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Abstract: Currently, the world is actively responding to climate change problems. There is significant
research interest in renewable energy generation, with focused attention on solar photovoltaic (PV)
generation. Therefore, this study developed an accurate and precise solar PV generation prediction
model for several solar PV power plants in various regions of South Korea to establish stable supply-
and-demand power grid systems. To reflect the spatial and temporal characteristics of solar PV
generation, data extracted from satellite images and numerical text data were combined and used.
Experiments were conducted on solar PV power plants in Incheon, Busan, and Yeongam, and various
machine learning algorithms were applied, including the SARIMAX, which is a traditional statistical
time-series analysis method. Furthermore, for developing a precise solar PV generation prediction
model, the SARIMAX-LSTM model was applied using a stacking ensemble technique that created
one prediction model by combining the advantages of several prediction models. Consequently,
an advanced multisite hybrid spatio-temporal solar PV generation prediction model with superior
performance was proposed using information that could not be learned in the existing single-site
solar PV generation prediction model.

Keywords: multisite; solar PV generation; spatio-temporal; prediction; machine learning; satellite
image

1. Introduction

The issue of rapid climate change caused by industrialization, fossil fuel depletion,
and carbon emissions is emerging worldwide [1]. Therefore, the Kyoto Protocol (1997) and
Paris Agreement (2016) have been concluded for decarbonization in countries globally [2,3].
South Korea is one of the top 10 countries with the highest per capita carbon emissions.
In response, the South Korean government announced the Renewable Energy 3020 Plan
(2017) to achieve 20% renewable energy generation by 2030 and supply more than 95%
of new facilities with clean energy, such as solar PV and wind power [4]. For solar PV
generation, the most popular are clean energy, large scale solar PV farms have been
constructed worldwide because of the decline in the cost of solar panels and facilities of
power generation systems over the past decade [5]. The United States, Germany, and China
have representative gigawatt-scale solar PV farms. South Korea has expanded to 5.7 GW
in 2017, constituting 38% of the total capacity of renewable energy in the country, starting
with 467 MW solar PV farms in 2013 [6].

Solar PV generation is a technology that generates electricity by converting sunlight
into electricity through the photoelectric effect when light energy from the sun passes
through the atmosphere and is absorbed by the solar panel. It has the advantage of clean
and infinite resources [7]. Compared to other renewable energy generation fields, in-
stallation and maintenance costs are low, and the life expectancy is more than 20 years.
Furthermore, minimal damage to the nature around the power plant occurs when installing
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the power plant. However, solar PV generation requires a large installation area because
of its low energy density, and the amount of solar PV generation reacts sensitively to
fluctuations in external meteorological factors such as clouds moving by wind, naturally
occurring yellow dust, or particulate matter (PM) generated from the city center. These
changes in meteorological factors are fluid and complex, preventing the prediction of solar
PV generation, causing anxiety in the system stability of the Smart Grid, a technology
combining information and communication technology with the power grid [8]. Conse-
quently, accurate demand forecasting technology that contributes to stabilize power supply
and demand is critical. If an accurate supply and demand plan is not established, it can
incur huge financial and social losses, such as blackouts and consuming more resources
than necessary. Therefore, accurate forecasting of power generation for renewable energy
sources is critical in establishing an efficient power supply and demand plan.

Recently, air pollution caused by PM has emerged as a social issue in South Korea [9].
As the PM concentration in the atmosphere increases, it absorbs or scatters solar radiation
before passing through the atmosphere and reaching the surface, reducing the amount
of irradiance reaching the solar panel. Most studies have been conducted in Southeast
Asia, where the effects of red soil in the dry regions of the Middle East have been analyzed
or where the natural and anthropogenic emissions of PM are higher than that in other
regions [10–12]. Furthermore, these studies analyzed the phenomenon of various types
of dust accumulated on the solar panel rather than the influence of PM concentrations
distributed in the atmosphere. Therefore, this study analyzes and reflects on the effects of
concentrations of other air pollutants, including PM10 and PM2.5, on solar PV generation.

Solar PV generation prediction can be classified into the direct prediction method of
solar PV generation using various independent parameters and the indirect prediction
method of solar PV generation using predicted irradiance as independent parameters.
The prediction parameters can also be classified into two methods. The first method
uses text data numerically composed of parameters, such as temperature, humidity, and
precipitation, provided by the Meteorological Agency [13–17]. The numerical text data
of various time units comprise hourly data, and the amount of solar PV generation is
predicted using the time-series characteristics contained in the data organized with time.
However, this method does not reflect the spatial characteristics of parameters such as
clouds and PM displaced by the wind. The second method uses motion vectors or indices of
clouds and aerosols in satellite images [18–22]. The shading from the clouds and scattering
of light from yellow dust or PM cause significant fluctuations in the amount of insolation,
which has the most direct influence on solar PV generation prediction. The increase or
decrease in irradiance can be reflected by tracking the motion vector of cloud and aerosol
movement appearing in the satellite image. However, as satellite images occupy a large
area, it is challenging to obtain detailed information about a specific area to predict solar
PV generation.

Clouds and PM values change with time at the observation point. However, when
measured by expanding the observation area, clouds and PM have spatial characteristics
that are moved by the wind. Therefore, to predict the amount of solar PV generation,
a hybrid spatio-temporal model was developed by combining numerical text data and
information extracted from the satellite image [23], unlike the methods using numerical
text data or satellite images individually, as in previous studies [13–22]. It combines
the time-series characteristics from numerical text data and spatial characteristics from
satellite images simultaneously to predict solar PV generation. However, the hybrid
spatio-temporal prediction model in a previous study predicted solar PV power plants
in a single region [23]. The amount of solar PV generation in the single site fluctuates
sensitively to climate change, however, if the solar PV generation in multiple distant regions
is aggregated, extreme fluctuations in solar PV generation can be prevented using the
smoothing effect to operate an efficient power supply and demand plan. Therefore, in this
study, to solve the climate change sensitivity problem of a single-site solar PV generation
and overcome the performance of a single-site prediction model, multiple regions were
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analyzed and an advanced integrated solar PV generation prediction model was developed
in South Korea. The single-site solar PV generation prediction model predicted the solar
PV generation of only one solar PV power plant, located in Incheon; therefore, to predict
a multisite solar PV generation, the solar PV power plants in two regions, Busan and
Yeongam, were added to the study. By developing an advanced multisite integrated solar
PV generation prediction model in South Korea, the amount of solar PV generation for
future new solar PV power plants can also be predicted by simply filling out facility and
geographical information for each solar PV power plant. Therefore, this study proposed
an advanced multisite integrated hybrid spatio-temporal solar PV generation prediction
model in South Korea. It combined spatial information data extracted from satellite images,
reflecting the analysis of wider spatial characteristics with numerical weather data mainly
used in conventional solar PV generation prediction studies.

Various machine learning algorithms and prediction techniques were used to predict
the amount of solar PV generation [24–29]. An hourly advanced multisite integrated hybrid
spatio-temporal solar PV generation prediction model was developed that is more accurate
and precise than a single-site solar PV generation prediction model. Various prediction
models using machine learning algorithms such as the SARIMAX, SVR, DNN, LSTM,
Random Forest, and SARIMAX-LSTM models were used.

Research Framework

This study develops an hourly advanced multisite integrated hybrid spatio-temporal
solar PV generation prediction model in South Korea. The prediction model uses meteo-
rological numerical text data provided by the Korea Meteorological Agency (KMA) and
spatial information data extracted from satellite images to reflect both temporal and spatial
characteristics. By reflecting the spatio-temporal characteristics, higher prediction accuracy
can be derived than the model using only existing numerical text data and satellite images.
Figure 1 shows the overall flow of this study. The first step is to select solar PV power
plants in three cities in South Korea, namely, Incheon, Busan, and Yeongam. A database
(DB) was built by collecting and preprocessing meteorological information provided by
the KMA in each region and satellite images provided by the National Meteorological
Satellite Center (NMSC). The second step extracted the necessary spatial information from
four satellite images. In the atmospheric motion vector (AMV) image, the wind direction
vector and wind speed, the amount of cloud and thickness of the cloud in the cloud optical
thickness (COT) image, the amount of PM and PM concentrations in the aerosol optical
depth (AOD) image, and the amount of irradiance were extracted from the insolation (INS)
image. The third step was to set the center coordinates for each region and the region of
interest (ROI) around it. Furthermore, the ROIadj is set to the same size as the ROI for
the eight adjacent directions to the ROI. To learn spatial information from the solar PV
generation prediction models, the effects of cloud and PM on wind direction were analyzed
in ROIadj and ROI. The fourth step was combining the meteorological numerical text data
DB built in the first step and the data DB extracted from satellite images and performing
a correlation analysis between each meteorological parameter, including clouds and PM,
and the amount of solar PV generation. Finally, the fifth step was to develop predictions by
applying the SARIMAX, traditional time-series analysis method, SVR, DNN, LSTM, Ran-
dom Forest, and the SARIMAX-LSTM model, which incorporates the advantages of each
method, for developing an hourly advanced multisite integrated hybrid spatio-temporal
solar PV generation prediction model. Later, parameter optimization was performed for
each technique to increase the prediction performance.
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Figure 1. The research framework of this study.

2. Methodology
2.1. Satellite Image Data

Herein, the solar PV generation prediction model should learn the spatial characteris-
tics of each meteorological factor. Therefore, to extract spatial information, four years of
satellite images from 2015 to 2018, from the Communication, Ocean, and Meteorological
Satellite (COMS), were provided by the NMSC [30]. The COMS is South Korea’s first
geostationary multipurpose satellite that provides meteorological and ocean observations
and communication services. It was launched on 27 June 2010, from the Guiana Space
Center. The COMS takes images of the Korean Peninsula of size 1024 × 1024 pixels and
a spatial resolution of 1720.8 m per pixel. Every 15 min, 16 images are taken, including
cloud detection, AMV, and surface temperature. In this study, four of the 16 types of
images—AMV, COT, AOD, and INS images—were used [31–34]. Figure 2 shows each
sample image at 13:00 on 9 February 2018. Each image’s description and methods for
spatial information extraction are described in the subsections.

2.1.1. Atmospheric Motion Vector Image and Region of Interest

Clouds and PM significantly influence irradiance, a critical element of solar PV gener-
ation. Clouds and PM move along the wind. AMV images were used to show the effect
on the spatial movement of clouds and PM. In Figure 2a, the AMV image shows the wind
direction and wind speed information with arrows. The wind direction arrows are divided
into red, green, and blue according to altitude. However, the AMV image does not provide
numerical information on the wind direction vector. Therefore, to extract the wind direction
and numerical information on the wind speed, we observed the following sequence. First,
we selected the wind direction arrow closest to the target region and located the center
coordinates of the wind direction arrow. The angle between the center coordinates and
body of the wind direction arrow, as indicated by θ in Figure 3, was calculated to obtain
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the wind direction. Second, the wind direction can be calculated using the shape of the
wing attached to the body of the wind direction arrow.

Figure 2. Four satellite images at 13:00 on 28 February 2016: (a) atmospheric motion vector image; (b) cloud optical thickness
image; (c) aerosol optical depth image; (d) insolation image.

Figure 3. A standard station model for wind direction and speed.
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By setting the target region, where the solar PV power plant for predicting solar
PV generation is located, as an ROI, the spatial characteristics of clouds and PM moving
according to the wind direction were analyzed. The wind direction arrows in the AMV
image rotate 360◦ around the center coordinates. Therefore, as the center coordinates of the
wind direction arrow were fixed, the ROI is set to 50 × 50 pixels, which is a size that does
not interfere with the wind direction arrow rotating with time. Furthermore, the impact on
the surrounding region was identified by setting the ROIadj for the eight adjacent directions
around the ROI. Figure 4 shows the ROI and ROIadj set in Incheon, Busan, and Yeongam in
magenta and cyan, respectively.

Figure 4. The region of interest (ROI) and ROIadj for Incheon, Busan, and Yeongam in the atmospheric
motion vector image.

2.1.2. Cloud Optical Thickness, Aerosol Optical Depth, and Insolation Images

Figure 2b–d show COT, AOD, and INS images, respectively. The COT image repre-
sents the thickness of the clouds through the color index in the bottom right corner, and
information about the amount and thickness of clouds is extracted. The color indexes from
0 to 100 were divided into quarters and classified into clear, partly cloudy, mostly cloudy,
and cloudy. Subsequently, the number of pixels for each index color belonging to the ROI
and ROIadj set through the AMV image was identified, and information about the cloud
amount and thickness was saved. Similar to the COT image, the AOD image represents air
pollutants, such as yellow dust and PM, as a color index. The color index is divided into
good, moderate, bad, and very bad, and the PM amount and concentrations in the ROI and
ROIadj were saved. Finally, the INS image represents the amount of irradiance reaching
the surface using the color index. To extract information about the amount of irradiance
reaching the surface, the index information value for each pixel in the ROI was averaged
and used. Table 1 shows the information extracted from three satellite images of the ROI
in Busan.

2.2. Numerical Text Data

To predict the amount of hourly solar PV generation, three categories of numerical
text data were used. Meteorological factors, such as temperature, humidity, and precipita-
tion, air pollutants, such as PM10 and PM2.5, and solar PV generation data were used as
parameters for predicting solar PV generation. The KMA, Air Korea, and the Open Data
Portal provided the data [35–37], respectively. The KMA began meteorological observa-
tions in 1904 for meteorological stations in 103 regions across the country. Through this,
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more than 15 types of hourly data, such as temperature, precipitation, and humidity, are
provided as public data. The location of the meteorological stations in each area used in
the experiment was 37.4777658 lat. and 126.6223456 long. in Incheon and 35.2061563 lat.
and 129.0806029 long. in Busan. Yeongam does not have a meteorological station, so the
closest location, Mokpo, was used. The location of the meteorological station in Mokpo
is 34.8171105 lat. and 126.3789376 long. Herein, temperature, humidity, cloudiness, wind
speed, wind direction, precipitation, amount of sunlight, irradiance, and visibility were
used as meteorological factors for predicting solar PV generation.

Table 1. The sample of extracted cloud data from the cloud optical thickness image in the region of interest (Busan).

Date

Cloud Particulate Matter

IrradianceClear Partly
Cloudy

Mostly
Cloudy Cloudy Good Moderate Bad Very Bad

8 April 2015
09:00:00 1361 721 100 0 0 90 74 11 115.594

8 April 2015
11:00:00 763 1081 331 22 5 62 83 6 166.374

8 April 2015
12:00:00 456 741 799 224 25 74 0 0 136.422

8 April 2015
13:00:00 180 919 908 232 0 0 0 0 117.310

8 April 2015
14:00:00 436 1082 581 140 0 67 31 0 130.237

8 April 2015
15:00:00 887 894 411 31 13 96 48 0 132.545

8 April 2015
16:00:00 1369 629 168 13 153 197 59 22 117.817

Air pollution caused by fossil fuels and the smoke of cars causes serious environmental
problems. Increasing the PM concentration in the atmosphere not only harms the human
body but also decreases the amount of irradiance by reducing visibility because of the
effects of scattering and absorption when sunlight passes through the atmosphere. It
significantly reduces solar PV generation. Therefore, Air Korea provided data for SO2, CO,
O3, NO2, PM10, and PM2.5, which were used as air pollution factors for predicting solar
PV generation.

Finally, the Open Data Portal provided the most critical hourly solar PV generation
data. Furthermore, data of latitude, longitude, and altitude were added to show the
geographic information for each solar PV power plant, and facility capacity and installation
angle information of solar panels were added to learn facility information. All data were
collected for four years from 0:00 on 1 January 2015 to 23:00 on 31 December 2018. The
k-nearest neighbors algorithm was used to interpolate missing values among the collected
data, and interpolation was performed by learning data for 36 h before and after, i.e., 72 h
based on the missing time point. The amount of irradiance, according to the daylight time,
determines the amount of solar PV generation; hence, the daylight time of 24 h was set
from 09:00 to 17:00. Table 2 summarizes the capacity of each solar PV power plant used in
the study and the distance between each station. Table 3 shows a sample of numerical text
data from Incheon.

Table 2. The capacity of each solar PV power plant and distance for each station.

Solar PV Power Plant Capacity (kW) Distance (km)
Meteorological Station Aerosol Station

Incheon 998.0 10.0 3.0
Busan 187.2 3.6 2.9

Yeongam 1491.6 12.7 5.0
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Table 3. The sample of the numerical dataset.

Date Temperature
(◦C)

Precipitation
(mm)

Wind
Speed
(m/s)

Wind
Direction

(0–360
Degree)

Humidity
(%)

Amount of
Sunshine (h)

Irradiance
(MJ/m2)

Cloudiness
(0–10 Level)

Visibility
(10 m)

SO2
(ppm)

CO
(µg/m2) O3 (ppm) NO2

(ppm)
PM10

(µg/m2)

PM2.5
(µg/m2)

Capacity
(kW)

Setting
Angle (◦ )

Latitude
(◦ )

Longitude
(◦ )

Altitude
(m)

PV
(kW)

1 January
2015

09:00:00
−8.4 0 6.7 340 56 0.8 0.21 0 2000 0.006 0.5 0.017 0.012 145 33 998 20 37.26154 126.434 52 60

1 January
2015

10:00:00
−8.1 0 6.1 226 54 0 0.67 1 2000 0.006 0.5 0.019 0.01 117 34 998 20 37.26154 126.434 52 374

1 January
2015

11:00:00
−7.6 0 6.1 340 53 0 1.1 1 2000 0.006 0.6 0.019 0.01 98 33 998 20 37.26154 126.434 52 638

31
December

2018
15:00:00

−1.2 0 2.6 340 34 0.9 1.17 8 2000 0.006 0.6 0.024 0.026 47 15 998 20 37.26154 126.434 52 223

31
December

2018
16:00:00

−1.1 0 3.3 340 45 0.8 0.76 8 2000 0.006 0.6 0.021 0.03 40 16 998 20 37.26154 126.434 52 128

31
December

2018
17:00:00

−2.6 0 3 320 53 1 0.43 7 1680 0.005 0.6 0.023 0.024 39 13 998 20 37.26154 126.434 52 6
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2.3. Parameter Analysis

Pearson correlation analysis was conducted to analyze the correlation of parameters
used to predict solar PV generation. Furthermore, additional validation was performed to
analyze the effect of solar PV generation on clouds and PM of numerical text data provided
by KMA and spatial information data extracted from satellite images. For clouds, the
numerical text data comprise 0–10 levels, and the data extracted from the satellite image
consist of four levels. For PM (Table 4), the numerical text data comprise four levels for
both PM10 and PM2.5 according to the standards used in South Korea. The satellite image
data were also analyzed by dividing them into four levels. To exclude the impact of each
parameter as much as possible, when analyzing the effect on clouds, PM10, and PM2.5
were both at a good level, whereas when analyzing the effect on PM, the clouds used only
0–1 levels. Furthermore, the analysis was conducted for 2 h from 12:00 to 14:00, which
is noon, when the highest amount of solar PV generation takes place. Figures 5 and 6
show the graph of the correlation analysis results of the amount of solar PV generation for
clouds and PM in each region. As the amount of clouds increases or the PM concentration
increases, the amount of solar PV generation decreases.

Table 4. The results of discriminant for movement of particulate matter by wind direction.

PM Good Moderate Bad Very Bad

PM10 0–30 31–80 81–150 150~
PM2.5 0–15 16–35 36–75 76~

Figure 5. The reduction rates of solar PV generation according to cloudiness: (a) The reduction rates in Incheon (KMA);
(b) The reduction rates in Incheon (NMSC); (c) The reduction rates in Yeongam (KMA); (d) The reduction rates in Yeongam
(NMSC); (e) The reduction rates in Busan (KMA); (f) The reduction rates in Busan (NMSC).
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Figure 6. The reduction rates of solar PV generation according to particulate matter (PM): (a) The reduction rates in Incheon
(KMA PM10); (b) The reduction rates in Incheon (KMA PM2.5); (c) The reduction rates in Incheon (NMSC PM); (d) The
reduction rates in Yeongam (KMA PM10); (e) The reduction rates in Yeongam (KMA PM2.5); (f) The reduction rates in
Yeongam (NMSC PM); (g) The reduction rates in Busan (KMA PM10); (h) The reduction rates in Busan (KMA PM2.5); (i) The
reduction rates in Busan (NMSC PM).

As such, the spatial characteristics of each parameter are critical when learning the
characteristics of clouds and PM, which significantly affect solar PV generation prediction.
Therefore, spatial characteristics were verified using cloud and PM data extracted from
satellite images and wind direction data extracted from AMV images. The verification
methods are as follows. First, at time t, recognize the wind direction of the ROI. Next,
the cloud and PM amounts are analyzed at time t of the ROI and each ROIadj. Finally,
depending on the wind direction, the increase or decrease because of the movement of
clouds and PM is determined at the point t + 1 of the ROI. For example, assume that the
wind direction is north, and the amounts of clouds in ROI and ROIadj at time t are 5 and 8,
respectively. At this time, when the amount of cloud of ROI is >5 at the time point t + 1,
it is determined as true, and in the opposite case, it is determined as false. Tables 5 and 6
show the verified results.

Table 5. The results of cloud movement verification by wind direction.

Accuracy (%) Clear Partly
Cloudy

Mostly
Cloudy Cloudy Average

Incheon 73.008 78.354 85.692 93.947 82.750
Yeongam 75.401 78.457 84.792 91.644 82.574

Busan 73.680 79.529 85.662 93.896 83.192

Table 6. The results of particulate matter movement verification by wind direction.

Accuracy (%) Good Moderate Bad Very Bad Average

Incheon 78.616 84.827 90.016 94.313 86.943
Yeongam 80.527 86.345 92.162 94.627 88.415

Busan 77.144 87.308 92.817 95.287 88.139
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3. Forecasting Solar PV Generation
3.1. Prediction Methods for Solar PV Generation

Various methods were used to predict the amount of solar PV generation. We used
SARIMAX, a traditional statistical time-series analysis method, and SVR, a method that
applies a loss function to the support vector machine (SVM), a representative classification
algorithm. The DNN with high-level prediction performance was used by combining
several nonlinear transformation techniques. As a method based on the decision tree
method, a random forest model was used. The SARIMAX-LSTM model was used to create
a new model by combining only the merits of each model and LSTM, which is easy for
classification, processing, and prediction based on time-series data. Detailed descriptions
of each method and model are provided in the following subsections.

3.1.1. Seasonal Autoregressive Integrated Moving Average with Exogenous Factors

The autoregressive integrated moving average (ARIMA) is a traditional statistical
time-series analysis method developed by Newsham and Birt as a regression model that
includes both the autoregressive (AR) model and the moving average (MA) model [38]. The
AR model determines whether past data affect future data, and the MA model identifies a
trend in which the average value of a random variable continuously increases or decreases
with time. As the ARIMA is a univariate time-series model, the ARIMAX can manipulate
multivariate time-series data by adding external factors to it. To apply the ARIMAX model,
steady-state data are critical. If the data do not have a steady-state, the difference should
be used to represent the steady state and then applied to the regression model.

The SARIMAX model adds seasonal characteristics to the ARIMAX model and can
reflect the periodicity of the data [39]. The amount of solar PV generation, including
the meteorological parameters used in the study, satisfies the steady-state and seasonal
periodicity, as it has the characteristics of the four seasons and uses the hourly data. The
SARIMAX model has the order of the nonseasonal AR (p), nonseasonal difference (d),
nonseasonal MA (q), seasonal AR (P), seasonal difference (D), and seasonal MA (Q) order.
In this study, SARIMAX (3, 0, 3) (3, 0, 3, 12)s was used as the order for the solar PV
generation prediction model.

3.1.2. Support Vector Regression

The SVM is a representative classification algorithm proposed by Vapnik in 1995 [40].
The SVR method introduces the loss function to SVM for regression analysis. The SVR
must obtain an optimal regression function f (x) to minimize the difference between the
actual and predicted values. To this end, the loss function reduces the size of the regression
coefficient to find a line that flattens the regression equation and then determines all
predicted values within a specific deviation ε called the support vector. The smaller the
corresponding support vector, the more optimal the regression function f (x) that will be
obtained. This is a typical linear regression method, but most data cannot solve the problem
using only linear regression; a nonlinear regression equation should be used. The SVR can
solve the problem by mapping the data of the existing input space into the feature space
and using a mapping function that enables the data to be linearly expressed in a high-
dimensional space. When data are mapped to a higher dimension, the regression equation
becomes complex because of the curse of dimensionality, which significantly increases the
computational amount. This problem can easily be solved using kernel functions, such as
the radial basis function, linear, and polynomial kernels. The optimal regression function
f (x) can be calculated by solving the Lagrangian problem through the dot product of the
vector calculated using the kernel function. Herein, a linear kernel with the best prediction
performance was used because of experimenting with various kernels of SVR models for
solar PV generation prediction.
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3.1.3. Deep Neural Network

Machine learning is used for classification and prediction in various fields [41]. The
DNN consists of an input layer, a hidden layer, and an output layer, and more complex
computation is possible by expanding the number of hidden layers in artificial neural
networks (ANN) that mimic the human brain structure. The nodes at each DNN layer are
interconnected, hence, they have the same effect as many neurons connected to collect and
process multiple data in the human brain structure. By interacting with various nonlinear
activation functions, such as Sigmoid, ReLU, and tanh in each DNN layer, the DNN model
itself creates labels for each training data or distorts the space to derive optimal classification
or prediction results. The conventional ANN method passes through the hidden layer from
the input layer and proceeds in one direction to the output layer when calculating weights
in a feed-forward method, rendering it impossible to adjust the weights. However, the
prediction result’s precision can be improved by adopting the backpropagation algorithm,
which computes the gradient earlier in the back layer using the gradient descent algorithm.
If the number of hidden layers is simply increased to design the DNN model, the gradient
might be stuck in the local minima, or a vanishing problem can occur, resulting in lower
performance than a shallow ANN. Therefore, if the problem is solved using the dropout
layer or applying a nonlinear activation function, higher performance prediction results
can be derived by resolving vanishing gradient and overfitting problems. Table 7 shows
the structure of the DNN model used to predict solar PV generation in this study.

Table 7. The structure of the DNN model.

Number of Hidden Layer 1 2 3 4 5 6 7

Number of Nodes 180 0.4 100 0.4 100 0.4 1
Activation Function tanh Drop out ReLU Drop out Sigmoid Drop out Sigmoid

3.1.4. Long Short-Term Memory

The recurrent neural network (RNN) allows for effective analysis when data in the
past have time-series characteristics because it can then consider sequence or temporal char-
acteristics, through which past data can affect the future outcome [42]. Unlike other neural
networks, the results of the hidden layer are linked so that they can revert to the input of the
same hidden layer and share weights. However, the gradient-vanishing phenomenon, in
which gradient values become exponentially smaller during the backpropagation process,
and gradient expansion, in which gradient values grow exponentially during the learning
process, do not accurately reflect long-term dependencies, and the model cannot proceed
with learning.

Hochreiter and Schmidhuber proposed the LSTM, which can solve the long-term
dependence problem of the RNN [43]. The LSTM has four layers of interaction, and
through cell states, key information continues to be conveyed to the next level. Furthermore,
the four layers use each gate element to add or remove various information. The gate
that protects and controls the cell state is composed of forget gate, an input gate, and
tanh layers, allowing information to flow selectively. It consists of a Sigmoid neural
net layer and a point-by-point multiplication operation. The Sigmoid layer outputs a
value of 0 or 1 to determine the effect of each component. If the output value is 0, the
corresponding component does not affect the future. Conversely, when the output value
is 1, the corresponding component influences the prediction result in the future. Table 8
shows the structure of the LSTM model used to predict solar PV generation in this study.

Table 8. The structure of the LSTM model.

Number of Hidden Layer 1 2 3 4 5

Number of nodes 500 0.3 500 0.3 1
Activation function LSTM Drop out Sigmoid Drop out tanh
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3.1.5. Random Forest

Random forest is an ensemble algorithm that learns multiple decision trees [44]. It
is widely used in classification and regression problems because it can easily manage
interactions and nonlinearities between parameters and is insensitive to outliers. The work
of Yali Amit and Donald Geman [45] influenced the early concept of random forest, and
Leo Breiman [46] established the present concept. Random forest can effectively prevent
overfitting by adding the randomness of variable selection to the bagging method generat-
ing a model by randomly extracting a sample several times and iterating the restoration.
It has high prediction stability because the average of the prediction results is used for
numerous decision trees, and the optimal prediction value is derived by selecting the
optimal decision tree model through a majority vote. Although prediction using a decision
tree has a disadvantage because the prediction result or model performance fluctuates
significantly, the randomization technique, which is a characteristic of the random forest,
overcomes the disadvantage of the decision tree and has good generalization performance.
The conventional random forest may be possible to cause the problem of concept drift,
which deteriorates the performance of the predictive model over time. Hence, Zhukov et al.
attempted to solve this problem [44]. In this study, 500 decision trees were used in the
Random Forest model for solar PV generation prediction.

3.1.6. Ensemble Learning (SARIMAX-LSTM)

The key of ensemble learning is to achieve better generalization performance than
individual weak learners by combining multiple single models to create one strong
learner [47,48]. Representative ensemble techniques are classified into three methods.
First, the bagging technique using the voting method randomly restores and extracts the
target data. Using the extracted data as a sample group, the prediction results are aggre-
gated as an average value after training each model, reducing errors in overfitting and
underfitting caused by high variance or high bias. Second, the boosting technique using
the weighted voting method applies weights in the restoration extraction process, unlike
the bagging technique. Although the bagging technique proceeds with training in parallel,
the boosting technique sequentially progresses; hence, weights are redistributed according
to sequentially derived results in the training order with high accuracy. However, it has the
disadvantage of being vulnerable to extreme outliers. Lastly, the stacking technique derives
the performance of a new model by combining the advantages of different individual mod-
els. It adopts the characteristics of each model to highlight its advantages, complementing
its disadvantages, which can improve performance over a single model.

In this study, the stacking ensemble was used among various ensemble methods and
the SARIMAX and LSTM models were used as weak learners to sequentially combine. This
is to emphasize the time-series characteristics of various parameters, including meteorolog-
ical factors, and solve the long and short-term dependency problem. Figure 7 shows the
structure of the proposed SARIMAX-LSTM model. After the original data are derived from
the SARIMAX model, the first result is derived, and the final predicted value is derived
using it as the training data of the LSTM model.

3.2. Error Analysis for Prediction

Various methods exist to verify the error of the prediction model and can be classified
into two methods: a relative error verification method and an absolute error verification
method. Representative relative error verification methods are the mean square error (MAE)
and the root mean square error (RMSE). The mean absolute percentage error is mainly
used as an absolute error verification method. However, when the measured value is 0, it
becomes infinite or undefined, and as the measured value converges to 0, it diverges to the
limit. It also has the disadvantage of distorted results when there are many extreme outliers.
In this study, the symmetric mean percentage error (SMAPE) was used to overcome these
shortcomings. Each error verification method is expressed as Equations (1)–(3), and a value
closer to 0 indicates that the model has superior performance.
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Figure 7. The architecture of the SARIMAX-LSTM model.

Using the criteria of the American Society of Heating, Refrigerating, and Air-Conditio-
ning Engineers (ASHRAE) Guideline 14 applied by energy managers to improve energy
efficiency, we will additionally verify the performance of the solar PV generation prediction
model [49]. For the objective evaluation of the solar PV generation prediction model, the
mean bias error (MBE) and the coefficient of variation (Cv) criteria in the ASHRAE Guide-
line 14 were applied and are expressed as equations 4 and 5. For MBE, the performance
increases as it converges to 0, regardless of the ± sign. However, in this study, absolute
values have been taken for the results, thereby increasing intuition and convenience of
comparison. From Table 9, according to the criteria of ASHRAE Guideline 14, the hourly
prediction is defined within MBE ± 10% and Cv 30%.

MAE =
1
n

n

∑
i=1
|Fi − Ai| (1)

RMSE =

√
1
n

n

∑
i=1

(Fi − Ai)
2 (2)

SMAPE(%) =
1
n

n

∑
i=1

|Ai − Fi|
|Ai|+ |Fi|

(3)

MBE(%) =
∑n

i=1(Fi − Ai)

∑n
i=1 Ai

(4)

Cv(%) =
RMSE

1
n ∑n

i=1 Ai
(5)

F: Forecast value, A: actual value, n: number of samples.

Table 9. ASHRAE Guideline 14.

Calibration Type Index Acceptable Value

Monthly MBE month ±5%
Cv (RMSE) month 15%

Hourly MBE hour ±10%
Cv (RMSE) hour 30%
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3.3. Cloud and PM Prediction for Solar PV Generation

Before predicting solar PV generation, clouds and PM are first predicted to reflect
their spatial characteristics. During the entire experimental period, 2015–2018, the clouds
and PM in the ROI and ROIadj were learned using satellite images data from 2015 to 2017.
It then predicts the hourly cloud and PM of ROI in 2018. To predict clouds and PM, data
extracted from satellite images and numerical text data for meteorological factors and air
pollutant factors were combined and used. The LSTM model for clouds and PM was used
differently from the solar PV generation prediction LSTM model. Tables 1 and 3 show the
input parameters. Here, 15 parameters are used in Table 3, excluding the solar PV power
plant’s facilities and geographical factors. Table 10 shows the structure of the LSTM model
used to predict clouds and PM in this study. Table 11 shows the prediction results.

Table 10. The structure of the LSTM model for clouds and PM prediction.

Number of Hidden Layer 1 2 3

Number of nodes 500 0.3 1
Activation function LSTM Drop out ReLU

Table 11. The results of clouds and PM prediction.

Region Error Cloudiness PM10 PM2.5

Incheon
MAE 0.977 8.248 4.223

RMSE 1.383 14.425 6.356
SMAPE (%) 7.701 11.601 14.729

Yeongam
MAE 1.640 7.014 5.748

RMSE 2.040 10.007 7.626
SMAPE (%) 11.734 10.644 13.506

Busan
MAE 1.238 7.215 4.612

RMSE 1.595 11.266 6.197
SMAPE (%) 9.681 8.692 11.010

3.4. Proposed Model for Solar PV Generation

To predict hourly solar PV generation, the prediction model is learned using various
meteorological parameters, including the predicted cloud amount and PM. Furthermore,
to reflect the temporal characteristics in the prediction model, variables representing time,
such as the month, day, and time, were added. To predict the amount of solar PV generation,
the 2018 data were divided into training, verification, and test data ratio of 3:1:1 for each
month. Five models were used for prediction: SARIMAX, SVR (Line kernel), DNN, LSTM,
Random Forest, and SARIMAX-LSTM. Table 12 shows the parameters for forecasting the
amount of solar PV generation.

Table 12. The parameters of the solar PV generation prediction model.

Data Parameters

Input

Year, Month, Day, Time, Temperature, Precipitation, Wind speed (numerical text
data & satellite image data), Wind direction (numerical text data & satellite image
data), Humidity, Amount of sunshine, Irradiance (numerical text data & satellite

image data), Cloudiness, Visibility, SO2, CO, O3, NO2, PM10, PM2.5, Clouds (clear,
partly cloudy, mostly cloudy, cloudy), PM (good, moderate, bad, very bad),

Capacity, Setting angle, Latitude, Longitude, Altitude,
PV (previous data)

Output PV (one hour ahead)

4. Experimental Results

To compare the performance of the single-site and multisite solar PV generation pre-
diction models, 21 of 36 parameters were validated, excluding the facilities and geographic
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parameters of a single-site solar PV generation prediction model used in the results of a pre-
vious study [23]. Table 13 shows the results of the evaluation by applying the data of three
regions to the previous study, the single-site solar PV generation prediction model. Based
on the absolute evaluation method SMAPE, the prediction performance was excellent in
the order of DNN model, ARIMAX model, SVR_Linear model, SVR_RBF model, and ANN
model. Among all five models, the ARIMAX, which manages multivariate time-series data,
was the best in all error verification methods, except the SMAPE and MBE. The ARIMAX
model predicts by showing the time-series characteristics; hence, it has a certain level of
predictive performance, but does not have optimal performance. The SVR_Linear model,
including the ARIMAX and DNN models, shows satisfactory performance, whereas the
ANN model shows severe performance degradation. However, all five models did not
meet the criteria of ASHRAE Guideline 14.

Table 13. The results of the single-site solar PV generation model using the multisite data set.

Error ARIMAX SVR_RBF SVR_Linear ANN DNN

MAE 76.176 225.020 87.082 584.648 80.959
RMSE 107.102 269.205 113.624 643.798 113.724

SMAPE 24.709 43.406 28.900 99.996 23.330
MBE 2.806 18.103 1.921 182.612 2.926
Cv 33.453 84.085 35.490 201.087 35.521

Table 14 shows the prediction results of the five models proposed for multisite so-
lar PV generation in this study. Based on the SMAPE, the prediction performance was
excellent in the order of Random Forest model, SARIMAX-LSTM model, DNN model,
LSTM model, SARIMAX model, and SVR_Linear model. The Random Forest model has
the best performance based on the SMAPE, but does not meet the ASHRAE Guideline
14. For the SARIMAX model, the performance is increased compared to the ARIMAX
model. Compared with the existing model, the SVR_Linear and DNN models show an
increase in performance of 3.96 and 10.5%, respectively, based on RMSE. Although the
performance of the LSTM model is low compared to the newly proposed DNN model, it
has the best performance of all proposed models for the SARIMAX-LSTM model combined
with the SARIMAX model by applying the stacking ensemble technique. Furthermore,
the SARIMAX-LSTM model has MBE: 2.65; Cv: 29.92, which is the only one of 10 models
meeting the criteria of ASHRAE Guideline 14.

Table 14. The multisite solar PV generation prediction results of the proposed model.

Error SARIMAX SVR_Linear LSTM DNN Random Forest SARIMAX-LSTM

MAE 76.169 84.791 76.913 70.378 69.812 64.730
RMSE 102.575 109.130 106.123 101.783 106.226 95.800

SMAPE 27.743 29.155 23.369 22.365 18.364 19.891
MBE 1.346 2.752 2.985 5.312 3.323 2.650
Cv 32.039 34.086 33.147 31.791 33.179 29.923

Figure 8 shows 50 h of the overall prediction results of the SARIMAX, SVR_Linear,
LSTM, DNN, Random Forest, and SARIMAX-LSTM models. The thick black line is the
original observation value and has a value similar to the predicted result of the overall
model. The SARIMAX-LSTM model marked with solid red lines shows that it has superior
performance to the other models.
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Figure 8. The result of multisite solar PV generation prediction of each model.

5. Discussion

The single-site solar PV generation prediction model has limitations when using
multisite data. The ARIMAX model shows the multivariate time-series characteristics in a
single-site solar PV generation prediction model, and the SARIMAX model in a multisite
solar PV generation prediction model, show higher performance than the other models but
do not fulfill the criteria of ASHRAE Guideline 14. The performance of the single-site solar
PV generation prediction model using multisite data set is similar to the performance of
the multisite solar PV generation prediction model but does not have the optimal results
because the single-site solar PV generation prediction model cannot learn on several factors,
including the facility and geographic information of the solar PV power plants included
in the multisite data. To improve the performance of the proposed model, finding and
improving the factors hindering the prediction performance is necessary. The inhibitory
factor is deemed the missing value of the AMV data. In the preprocessing step, after
recognizing the wind direction arrow image of the AMV image, one must proceed to the
next step. However, in this case, if there are no wind direction data in the ROI in the entire
AMV image, the corresponding time zone is recognized as a missing value because there is
no wind direction arrow. Therefore, if the number of missing values can be reduced when
using various interpolation methods or extracting satellite image data using other methods,
more improved models could have better performance.

6. Conclusions

This study proposed an advanced multisite integrated hybrid spatio-temporal solar
PV generation prediction model by combining time-series-based meteorological numerical
text and satellite image data with spatial information to develop a precise and accurate
prediction model for solar PV power plants in multiple regions. The existing data provided
by the KMA contain time-series characteristics but do not reflect the spatial characteristics
of clouds and PM moving according to the wind direction. Therefore, data on clouds and
PM moving according to the wind direction were extracted using satellite images to show
the spatial characteristics together. It predicted the solar PV generation of existing solar PV
power plants in both single and other regions. The data from 2015 to 2018 were used for
three solar PV power plants in Incheon, Busan, and Yeongam in South Korea. To reflect the
spatial characteristics of clouds and PM, the data from 2015 to 2017 were learned in order to
predict the number of clouds and PM in 2018 first, and the amount of solar PV generation
in 2018 was predicted using the predicted cloud and PM data. To develop the optimal
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prediction model, SARIMAX, a traditional time-series analysis method, and SVR_Linear,
DNN, LSTM, Random Forest, and SARIMAX-LSTM models based on machine learning
algorithms were used.

Consequently, the overall performance increased compared to the single-site solar
PV generation prediction model. For the SARIMAX-LSTM model to which the stacking
ensemble technique was used to make the most of the temporal characteristics of the solar
power generation data, the results were MAE: 64.730; RMSE: 95.800; SMAPE: 19.891; MBE:
2.650; and Cv: 29.923. Among the proposed models, it is the only model that satisfies
ASHRAE Guideline 14 and showed the best performance.

The proposed advanced multisite integrated hybrid spatio-temporal solar PV genera-
tion prediction model can predict integrated solar PV power generation for solar PV power
plants in various regions in South Korea using numerical text data and satellite images.
Therefore, it enables the prediction of solar PV generation for both existing and newly
constructed solar PV power plants. By learning the facility and geographic information of
each solar PV power plant, and the meteorological and air pollutant data of the area where
the solar PV power plant is located, the amount of solar PV generation can be predicted.
This reflects the spatio-temporal characteristics of solar PV generation, thereby providing
guidelines for developing a precise and accurate solar PV generation prediction model for
a stable power supply and demand plan.
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