇ℎ  are also enabled. Furthermore, 𝑇𝑐  is inhibited by 𝑖𝑛ℎ𝑖𝑏𝑖𝑡 𝐼 , 𝑇𝑐  when the charging threshold is reached. In the meanwhile, 𝑝𝑒𝑟𝑚𝑖𝑡 𝐼 , 𝑇 𝑖  enables the transition 𝑇 𝑖  and disables 𝑇ℎ . If the UAV is in the 
emergency, 𝑖𝑛ℎ𝑖𝑏𝑖𝑡 𝑈 , 𝑇𝑐 , 𝑖𝑛ℎ𝑖𝑏𝑖𝑡 𝑈 , 𝑇ℎ , and 𝑖𝑛ℎ𝑖𝑏𝑖𝑡 𝑈 , 𝑇 𝑖  are all fired, 
meaning that the UAV can no longer serve for the SD. Instead, it should return to the 
depot immediately with the firing of 𝑝𝑒𝑟𝑚𝑖𝑡 𝑈 , 𝑇𝑒𝑚𝑒 𝑖 . The time a UAV arrives at and 
leaves the 𝑗-th SD is denoted as 𝑡  and 𝑡 ; the hovering time is denoted as 𝑡 . If the 
model in Figure 3 is unfolded, the flow of continuous energy and discrete information, as 
well as the control strategy of arc weight function, can be more clearly demonstrated. For 
example, 𝑈  is the place when the 𝑖 -th UAV hovers directly over the 𝑗-th SD, then 𝑀 𝑈 = [𝑀 𝑈 , 𝑀 𝑈 ], where 𝑀 𝑈  and 𝑀 𝑈  denote the UAV’s energy and 
carrying information. 𝑇 𝑖 = [𝑇 𝑖 , 𝑇 𝑖 ], 𝑇 𝑖  and 𝑇 𝑖  are used to 
transmit energy and information, respectively. As for the weight function of arc, i.e., 𝑊 𝑈 , 𝑇 𝑖 = [𝑊 𝑈 , 𝑇 𝑖 , 𝑊 𝑈 , 𝑇 𝑖 ], it indicates that the marking of 
place 𝑈  is 0 after transition 𝑇 𝑖  is finished, and the corresponding energy and in-
formation is written to place 𝑈  according to 𝑤𝑟𝑖𝑡𝑒 𝑇 𝑖 , 𝑈 =[𝑤𝑟𝑖𝑡𝑒 𝑇 𝑖 , 𝑈 , 𝑤𝑟𝑖𝑡𝑒 𝑇 𝑖 , 𝑈 ] . In addition, some transitions such as 𝑇ℎ  and 𝑇  only represent the flow of continuous energy, and hence the discrete com-
ponent is 0. 

Based on the above analysis, the HCCPNS specification of energy utilization is given 
as follows. Φ = ∑ ∑ 𝑊 𝑇𝑐 , 𝐼 ∙ 𝑡∑ 𝑃 ∙ 𝑡 , + 𝑊 𝑈 , 𝑇ℎ + 𝑊 𝑈 , 𝑇𝑐 ∙ 𝑡  (13)

Thus, the multi-objective optimization problem can be formulated: 𝑃1: 𝑎𝑟𝑔 𝑚𝑖𝑛, 𝐹 = 𝛷 , 𝛥𝜏  (14)

s.t. 
× _ ≤ 𝑡 ≤ _

 (15)𝑀 𝑈 ≥ 𝑘 𝑈  (16)

where Equation (15) gives the upper and lower bounds of the hovering time; 0.5 < 𝛿 ≤ 1 
is the charging threshold; and Equation (16) indicates that a UAV’s energy should not fall 
below the lower bound, otherwise it will fly back to the depot. 

As can be seen from the above, HCCPNS depicts multi-UAV aided wireless power 
and information transfer from both visual graphics and mathematical formulas. On the 
one hand, the original abstract model can be visualized. On the other hand, the dynamic 
equation not only reveals the result of logical evolution, but it also captures the changes 
of system state. These properties provide an observable interface for the evaluation of the 
optimization method and the theoretical and practical basis for further improvement of 
the control effect. 

4. Multiple Ant Colony-Nondominated Sorting Genetic Algorithm II 
Multi-UAV aided wireless power and information transfer is a multi-objective opti-

mization problem, and there are two difficulties: firstly, how to allocate a large number of 
SDs to different UAVs in an optimal order, and secondly, how to determine the hovering 
time of the UAV so that the SDs can receive a certain amount of energy and ensure that 
the time delay of information collection is as short as possible. 

We notice that in problem 𝑃1, the energy efficiency of UAV and the average time 
delay of information transfer are optimized simultaneously. Moreover, the moving time 
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and hovering time are independent, while the former only depends on the trajectory. 
Therefore, the first step is to minimize the moving time of several UAVs. Substantially, 
this is a multi-traveling salesman problem, which can be reduced to a traveling salesman 
problem. Obviously, it is an NP-complete (nondeterministic polynomial-complete) prob-
lem, which is difficult to solve by classical optimization methods. It can be known from 
literature [47] that ant colony algorithm simulates the foraging behavior of ants in nature 
and is a heuristic algorithm to find the optimal path. Compared with the heuristic algo-
rithms such as particle swarm optimization algorithm and simulated annealing algorithm, 
ant colony algorithm is more suitable to solve the path planning problem. Professor Deb 
proposed NSGA II (nondominated sorting genetic algorithm II) in literature [48], where 
the fast nondominated sorting with elite strategy and the crowded distance principle are 
employed to strengthen the diversity and uniformity of a noninferior solution set, improv-
ing the defects of the NSGA algorithm, such as slow searching speed and easy to fall into 
the local optimal. For this reason, the MAC-NSGA II (multi-ant colony-nondominated 
sorting genetic algorithm II) is proposed. In trajectory planning, the total flight trajectory 
of multiple UAVs is minimized. Moreover, the longest path among them is minimized by 
using the min–max framework to balance the flight load. On this basis, the Pareto sets of 
the hovering time and energy utilization of the UAVs are obtained. Therefore, MAC-
NSGA II refers to a combination of a multiple ant colony algorithm and NSGA II. The 
state transition and pheromone update strategies in the algorithm are explained below, 
and NSGA II will not be detailed. The algorithm pseudocode is given in Algorithm 1. 

4.1. Ant State Transition Strategy 
Ant colony algorithm is an iterative technique with random search that is inspired 

by real ant colony foraging behavior. As ants search for food, they release chemicals called 
pheromones along the way. Over time, pheromone concentration varies with the accumu-
lation of passing ants and the volatilization of the pheromone itself. 

Algorithm 1 Pseudo-code of the multiple ant colony-nondominated sorting genetic algorithm II 

Input：Number of UAVs and SDs, Location of the depot and SDs, Residual energy and power con-

sumption of SDs 

Output：Optimal trajectory of UAVs, the set of hovering 

1: Initialize all parameters and pheromone trails;  

2: 𝑖𝑡𝑒𝑟 ⟵ 0; 

3: while 𝑖𝑡𝑒𝑟 ≤ 𝑖𝑡𝑒𝑟  do 

4:   for each UAV 

5:     for each SD 

6:       generate initial solution with pheromone concentration and distances between SDs; 

7:     end for 

8:     construct solution following (20); 

9:   update the pheromone following (21) and according to the residual pheromone and the length of  

path; 

10:   end for 

11: end while 

12: Obtain the optimal flying trajectory; 

13: Taking the hovering time above every SD as independent variable, initialize the population 𝑃 ; 

14: Combine parent and offspring population 𝑅 = 𝑃 ⋃𝑄 ; 

15: all nondominated of 𝑅 : 𝐹 = 𝑓𝑎𝑠𝑡 − 𝑛𝑜𝑛 − 𝑑𝑜𝑚𝑖𝑛𝑎𝑡𝑒𝑑 − 𝑠𝑜𝑟𝑡 𝑅 ; 
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16: 𝑃 = ∅ and 𝑖 = 1; 

17: while |𝑃 | + |𝐹 | ≤ 𝑁 do 

18: calculate crowding-distance in 𝐹 ; 

19: 𝑃 = 𝑃 ⋃𝐹 ; 

20: 𝑖 = 𝑖 + 1; 

21: 𝑆𝑜𝑟𝑡 𝐹 , ≺ ; 

22: Choose the first 𝑁 − 𝑃  element of 𝐹 , 𝑃 = 𝑃 ∪ 𝐹 [1: 𝑁 − 𝑃 ]; 
23: Use selection, crossover and mutation to create a new population 𝑄 = 𝑚𝑎𝑘𝑒 − 𝑛𝑒𝑤 − 𝑝𝑜𝑝 𝑃 ; 

24: 𝑡 = 𝑡 + 1; 

25: end while 

26: The pareto set of hovering time. 

 
In this way, the ants find the shorter route to the food by selecting the path with high 

pheromone concentration, thus forming a pheromone-based positive feedback and auto-
catalysis mechanism between individual ants and colonies. In this paper, the ants and 
cities are regarded as UAVs and SDs, respectively. At the initial moment, the ants visit 
different nodes from the depot for path selection, and the following factors should be 
taken into consideration when selecting the next node:  
1. The greater the pheromone concentration from one location to the next, the more 

likely the ant is to choose that path. 
2. The shorter the distance between the current position and the next position the ant 

traverses, the greater the probability that the ant chooses the path. 
Based on the above factors, the state transition formula is given as follows: 

𝑝 𝑡 = 𝜎 𝑡 ∙ 𝜂 𝑡∑ [𝜎 𝑡 ] ∙ [𝜂 𝑡 ]∈ ,   𝑗 ∈ 𝑎𝑙𝑙𝑜𝑤𝑒𝑑0  𝑜𝑡ℎ𝑒𝑟𝑠  (17)

where 𝜎 𝑡  is the pheromone concentration between two positions in 𝑡-th iteration; 𝜂 𝑡  is a reciprocal of distance; 𝛼 is weight coefficient as well as 𝛽; and 𝑎𝑙𝑙𝑜𝑤𝑒𝑑 is an 
alternative city set for ants. 

4.2. Pheromone Update Strategies 
In order to avoid too much residual pheromones submerging the heuristic infor-

mation, the residual pheromones on the path should be updated after each ant completes 
the traversal of all nodes in each round. Therefore, the pheromone updating strategy con-
centration is as follows: 

𝜎 𝑡 + 1 = 1 − 𝜌 ∙ 𝜎 𝑡 + ∆𝜎 𝑡  (18)

where 𝜌 is pheromone volatility coefficient, and ∑ ∆𝜎 𝑡  represents the pheromone 
content added in 𝑡-th round. The current pheromone concentration is not only related to 
the previous round of pheromone concentration, but also the following factors should be 
considered: 
(1) Pheromones 𝜆 that are positively correlated with the superiority of feasible solu-

tions are uniformly added to all subpath. 
(2) If the length of the subpath is less than the mean of all the subpaths, 𝜆 is reduced to 0.7~0.95 𝜆. On the contrary, 𝜆 is reduced to 0.1~0.5 𝜆. 
(3) The pheromone of the shortest subpath and the longest subpath is reduced to 0.1𝜆, 

so that they can be recombined to form a better feasible solution. 
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5. Simulation and Numeric Results 
5.1. Simulation Setup and Environment Parameters 

This section demonstrates the performance of the proposed algorithm through large-
scale numerical simulation. Unless otherwise stated, the values are set as follows (Table 
4). 

Table 4. Simulation parameters. 

Parameter Value Parameter Value 𝑁 100,200, ⋯ ,1000  ℎ  200,200  
A(𝑚 ) 0.503 𝑣  4.03 𝑈 𝑚/𝑠  120 𝑑  0.6 𝑠 0.05 𝜌 𝑘𝑔/𝑚  1.225 𝐻 𝑚  20 𝑃 𝑊  13.7 𝑉 𝑚/𝑠  10 𝑃 𝑊  30 𝜂  90% 𝑃 𝑊  3 𝑀 𝑚  400 × 400 𝜌 dB  -60 

UAVs are allocated to serve for 𝑁 SDs, which are randomly and evenly distributed 
over a 400 × 400 𝑚  area. To simplify the analysis, the acceleration and deceleration pro-
cess of the UAV is ignored when it leaves and arrives at the hovering point. The depot’s 
coordinate is ℎ = 200 m, 200 m , and the cruising speed of a UAV is 𝑉 = 10 m/s. More-
over, when the UAV takes off from the depot, it flies at a fixed altitude 𝐻 = 20 m with a 
constant speed. The main simulation parameters are given in Table 4. Since more than two 
objectives can be optimized at the same time, NSGAIII and MOEA/D were selected for a 
comparison algorithm. Each scenario was run 50 times independently, and the average 
value was statistically analyzed. 

In addition, we used the three criteria described below. 
(1) UAV’s trajectory. This indicator reflects the influence of the number of UAVs on the 

trajectory length. 
(2) UAV’s energy efficiency. It represents the proportion of the energy received by SDs in 

the total energy consumption of UAVs, which is affected by different network sizes 
and the number of UAVs. 

(3) Average time delay of information collection. This index reflects the timeliness of gather-
ing information perceived by SDs. 

5.2. Performance 
This section compares the change trend of flight path between MAC-NSGA II, 

NSGAIII, and MOEA/D when the number of SDs increases from 100 to 1000. As shown in 
Figure 4, when the number of UAVs is 6, the longest trajectory of MAC-NSGA II is the 
shortest among the three algorithms, and the difference is not obvious as the network size 
is small. However, the longest path of the other two algorithms can be as high as 1.5 times 
of the proposed algorithm with the increase of network size. In terms of average growth 
rate, the proposed algorithm recorded about 40%, and the other two algorithms are also 
significantly higher, which are 47% and 48% respectively. The reason for this phenomenon 
is that the other two algorithms have no practical strategy to adjust the path structure, 
while the min–max framework is introduced into the proposed algorithm to further re-
duce the longest trajectory of UAVs and balance the flight load between UAVs. 
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Figure 4. The longest trajectory of 6 UAVs with different algorithm. 

Figures 5 and 6 also reveal the results of the longest trajectory and average trajectory 
at different network scales when the number of UAVs is 6, 9, 12, and 15. It is not difficult 
to see that the performance of the 15 UAVs in the large-scale network outperforms the 
other three conditions in both the longest trajectory and the average trajectory. The reason 
is that in a small-scale network, a handful of UAVs can realize power and information 
transmission. In this case, increasing UAVs can reduce the number of SDs traversed by 
each UAV, yet its flight trajectory cannot be significantly reduced, which is actually a 
wasteful strategy. Nevertheless, in a large-scale network, as the number of SDs grows ex-
ponentially, the original UAVs can only complete their missions by expanding their flight 
range and increasing the number of SDs serving them, which is more time-consuming and 
more burdensome. If the scale of UAVs is expanded, the flight load of each UAV can be 
reduced and the energy efficiency can be improved. 
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Figure 5. The longest trajectory of 6, 9, 12, and 15 UAVs. 

Figure 7 shows the worst value and median value of the Pareto optimal solution for 
the average delay of the longest trajectory information collection of six UAVs under dif-
ferent network scales. The maximum delay of MACO-NSGA II decreases by 27.7% and 
43.4% compared with NSGAIII and MOEA/D, respectively, while the median value de-
creases by 25.3% and 43%, respectively. The reason is that although the other two algo-
rithms can optimize more than two targets at the same time, they do not have a separate 
path optimization framework. In addition, it can be found that with the increase of net-
work size, the average time delay of the three algorithms is significantly reduced. This is 
because when the distribution area remains unchanged, the increase in the number of SDs 
means that the distribution density becomes larger, thus shortening the distance of the 
hovering point of a UAV. 
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Figure 6. The average trajectory of 6, 9, 12, and 15 UAVs. 

 
Figure 7. The average time delay of 6 UAVs with different algorithm. 
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terms of optimal value, NSGAII and MOEA/D increased by 5.28% and 10.12%, respec-
tively, when compared with MACO-NSGA II, while they increased by 6.18% and 11.02% 
respectively on the median value. Moreover, with the same number of UAVs, the energy 
efficiency of the three algorithms decreased significantly as the network size increased. 
The reason is that compared with the more received energy by SDs, the flight energy con-
sumption of the UAV increases more, which is the denominator of Equation (13). How-
ever, more UAVs can improve energy efficiency with the same network size, which is 
consistent with the phenomenon in Figures 5 and 6. Especially in a large distribution, the 
improvement is more obvious. 

Table 5. The energy efficiency of UAV with longest trajectory. 

Number  
of SDs 

Number  
of UAVs 

MAC-NSGA II NSGAIII MOEA/D 
Optimal Worst Average Median Optimal Median Optimal Median 

200  

6  2.13% 1.08% 1.64% 1.69% 2.02% 1.59% 1.93% 1.54% 
9  2.15% 1.13% 1.69% 1.72% 2.06% 1.62% 1.97% 1.57% 

12  2.16% 1.17% 1.75% 1.82% 2.09% 1.72% 1.97% 1.69% 
15  2.21% 1.32% 1.84% 1.88% 2.12% 1.79% 2.00% 1.70% 

400 

6  1.90% 0.66% 1.32% 1.33% 1.80% 1.27% 1.73% 1.25% 
9  1.92% 0.69% 1.33% 1.35% 1.83% 1.30% 1.75% 1.27% 

12  2.00% 0.80% 1.42% 1.39% 1.92% 1.34% 1.82% 1.30% 
15  2.09% 0.98% 1.58% 1.61% 1.97% 1.51% 1.84% 1.47% 

600 

6  1.58% 0.39% 0.93% 0.90% 1.49% 0.84% 1.43% 0.79% 
9  1.72% 0.51% 1.09% 1.03% 1.61% 0.97% 1.55% 0.92% 

12  1.74% 0.51% 1.17% 1.19% 1.67% 1.12% 1.57% 1.07% 
15  1.88% 0.64% 1.28% 1.30% 1.77% 1.22% 1.71% 1.14% 

800 

6  1.48% 0.33% 0.83% 0.84% 1.39% 0.80% 1.35% 0.73% 
9  1.51% 0.35% 0.86% 0.87% 1.44% 0.77% 1.37% 0.75% 

12  1.70% 0.47% 1.03% 1.00% 1.62% 0.94% 1.57% 0.89% 
15  1.77% 0.53% 1.12% 1.13% 1.67% 1.07% 1.63% 1.04% 

1000 

6  1.20% 0.22% 0.62% 0.58% 1.13% 0.54% 1.09% 0.51% 
9  1.49% 0.34% 0.86% 0.83% 1.42% 0.79% 1.35% 0.74% 

12  1.54% 0.36% 0.90% 0.87% 1.47% 0.82% 1.39% 0.78% 
15  1.60% 0.40% 0.95% 0.95% 1.51% 0.89% 1.46% 0.84% 

6. Conclusions 
In this paper, the HCCPNS was proposed for the first time and applied for the mod-

elling and analysis of a multi-UAV aided wireless power and information transfer system. 
The established specification intuitively described the relationship between the energy 
flow, control flow, and information flow of the system, and the state equation demon-
strates the dynamic characteristics of continuous and discrete quantities. In order to opti-
mize energy utilization rate and the time delay of information collection simultaneously, 
a multi-objective optimization was formulated. Furthermore, the set of SDs should be up-
dated periodically in real-time system. The proposed MAC-NSGA II was employed to 
assign the number of UAVs, the flying trajectory, and the hovering time, which called for 
a combination of a multiple ant colony algorithm and nondominated sorting genetic al-
gorithm II. Firstly, the flight trajectory of multiple UAVs was minimized, and the flight 
load between UAVs was balanced by using the min–max framework. On this basis, the 
Pareto frontier was obtained, and the trade-off point between the two targets was found. 
A large number of simulation results show that the proposed algorithm is superior to the 
comparison algorithm in energy efficiency and information collection delay. 

Some interesting open questions related to this work merit further investigation. 
Firstly, if the urgency of SDs’ energy supplement is also taken into account, we should 
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look at how to further optimize the UAVs’ moving trajectory. Secondly, it is also worth 
investigating how to cooperate with multiple UAVs, such as partner charging or emer-
gency rescue, so as to achieve better network utility. 
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